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Abstract

We consider the eigenvalues of the Laplacian on an open, bounded,
connected set in R™ with C? boundary, with a Neumann boundary con-
dition or a Robin boundary condition. We obtain upper bounds for those
eigenvalues that have a corresponding eigenfunction which achieves equal-
ity in Courant’s Nodal Domain theorem. In the case where the set is also
assumed to be convex, we obtain explicit upper bounds in terms of some
of the geometric quantities of the set.

MSC classification (2010): 35P15, 49R05, 35P05.

Keywords: Courant’s Nodal Domain theorem, Neumann eigenvalues, Robin
eigenvalues, Fuclidean domains.

1 Introduction

1.1 Statement of the problem

Let 2 be an open, bounded, connected set in R™, n > 2, with Lipschitz boundary

99Q. Consider the Neumann Laplacian acting on L?(Q) and note that it has

discrete spectrum since 2 is bounded. The Neumann eigenvalues of €2 can

hence be written in a non-decreasing sequence, counted with multiplicity,
Oiul(Q) <M2(Q) <. SILLk(Q) <...,

where the only accumulation point is +oo.

By Courant’s Nodal Domain theorem, any eigenfunction corresponding to
1k (€2) has at most k nodal domains. If uy is an eigenfunction corresponding to
1k () with k nodal domains, then we call it a Courant-sharp eigenfunction. In
this case, we also call ux(Q) a Courant-sharp eigenvalue of €.

The Courant-sharp property was first considered by Pleijel [15] in 1956 for
the Dirichlet Laplacian. In particular, Pleijel proved that there are only finitely
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many Courant-sharp Dirichlet eigenvalues of a bounded, planar domain with
sufficiently regular boundary. See [3] [14] for generalisations of Pleijel’s theorem
to higher dimensions and other geometric settings. Following from Pleijel’s
result, natural questions are, for a given domain, how many such eigenvalues
are there and how large are they?

The recent articles [2| 4] consider these questions and give upper bounds for
the largest Courant-sharp Dirichlet eigenvalue and the number of such eigenval-
ues in terms of some of the geometric quantities of the underlying domain. In
Theorem 1.3 of [2], the authors bound this number using the area, perimeter,
maximal curvature and minimal cut-distance to the boundary, for a set in R?
which is sufficiently regular but not necessarily convex (the cut-distance will be
defined in Section . In [4], such geometric upper bounds are obtained for an
open set in R™ with finite Lebesgue measure. In the case where the domain is
convex, the upper bound given in Example 1 of [4] could be expressed in terms
of the isoperimetric ratio of the domain. From this, one can deduce that if
the domain has a large number of Courant-sharp Dirichlet eigenvalues then its
isoperimetric ratio is also large.

It was shown recently in [I0] that if © is an open, bounded, connected
set in R™ with C*! boundary, then the Neumann Laplacian acting in L2(£2)
has finitely many Courant-sharp eigenvalues (we refer to [I0] for a description
of prior results). As mentioned in [2], the aforementioned questions are also
interesting for the Courant-sharp eigenvalues of the Neumann Laplacian.

1.2 Goal of the article

The aim of the present article is to obtain upper bounds for the Courant-sharp
Neumann eigenvalues in the case where 2 C R™ is open, bounded, connected
with C? boundary. In the case where () is also convex, we obtain explicit upper
bounds for the Courant-sharp Neumann eigenvalues of €2, and for the number of
such eigenvalues, in terms of some of the geometric quantities of 2. These results
correspond to some of those mentioned above for the Dirichlet case, with some
additional hypotheses due to the difficulties in handling the Neumann boundary
condition.

We follow the same strategy that was used in [I0]. This involves distinguish-
ing between the nodal domains of a Courant-sharp eigenfunction u for which
the majority of the L? norm of u comes from the interior (bulk domains) and
those for which the majority of the L? norm of u comes from near the bound-
ary (boundary domains), and then obtaining upper bounds for the number of
each type of nodal domain. In the first case, the argument used by Pleijel [I5],
which rests upon the Faber-Krahn inequality, can be used as the eigenfunc-
tion in a bulk domain almost satisfies a Dirichlet boundary condition. For the
boundary domains, it is not possible to employ the same argument as Pleijel
as these nodal domains have mixed Dirichlet-Neumann boundary conditions so
the Faber-Krahn inequality cannot be employed. The strategy of [I0] to deal
with the boundary domains is to locally straighten the boundary of the domain
Q) and then to reflect the nodal domain in order to obtain a new domain that
almost satisfies a Dirichlet boundary condition. One then has to compare the
L? norm of the gradient of an eigenfunction corresponding to a Courant-sharp
eigenvalue on the boundary domain to the L? norm of the gradient of the re-
flected eigenfunction on the reflected domain. See Section



We restrict our attention to Euclidean domains with C? boundary. We
can then make use of tubular coordinates in order to set up and describe the
reflection procedure explicitly. This allows us to keep explicit control of the
constants appearing in the aforementioned estimates in order to obtain estimates
for the Courant-sharp Neumann eigenvalues.

In Proposition [7.1] we obtain an upper bound for the Courant-sharp Neu-
mann eigenvalues of {2 in terms of some of its geometric quantities. More specif-
ically, it depends on [Q| the area of 2, p(2) the isoperimetric ratio to the power
1/2, t4+(£2) the smallest radius of curvature of the boundary, and the cut distance
to the boundary (see Section |3 for precise definitions of the latter quantities).

A simpler presentation of this upper bound is possible in the case where
Q is convex, since one of the additional conditions in the general case is no
longer required (see Section . In addition, we obtain an upper bound for the
number of such eigenvalues by using the upper bound for the Neumann counting
function which is proved in Appendix [A] In particular, we have the following
proposition.

Proposition 1.1. Let Q be an open, bounded, convex set in R? with C? bound-
ary. There exist constants C > 0 and C' > 0, that do not depend on Q, such
that for any Courant-sharp eigenvalue puy (),

8
(@) = ¢ (g + 2G5 ) (1)
and e
veor (s pep)). 2)

We note that the left-hand side and right-hand side of Inequality have
the same homogeneity with respect to scaling, and that Inequality is scaling
invariant. In addition, in Section 8] we obtain an upper bound for the Courant-
sharp Neumann eigenvalues which also depends upon the diameter of Q.

By Proposition [1.1] we then observe that if €2 is a sufficiently regular convex
set with a large number of Courant-sharp eigenvalues, it has a large isoperi-
metric ratio or a large curvature at some point of its boundary (or both). If
we additionally assume that j(€2) is large compared with |Q[t, ()™, we can
conclude that the isoperimetric ratio is large. We note that a large isoperi-
metric ratio is enough to generate a large number of Courant-sharp Neumann
eigenvalues. Indeed, this is the case for a rectangle (0,1) x (0, L) with L large.
By contrast, to the best of the authors’ knowledge, it is not known whether a
boundary point with large curvature alone can generate many Courant-sharp
eigenvalues. It could be interesting to investigate this further.

By —A?p we denote the Laplacian on 2 with the following Robin boundary

condition 9
U
— + Bu =0 on 09,
v
where g—l‘j is the exterior normal derivative and g : 92 — R is a non-negative,
Lipschitz continuous function. We denote the corresponding eigenvalues by
(g (2, 8))k>1. It was shown in [I0] that there are finitely many Courant-sharp

eigenvalues of —Ag. By monotonicity of the Robin eigenvalues with respect



to (8, we obtain the same results for the Courant-sharp Robin eigenvalues (see
Subsection .

In addition, we obtain analogous results to those mentioned above for any
dimension n > 3, namely Propositions [0.2] [9.3] and [0.4] in Section [0

1.3 Organisation of the article

In Section 2] we show that in order to obtain upper bounds for the largest
Courant-sharp eigenvalue p, it is sufficient to obtain upper bounds for the num-
ber of nodal domains and the remainder of the Dirichlet counting function.
Estimates for the latter are obtained in Section [ To deal with the former,
we first consider the 2-dimensional case and set up tubular coordinates in Sec-
tion |3] Following [10], we then define cut-off functions in Section 4] that allow
us to distinguish between bulk and boundary domains. In Subsection [5.1] we
perform the straightening of the boundary procedure and obtain the desired
estimates. We then use these estimates in Subsection to obtain an explicit
upper bound for the number of Courant-sharp eigenvalues. In Subsection [5.3
and Subsection [5.4] by taking the geometry of the domain into account, we im-
prove the estimates from Subsection in special cases. We then combine all
of the preceding results in Section [7] to obtain an upper bound for the largest
Courant-sharp eigenvalue. In Section [8] we obtain explicit upper bounds for the
largest Courant-sharp eigenvalue and the number of Courant-sharp eigenvalues
of an open and convex planar domain with C? boundary that involve some of
its geometric quantities. In particular, we prove Proposition [[.I} In Section [9]
we obtain analogous results in arbitrary dimension n > 3. In Appendix [A] we
prove an upper bound for the Neumann counting function of a convex set, which
is used in the two preceding sections to control the number of Courant-sharp
eigenvalues.

2 Preliminaries

2.1 Strategy for Courant-sharp Neumann eigenvalues

For 1 > 0, we define the Neumann counting function as follows:

NY (1) == #{k €N : u(Q) < ).

Let (Ax(£2))k>1 denote the Dirichlet eigenvalues of the Laplacian on Q. By
the min-max characterisations of the Neumann and Dirichlet eigenvalues, we
have, for k € N, that

(9) < (). (3)

For 1 > 0, we define the Dirichlet counting function:
NE (1) == #{k € N : \(Q) < u},

and the corresponding remainder RE (u) such that

ND(n) = wu"” ~ RE(p). (4)



where w,, denotes the Lebesgue measure of the ball of radius 1 in R”, and the
first term in the right-hand side of Equation [ corresponds to Weyl’s law. By

, we have
Ny () = NE(9),

and therefore

Consider an eigenpair (u,u) for the Neumann Laplacian, and denote by
v(u) the number of its nodal domains. If w is a Courant-sharp eigenfunction
associated with 1 > 0, = pi () with v(u) = k. On the other hand, Courant’s
Nodal Domain theorem implies that px_1(Q) < u(9), so that N (u) =k — 1.
We therefore have

NG (1) = v(u) < 0. (5)

Hence, in order to obtain upper bounds for u, we require upper bounds for
v(u) and RE (). These will be obtained in Sections |§| respectively.

To obtain an upper bound for v(u), we follow the strategy of [10] in which an
important step is to straighten the boundary locally. By restricting our atten-
tion to domains with C? boundary, we can make use of tubular coordinates to
straighten the boundary which allow us to obtain the desired explicit estimates
in Subsection B.11

2.2 Application to Courant-sharp Robin eigenvalues

Analogous arguments to the above hold for the Robin eigenvalues (p (€2, 8))g>1-
For 1 > 0, we define the Robin counting function:

NG() = #{k € N 1 (2, B) < p}.

For k£ € N, the Robin eigenvalues satisfy the following monotonicity property
with respect to 8 > O:

1k (2) < (€2, 8) < Ag(92),

where 8 = 0 gives rise to the Neumann eigenvalues and § — +oo corresponds
to the Dirichlet eigenvalues. We then have

No(n) > NE (),
and hence

wn|Q|Mn/2

N§(p) > 2my

— Rg ()

(See, for example, [10, Section 4]).

3 Tubular coordinates in 2D

For any r > 0, we define the inner tubular neighbourhood of 9 with radius r:

o = {z € Q; dist(z,00) < 7},



and its volume
7(r) := |09
Let us now assume that € is simply connected (we consider multiply connected
domains at the end of Section . Let v : [0,L] — R? be a closed, simple and
C? curve parametrised by arc length, such that 9Q = ([0, L]). In particular,
L is the total length of 9. For each s € [0, L], we write t(s) :=~/(s), the unit
tangent vector at y(s), and denote by n(s) the unit vector such that (t(s), n(s))
is a direct orthonormal basis. Up to reversing the orientation of the curve vy, we
can assume that n(s) points towards the interior of Q. The signed curvature of
~ at the point ~(s) (relative to our choice of orientation), denoted by x(s), is
then defined by
t'(s) = k(s) n(s).

We define the mapping

F: [0,L]xR — R?
q:=(s,t) — z:=~(s)+tn(s).

(6)

The function F is of class C*, and its differential at ¢ := (s,t), expressed from
the base ((1,0),(0,1)) to the base (t(s),n(s)), is

s = (1T D). @

Following Subsection 3.1 of [2], we define

() := ( sup |f€(8)> ; (8)

s€[0,L]

and, for s € [0, L], the (internal) cut-distance to 9 at vy(s):

04 (s) :==sup{d > 0; dist(F(s,t),08) =t for all ¢ € [0,0]}. (9)
We set
3.(0) = _inf 34(5) (10)
and
0(€2) i= min{t- (), 2, (D). (1)

By construction, F is a diffeomorphism of class C! from (0, L) x (0, 80(£2))
to GQ;;(Q) \ Lo, where £ is the segment F' ({0} x (0, dp(£2))).

Given f : R — R continuous and piecewise C! and § < §o(€2), we define the
function ¢ : 9QF \ lg — R by ¢(z) = f(t), where x = F(s,t). By definition of
do(£2), this can alternatively be written as ¢(z) = f (dist (z, 99)).
Proposition 3.1. The function ¢ is continuous, and is of class C' except on
the regqular arcs

Iy ={z € Q; dist(x,00) = t;},
where {t;; 1 < i < N} are the points of discontinuity of [’ in (0,0()]. Fur-
thermore,
Veo(z) = f'(t)n(s), (12)
with x = F(s,t), if v ¢ vazl r;.
Proof. This follows from the chain rule, using the expression for the Jacobian
matrix given in Equation [7} O



4 Cut-off functions

The purpose of this section is to define cut-off functions ¢J,¢{ in order to
characterise the nodal domains as bulk domains or boundary domains, as in
Subsection 2.2 of [10]. The key point here is to obtain explicit estimates.

Step 1: We construct two functions xg, x1 : R — R which are continuous,
piecewise C!, and satisfy

i. fort < 1, xo(t) =0and x:(t) = 1;
ii. for t € [£,3],0 < xo(t), xa(t) < 1;

iii. for t > 3, xo(t) = 1 and Xl(t)

0;
v, xg+xi=1;

We write B := max([| )| =, [ 2=)-

We first construct ¢ : R — R, continuous, piecewise C'' and non-decreasing,
such that ¥(0) = 0 and (1) = 1 and satisfying 0 < ¢p < 1. We ask for the
additional condition

Yt + (1 -t)* =1

for all ¢ € R. One possible choice for # is given at the end of this section.

We then set
w0 = (2(1-7)):

wons((2-0)

The functions xo and x; have the desired properties with B = 2[¢)|| .

Step 2: For each § € (0,60(f2)], we construct two functions 9, ¢ : @ — R
which are continuous and piecewise C! (the gradient is continuous except for

finite jumps on regular arcs), and satisfy, for some positive constant C' indepen-
dent of 4,

i. for dist (z,00) < 2, @8(z) = 0 and ¢f(z) = 1;
ii. for dist (z,09) € [2, 22], 0 < ¢¥(z), ¥3(x) < 1;
iii. for dist (z,09) > 22, pf(z) = 1 and ¢ (z) = 0;
(¥8)" + (#9) =13

V|| e < C71

iv.

<

<

Vel

The functions xg and x; of Step 1 being given, we define, for x € 895{,

5 () = xo (2) ;
Al = (3)-



We make the obvious extensions of ¢ and ¢{ so that both functions are con-
tinuous. From the enumerated properties of xo and x; and Equation , it
follows that (9 and ¢ have the desired properties with C' = B.

Explicit constants: In order to obtain explicit estimates in what follows,
it is necessary to specify 1. One possible choice for ¥ is given by

2'_71 tS — S S
b(t) .—fols(l_s)ds/o (1—s)ds,

for t € [0, 1], extended by 0 for ¢ ¢ [0, 1]. More explicitly,

W(t) = /312 — 213

for t € [0,1]. In that case ||[¢'|L~ = v/3. The functions xo and x; that we
construct satisfy the listed properties with B = 24/3, and the functions ¢j and
¢f with C' = 2/3.

5 Estimates of the nodal count

We wish to count the number of each type of nodal domain. For the bulk do-
mains, one considers a Pleijel-type argument via the Faber-Krahn inequality.
For the boundary domains, one reflects them in the boundary (after straight-
ening it) and then applies the Faber-Krahn inequality to the reflected domains.
See Section 2 of [10] for the full details and Subsection below.

5.1 Straightening of the boundary

We start by giving explicit versions of some estimates in Subsection 2.4 of Ref-
erence [10], in order to control some quantities of interest when we straighten
the boundary using tubular coordinates.

Lemma 5.1. Let V be an open set V C (0,L)x(0,360()/4) and let U = F(V).
There exist constants 0 < m_ < my such that, for any measurable and non-
negative function g: V — R,

m_/gdqg/fdx§m+/gdq,
1% U 1%

where f = go F~1. Furthermore, we can choose m_ = 1/4 and my = 7/4.

Proof. This follows directly from the change of variable formula

[ s = [ a1 = tx) da
and the fact that V' C (0, L) x (0,30¢(£2)/4), so that t|x(s)| < 3/4. O

By taking g = 1, we deduce the following from Lemma [5.1

Corollary 5.2. IfV is an open set V. C (0,L) x (0,300(Q2)/4) and U = F(V),
we have
m_|V| < |U| < my V], (13)

where m4, m_ are the constants in Lemma ). 1]



Corollary 5.3. There exists a positive constant M such that, for all r €
(0,300(€2) /4],
T(r) < MLr. (14)

Furthermore, we can choose M = m., where m. is the constant in Lemmal[5.1}

Proposition 5.4. There exists a positive constant K such that the following
holds: if V is an open set V C (0,L) x (0,30()/4), U = F(V), u € H (V)
and v :=uo F, we have
2 2
Jv Vol dg _ o Jy [Vl de
Jyv?dg  ~ Jyy u? dx

Furthermore, we can choose K = 4m., where my is the constant in Lemma

)

Proof. From Lemma [5.1] we have directly

/uzdm§m+/v2dq.
U 1%

On the other hand, for any ¢ € V,

(15)

Vu(q) = J(q)" (Vu) o F(q),

so that )
Vul* o F(a) = (/@) V(o) -

From this we deduce, using the change of variable z = F'(q), that

Lt an = [ (1 @) + (- tx(e) @ro(a)*) da >

1 —tk(s)
1 2
- Vol dg.
1 /V [Vol” dq
Putting together the two previous estimates, we obtain Inequality . O
5.2 Number of nodal domains
To ease the notation in the computations that follow, we set A := || in this

section. Let us fix g € (0,1). We consider an eigenpair (i, u) for the Neumann
Laplacian (as in Subsection 2.2 of [I0]) or for —AP (as in Section 4 of [10])).
We define ug := ¢ju and u; := pJu, so that

u? = ug + u%

Following Subsection 2.1 of [10], we say that a nodal domain D of u is a bulk

domain when
/ uddxr > (1 —50)/ u? da
D D

and a boundary domain when

/u%dm>50/u2dm.
D D



We denote by vy(eo, u) and v (g, v) the number of bulk and boundary domains
respectively, so that
v(u) = vo(eo, u) + v1(eo, u).

We now need to bound vy(gp,u) and vq(eg,u) from above. Reproducing the
argument in Subsection 2.3 of [I0] with n = 2, we obtain

Afl+e 1+Ei Cc?
<z 0o | 2

where A is the first eigenvalue of the Dirichlet Laplacian on the disc of unit area
and C is the constant given in the construction of ¢ and ¢? in Section

Let us now consider a boundary domain D} (1 < j < w1(go,u)). In a similar
way to Subsection 2.4 of [I0], we define

U:= {a:EDjl-;ul(x);«éO} CD}O@Q;.

To simplify notation, we set @ := u;. We consider V = F~}(U) and © = @0 F.
We define
o(s,t) = (s, —t)

and V as the interior of the closure of V U (V). We extend © to a function
9% on V' such that 9% o 0 = o7 (i.e. 9 is even with respect to the variable
t). By the Faber-Krahn inequality,

A Jyn \VoR|* dg
VEL™ Jyn 05 dg -
and therefore )
A - I |Vv2| dq.
2V~ [, |8 dg

Applying Inequalities and , we obtain
m_A KfU \Val? dx

20U~ [ |af da

(17)

Let us note that in the computation leading to Inequality , we implicitly
assume that the boundary of V is regular enough, so that V* is a connected
open set and 9 belongs to HE (V). In order to avoid such an assumption, we
can proceed as in Subsection 2.5 of [I0]: we perform the steps indicated above,
in a super-level set V,, = {97 > a} for some a > 0, and afterwards let a go to
0. By Sard’s theorem, we can find a sequence of a’s tending to 0 so that V, is
regular enough (this method was introduced in [3]). Furthermore, as shown in
Section 4 of [10], Inequality also holds for an eigenfunction u of —Ap.
Since @ = u; = S u, we find, after applying the Leibniz formula and Young’s

inequality,
2 2 207 9
[Va|” de <2 [Vul™ do + — u” dx,
U D! 0% Jp1

10



and we have, by definition of a boundary domain,

/ 2 dr = /
U D
for our choice of £y. Substituting this into Inequality , we get
{ < 4K |U| L sz
~ m_Aegg BT 52 )

Summing over all boundary domains, we find
02

By Inequality and since § € (0, 50(92)], we have

SML%,
4

uidr > g / u? dx,
D

1 1
Fi Fi

4K
m_A€0

V1(507 u) <

‘89;
4

and therefore

vi(go,u) < (18)

52
In order to deduce from Inequalities and a bound on v(u) which is
invariant by scaling, we set
AN\ /4
0= () .
7

We note that this choice of § assumes that p is large enough. That is, pu >
A§0(Q)74.
For our choice of ¢ € (0,1), we therefore obtain that

3KMLS C?
m_A €0

1 (1+e SKM 5, 44
< - A S 2 (Ap)®
i) < 5 (T + 258 s

1+1/e 3KMC?
Czl_iioo(AN)lm + sz(Au)1/4> , (19)

where the parameter p is the isoperimetric ratio for the domain 2 to the power
1/2:
L1/2
P=qa

5.3 Geometry of the domain

Let us first sketch how to extend the above results to a multiply connected
domain. We now assume only that € is an open, bounded and connected set
in R?, with a C? boundary 9. The set R? \ Q has an unbounded connected
component, which we denote by Dy. We define b € NU {0} as the number of
bounded connected components of R? \ Q, which we denote by Dy, ..., Dy. For
h €{0,1,...,b}, dDy, is a C%-regular connected curve, and we denote its length
by Lj. We set



for h € {0,1,...,b} and s_; := 0. As in Section [3| we choose an arc-length
parametrisation vy, : [sn_1, sn] — R? of 0Dy, oriented in such a way that for all
S € [$h—1, Sn], the normal vector np(s) to v, at v4(s) points towards the inside
of Q. Furthermore, we denote by &y, (s) the signed curvature of v, at vy, (s). We
keep the notation L for the total length of the boundary 02, so that

L=Lo+Li+---+ Ly.
We define

b
E = U (Sh—h Sh).
h=0

We give a natural generalisation of the definition of the function F' in Equation
@: F:E xR — R? is now defined by

F(s,t) :== yp(s) + tny(s)

if s € (sp—1, ). Extending the definition given in Equation ({8]), we write

-1
ty :z( max sup lih(S)|> )
]

h€{0,....b} se[s,_1,sp,

while we continue to define d , (s), d, and do(£2) by Equations @D, and .
By reasoning separately on each of the connected components of 92, we can
show that F is a C'! diffeomorphism from E x (0,80(£2)) to 5‘9}:)(9) \UZ:O Oy,
where the segment ¢, is defined by

Ch = Yn(sh—1) + (0,00(2))np(sp—1).

Furthermore, the constructions of Section |4 and the estimates of Section [5] still
hold.

Let us now discuss how to improve the estimates of Subsection for do-
mains with particular geometric properties. We have the following improvement

of Corollary

Proposition 5.5. If Q) is either simply connected or homeomorphic to an an-
nulus, then, for all 6 € (0,00(2)],

7(9) < L.

Proof. Let us first consider the simply connected case. From the change of
variable 2 = F(q), we obtain

52 L

L 6
7(5):/0 /0 (1 —tk(s)) dtdS:L675 k(s)ds.

0

Since 7 is a simple, closed, positively-oriented curve,

L
/ k(s)ds =2m,
0

12



giving the desired inequality (see for instance Corollary 9.5.2 of [5]). In the case
where €2 is homeomorphic to an annulus, 92 has two connected components.
After a similar computation for each of them, we find

H(6) = Lo— g (/O mo(s)ds+/5:1 nl(s)ds> .

Since the normal vector has been chosen to point inwards, 79 and ; have
opposite orientations and the second term in the right-hand side vanishes. The
desired inequality is an equality in this case. O

Remark 5.6. Suppose ) is a multiply-connected domain that is homeomorphic
to a disc with b € NU {0} discs removed. By the Gauss-Bonnet theorem, we
then have

L
/ k(s)ds = / kg(s)ds =2mx(Q2) = 2m(1 —b),
0 o0

where x(§2) is the Euler Characteristic of @ and k; denotes the geodesic cur-
vature. If the width of the interior tubular neighbourhood is sufficiently small,
that is 0 < §o(Q2), then we obtain

7(8) = L6 — 7(1 — b)s2.
We recover the cases b= 0,1 as discussed above. If b > 2, then we have that
7(8) = L6 + 7(b —1)§% > LS,

for all § € (0,00(Q)]. The quantity LS is no longer an upper bound of 7(6), but
is the leading order term for § small.
A similar upper bound was obtained in [18], but there the width of the interior

tubular neighbourhood need only be smaller than the in-radius of the domain (see
also [1]).

5.4 Application to convex domains

In this subsection, we assume that 2 is a convex domain. We show that
Lemma [5.1] and Proposition [5.4) hold for convex domains, and give explicit con-
stants in the corresponding bounds. We first make the following remark.

Remark 5.7. Let us assume that Q is conver. Then 0o(Q2) = t4(2). Indeed,
this is equivalent to saying that a ball of radius smaller than t(Q) can roll freely
inside the set Q. This follows from a more general result that was established in
[6], where this particular case is discussed on page 53, in answer to a question of
J.A. Delgado [7]. Furthermore, Inequality holds with M =1 for any r > 0.
Indeed, let us define the inner parallel set at distance r > 0 by Q, := Q\ OQ;.
The set . is convex. We write m(r) := |Q.| and we have, by definition,
7(r) :=|Q| — m(r) for all v > 0. According to [11], the function r — m(r) is
differentiable and m/(r) = —|0Q,.|. Therefore, for r > 0,

(r) :/ 100, | dt.
0
The desired inequality then follows from the fact that the perimeter is non-

decreasing with respect to inclusion among convex sets. We note that both results
in the present remark hold in arbitrary dimension.
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Proposition 5.8. If Q C R? is convex, then

1. Lemma holds with m_ = 1/4 and my = 1. That is, if V is an open
set V. .C (0,L) x (0,3t4(Q)/4) and U = F(V) with F as defined in (0)),
then for any measurable and non-negative function g : V — R,

1
f/gdqﬁ/fdxﬁ/gd%
4 \% U 1%

2. Proposition holds with K = 4. That is, if V is an open set V C
(0,L) x (0,3t4(Q)/4), U=F(V),ue H'(U) and v :=uo F, we have

where f =go F~L.

fv |V'U\2 dq <4 fU |Vu|2 dx
Jyvidg — [ utda

Proof. Since 2 is convex, we have x(s) > 0 for all s € [0, L], so that
1/4<1—-tr(s) <1

for all ¢t € (0,3t4(£2)/4). Using these inequalities in the change of variable
formula, we obtain the desired results. O]

6 An upper bound for R (u)

As discussed in Section [2] in order to obtain an upper bound for the Courant-
sharp Neumann (or Robin) eigenvalues, we require an upper bound for the
remainder of the Dirichlet counting function RS (p).

In [4], the authors obtain an upper bound for RE (1) by using an inner parti-
tion of €2 into squares of uniform side-length and Dirichlet bracketing. Suppose
these squares have side-length ¢. Then, in the notation of the present article,
Inequality (13) of [4] reads:

V2¢) IQ\

RD < T(

Q (/I’) = A + ff

Corollary gives an upper bound for the volume of the inner tubular neigh-
bourhood provided that the width is sufficiently small. Choosing ¢ > 0 so that
V20 < 360(Q)/4, and applying Corollary we obtain

V2MUL 0 |Q|1/2

T 120+ Sl 2

R (p) <
We then use the freedom in the choice of ¢ to minimise the right-hand side,
meaning that we set

2m|Q| —1/4
ML H

/ L|Q| 3/4 / |Q|N 3/4 (20)
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as soon as p is large enough for v/2¢ < 354(£2)/4 to be satisfied.

Since we used Corollary in this section, Inequality holds with M =
7/4, for all Q@ C R? with a C? boundary, as soon as p is large enough for
the condition v/2¢ < 30(£2)/4 to be satisfied. If we additionally assume Q to
be simply connected or homeomorphic to an annulus, Proposition [5.5 tells us
that Inequality holds with M = 1 as soon as p is large enough so that
V20 < 50(Q). Finally, if we assume Q to be convex, Inequality holds with
M =1 for all u > 0.

7 Upper bound for Courant-sharp eigenvalues
We again set A := [ to ease the notation. Let us consider an eigenpair (u, u)

such that u is a Courant-sharp eigenfunction. We assume that p is large enough
that

1/4
§= <A> < do(€2) (21)
o’
and
47TA _1/4 3
=4/ — < - .
V2t S 109 (22)

We recall that €9 € (0,1) is fixed as in Subsection By substituting

Inequality , Equation and Inequality into Inequality , we obtain
the necessary condition

1 l4e [ 3KM \/M 3/4
<47T a _€O)A> (Ap) <€Om_Ap o) (Aw)
1+1/e 3KMC?
T 2 = B A <o, (2

We can reformulate Inequality by saying that if u is Courant-sharp and

satisfies and ,
Fo(€) = ao€® + a1(p)€® + asé + az(p) <0,

o i_ 1+ ¢ )
07 \4r  (1—z9)A )’

3KM , [M
alp)i=—\ o TV Fr)

-C? (Ap)

gom_A

with

1+ 1/60
=-C%—L;
2 (1—co)A’

3KMC? ,

az(p) := —mﬂ ;

¢ = (Ap)t/*.
Therefore, we have that

Ap < & (p)",

where £*(p) is the largest real zero of the function { — f,(§). We summarise
the above discussion in the following proposition.
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Table 1: Possible choices for the constants

Nature of 2 C | m_ | e M | K
General case T, | 2V3 | 1/4 | 1/6 | T/4| 7
Simply or doubly connected | mj¢, | 2v/3 | 1/4 | 1/6 7
Convex e, | 2v3 | 1/4 | 1/6 4

Proposition 7.1. If yu is a Courant-sharp eigenvalue of the Neumann Laplacian
on  or of ng, we have

409672|Q)| Q] £ (p(2)*
12 < max (81M2P(Q)450(Q)47 60(9)43 |Q| >

We note that the function f,, and therefore also £*(p), only depend on the
geometric properties of the domain 2 and the choice of £3. Sections 4| and
allow us to specify several sets of possible choices of constants in the definition
of f,, according to the nature of the domain 2, which we always assume to
be open, bounded and connected with a C? boundary. We summarise them in
Table [I} where jo,1 denotes the smallest positive zero of the Bessel function of
the first kind Jp.

8 Geometric upper bounds for Courant-sharp
eigenvalues of convex planar domains

8.1 Geometric upper bounds

In this subsection, we suppose that €2 is an open, bounded, convex planar domain
with C? boundary. To simplify the notation, we set A := [, t4 := ¢4 () and
p:= p(Q). Let u be a Courant-sharp eigenvalue of the Neumann Laplacian on
Q, or of ng. We assume that p is large enough so that Inequality is
satisfied. We recall that ¢ € (0,1) is fixed as in Subsection

In order to obtain upper bounds for a Courant-sharp eigenvalue p in terms
of some of the geometric quantities of the domain €2, we rewrite Inequality ,
with the constants from the last row of Table[l] as follows.

1 1+€0

— ] (4

(47T (150)A>< #)

3KM \/M 2 141/eq 3KMC? p? \
< _ A /4
_<50mAp + 7rp+(A,u)1/4 (1—80)A+ com_A (Ap)/2 (Ap)™=,

which implies that

1 14+g \ *
< | —__-T=Y
Ap < (471' (150)A)

4
3KM \/ﬁ C? 1+1/eg  3KMC?* p?
M (24
X<gom_A”+ PP A T eoh T e & (apz ) Y
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As Q is convex, 6o(Q) = t; (see Remark [5.7). In particular, there exists
a ball of radius ¢y which is contained in ), that we denote by B; . Then
=|Q| > |By, | = nt2, so At;? > m. Together with Inequality (2I]), we then

have )
A
+

Substituting this into Inequality , we obtain

2802 p 504 3456/)2)4

—4
Ap s Dy < A @ T Eaea T A

which implies

4
4 .
p<DytA~! 2+57T1/2A+ — ) =:Li(p, 4), (26

288p 504 34562
wl/
where Dy = 4— — L
With Pr0p051t10n 1l and the preceding discussion in mind, we have that, if
w is Courant-sharp, then
A
p<max (o, Li(p, 4) | (27)
Jr
Note that since 2 is convex, Inequality holds for all » > 0 (see Remark7
so Inequality is not necessary in the convex case.

In what follows, we obtain an upper bound for p that involves some of the
other geometric quantities of 2. We consider Inequality and use the fact
that p = pr(Q) > p2(Q) for £ > 2. We can then make use of known geometric
estimates for the first positive Neumann eigenvalue of 2. This is sufficient for
our purposes due to the monotonicity of the Robin eigenvalues with respect to
the function . That is, for k € N, ug(2) < ug (2, 8).

From Inequality , we have

2880 p 504 3456p% \*
7z ) (28)

< D4
Ap s Dy ( A T2 T AAm) A T A Am)

which implies that

4
_ 2882 p 504 34562
< D;* - + + (29
H = Lo (AA1/4 r1/2 A1/4 5AA1/2,u;/4 AA3/4,u§/2 (29)

Since 2 is convex, we invoke the 2-dimensional version of the classical in-
equality due to Payne and Weinberger, [13], for the first positive Neumann

eigenvalue of €,

2

>__°
n2(Q) 2 G (30)
where diam(2) denotes the diameter of €2, to obtain
4
_4 [ 288p? p 504diam(Q)/?  3456p?diam()
4
1< D, <AA1/4 + T1/2 A1/4 + 5ATL/2 A1/2 + TAA3/4
=: Ly(p, A, diam(2)). (31)
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By Proposition [7.1] and the fact that 2 is convex, we have the following

inequality:

A

p w5 Lalp A, dian() )

+
Remark 8.1. It is also possible to obtain an upper bound for the largest Courant-
sharp eigenvalue of ) involving only the geometric quantities A, p and ty via
the above approach by making use of Lemma 5.2 of [12] with K = Q and L a
ball of radius t4 that is contained in €.

We collect the preceding upper bounds in the following proposition.

Proposition 8.2. Let Q be an open, bounded and convez set with a C? bound-
ary. If p is a Courant-sharp eigenvalue of the Neumann Laplacian on € or of
—Ag, then we have that

i < max (ﬁw”f’(")’ |Q|>) ,

and

p < (g Lalp@). 19, diam(@))).

where the functions L1 and Lo are defined in and respectively.

Suppose that p is large enough so that holds. Note that since Q is
convex, diam(§2) < % and so p2(Q) > 4LL22’

Substituting this into (28], we obtain

< ot [288p n 1 n 504 n 34563
o= AD3 \ A 7l/2  5(2m)1/2A 2rA
where p — G(p) is an increasing function for p > 0.

In fact, in this convex case, we can deduce a simplified upper bound for p and
obtain a geometric upper bound for the number of Courant-sharp eigenvalues.

by the Payne-Weinberger inequality.

4
) =AD"

Proposition 8.3. Let Q be an open, bounded and convex set with a C? bound-
ary. Let p = pug(Q) or p = pp(Q, B) where B is a non-negative Lipschitz con-
tinuous function on 0Q. There exist positive constants C and C’ that do not
depend on Q such that, if p is Courant-sharp, then

[9] p(Q)®
“<C<t+<9>4+ 0] )

k<C ( it +p(Q)8>
- ()1 '

The first inequality of Propositionfollows from Inequalities and ,
by using the Isoperimetric inequality p > V271, The second inequality follows
from the first one and Corollary together with Remark after applying
Young’s inequality repeatedly. Indeed, by following this procedure, we obtain

2 1 4
C:Df(SS 3506

and

_|_

4
_+ —— ] =& 10'7
A \/§w3/4+107rA> 8.98 x 10,

and C' < C + 1.

We remark that this proves Proposition [1.1|since the latter is Proposition|8.3
restricted to the Neumann case.

18



8.2 Application to the disc of unit area

For the disc D C R? of unit area, we have p(D) = (47)'/* and §o(D) = t, (D) =
7~1/2. We wish to evaluate Proposition so we must first calculate £*(p).
We use the last line of Table [I} The value of £*(p) can be computed either nu-
merically or with Cardano’s formula. We find, for any Courant-sharp Neumann
(or Robin) eigenvalue p(D) of D,

(D) < 2.67 x 1017,

It is well-known that the first positive Neumann eigenvalue of D is w(j{71)2
where ji ; is the first positive zero of Ji, the derivative of the Bessel function
J1. By substituting this into Inequality , we obtain that any Courant-sharp
Neumann eigenvalue p(D) of D satisfies

(D) < 1.26 x 10%°.

We also have diam(D) = 27~'/2. By Inequality (3I), we have that any
Courant-sharp Neumann (or Robin) eigenvalue p(D) of D satisfies

(D) < 2.09 x 102,

By comparing the two preceding upper bounds, we remark that we do not
lose a great deal by appealing to the bound of Payne and Weinberger, even
though it is not the natural choice for our situation. Indeed, equality is achieved
in for a rectangle of fixed area with one side shrinking to 0. Such shrink-
ing behaviour is not possible in our situation since €2 contains a ball of radius
t4(Q) > 0.

We now evaluate the first inequality of Proposition for the disc of unit
area. We obtain that any Courant-sharp Neumann (or Robin) eigenvalue pu(D)
of D satisfies

(D) < 1.42 x 10%°,

which is better than the second inequality of Proposition [8:2] for the disc of unit
area, but worse than using Inequality directly (see above).

In addition, Proposition |8.3| applied to the disc of unit area gives that any
Courant-sharp Neumann (or Robin) eigenvalue p(D) of D satisfies

(D) < 1.51 x 102,

and the number of such eigenvalues k < 1.51 x 1029,

For comparison with the above upper bounds, we recall that the third pos-
itive Neumann eigenvalue is the largest Courant-sharp Neumann eigenvalue as
proved in [9]. In addition, p4(D) = 7(j5,)* ~ 3.0564*1 < 30 (where jj , is the
first positive zero of Jj, the derivative of the Bessel function J3). The Courant-
sharp Robin eigenvalues of D are not known (to date).

9 Generalisation to arbitrary dimension

9.1 Tubular neighbourhoods of the boundary

We now assume that €2 is a bounded, open and connected set in R”, with n > 3,
such that 02 is a C? submanifold of R”. We extend the methods used in the
previous sections to this situation.
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To simplify the notation, we write I" for the submanifold 0€2. As before, for
r > 0, we define the inner tubular neighbourhood with radius 7:

I} = {z € Q; dist(z,T) < r}.

For all 2’ € T', we denote by n(z’) the outward unit normal vector at z’. In
order to parametrise the inner tubular neighbourhoods, we introduce the normal
bundle of T'. Furthermore, for all z’ € ', we identify the one-dimensional vector
space spanned by n(z’) with the real line R. We therefore write the normal
bundle as a trivial product:

NT):=T xR
and we define a C*' mapping F : N(I') — R" by
F(2',t) =2’ —tn(a"). (32)

Let us recall that the mapping 2’ +— n(2’) from I' to S*~! is known as
the Gauss map (see for instance Subsection 2.5 of [I7]). Its differential is a
symmetric linear endomorphism of T,/T", the tangent space to I" at z’/, seen as
a subspace of R™. It is called the Weingarten endomorphism, and we denote
it by W,.. Its eigenvalues are called the principal curvatures of T at z’. Let

(e1,...,e,—1) be an orthonormal basis of T,/I" consisting of eigenvectors of
W, and let (k1(2'),. .., kn—1(2')) be the associated principal curvatures. Then
(e1,...,en_1,1) and (e1,...,e,_1,n(z’)) are orthonormal bases of T(,/ ;N (T'),

identified with T,,T' ® R, and R" respectively, and the matrix of the differential
D, 4)F' in those bases is

1—tka(z") - 0 0
0 1~ thp_1(z') 0
0 0 -1

We now define
-1
t (Q) := | su max  |ri(2’ > ,
@)= (s max et
and, for any 2’ € T', the (internal) cut-distance to I" at «’:
54 (2") :==sup{d > 0; dist(F(2',¢),I') =t for all ¢ € [0, 4]}

We set

3 /
0,() = inf 6,(z)

and
50(€2) = min{t (), 3, ()},

By construction, F is a diffeomorphism of class C! from I" x (0, dp(£2)) to F;o(Q)'

Lemma 9.1. Let V be an open set in T' x (0,50(2)) and let U = F(V). For
any measurable, non-negative function g: V — R,

+o00 n—1
/Uf(x)dx:/r</0 lv(x’,t)g(x',t)il;[l(1—t/<ai(x’)) dt> da’
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where f = go F~1, 1y is the characteristic function of V and dx' is the surface
measure in I' induced by the Lebesgue measure in R™.

Proof. The proof is similar to the proof of Weyl’s formula for the volume of
tubes given in Chapter 6 of [5]. First, we use Proposition 3.3.16 of [5] to get

/U f(x)do = /V g F*(dz),

where dz denotes the Lebesgue measure in R™ and F*(dz) the pullback of dx
by the diffeomorphism F.

Then, we note that, up to a change of sign, the mapping F' defined in
Equation is the canonical map defined in Equation 2.7.5 of [5]. According
to Equation 6.8.2 of [0], there exists a function G defined on I' x (0, Jp(£2)), to
be specified below, such that

F*(dx) = G(2/,t) d2’ ® dt,

where da’ ® dt denotes the product measure in N(I') = T’ x R, with dt the
Lebesgue measure in R. From Equation 6.7.16 of [5], we obtain

/ g F*(dz) = / 1y (2',t)g(a’, t)G(2', 1) da’ ® dt =
14 I'xR

/F</R 1y (2, t)g(2', t)G (', t) dt) "

It remains to give an explicit formula for G(2/,t). We fix u — x(u) a local
parametrisation of I" such that x(0) = 2’ and, for i € {1,...,n — 1},

ox
8’(14

(0) = e€;.

From Equation 6.8.9 and Proposition 6.6.2 of [5], we obtain

Gl 1) = det (H (3%(0) - tag‘;f(o)) ..., (auﬁnxil (0) — taaur;o: (0)))
T MOCT =) ’

where IT is the orthogonal projection from R”™ to T,/I". It follows from the chain
rule that, for all ¢ € {1,...,n — 1},

Onox
aU' (O) = Wx/ [el] = /@i(x')ei.
This finally implies
n—1
G2 t) = H(l—tm(x’)). O
i=1

Lemma [9.1] allows us to extend the estimates of Section [f] to higher dimen-
sions in a straightforward manner. Indeed, Lemma Corollaries [5.2 and
and Proposition [5.4) hold with the constants given in Table [2]
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Table 2: Possible choices for the constants in R™
Nature of € C m_ M K
General case | 2v/3 | 1/47=1 | (7/4)»~1 | 71

Convex 2¢/3 | 1/471 1 4n—1

9.2 Upper bounds for Courant-sharp eigenvalues

To simplify the formulas, we write V := |Q| and S := |09] (the total (n — 1)-
dimensional surface measure of 92) in the rest of this section. We denote by
Ngq either N& or Ng, since the lower bound that we derive holds for both types
of counting function.

Following [9], we define

o (@n)n
FY(TL) T wnA(n)% )

and we recall that y(n) < 1 for all integers n > 2. For the rest of this section,
we set
1 1—7(n)
[ R

2 1+~(n)
This choice of g will be explained below.

We consider (u,u), an eigenpair of the Neumann Laplacian on 2 or of —Ag,
with p large enough, in a sense to be made precise.

Following the steps of Subsection we obtain an upper bound for the
number of bulk domains

Vo [1+e 1+1\ 2\’
< o | =
VO(EO,U) - A(n)% <1 —€0M+ <1 — &0 (52 ’

where A(n) is the first eigenvalue of the Dirichlet Laplacian on a ball of volume
1 in R™. More explicitly,

ho| =

(33)

3

2.2
A(n) = wiju 14,

where w,, denotes the volume of a ball of radius 1 in R™ and j 211 the smallest
positive zero of the Bessel function of the first kind Jz ;. We also obtain the
following upper bound for the number of boundary domains

3-25"1K%SM§ < 02>’5
ot =

vi(eo,u) < 52

m_A(n)¥e

Both bounds hold assuming § € (0,00(2)]. Let us now set

0= Ve .
U

It follows from the two previous upper bounds that, if u is large enough so that

<V3)4 < 60(9), (34)

u
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then we have the following upper bound for the nodal count

1 1+eg 1+, 1/2 :
< + 0 +
v(u) < A(n)z (1—505 1—<€QC€

3. 25 LMK p? 3
2—12'05—% (5 + 0251/2) 1, (35)
m_eg

where & := V?/"y and p := S§1/2/V1/2=1/2n,

An upper bound for the remainder RE (i) is given in Section 2 of [4] for
arbitrary dimension. Repeating the argument in Section [6] we obtain, for any
£ € (0,3(4y/m) 100()),

3

w, M S\/nt 3 m™m2w,V nt
o T T enme

/— [TV 1
- MSM bl

we find that, if p is large enough so that

RE () <

Setting

300(€2)

-3 .
Mst TS Taym (36)
we have the following upper bound for the remainder
2 n
RE(n) < G 5mV/adpedh, (37)
m

As before, if the eigenfunction u is Courant-sharp,
v(u) = No(p) +1,

and therefore, if Inequalities and are satisfied, from Inequalities
and , we obtain

NeS TR 1+ \*®

€)= o PV gy T (10 TR )

r (2m)™ (2m)» An)z \1—¢9 1—¢g
3.25-1K%

A(n)3m_eg

n

= (5 + 025%)5 <0. (38)

A straightforward computation shows that, since

=2
—~
3
~—
3ho| 3o

1—
0<eg < ——~
1+~(n)n

we have
lim f,(§) = +o0.

E—+oo

Taking into account the conditions , and , we can suminarise our
result in the following proposition.
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Proposition 9.2. Let Q be an open, bounded and connected set with a C?
boundary. If p is a Courant-sharp eigenvalue of the Neumann Laplacian on
or of —Ag, we have

e [ (Y ([E et )" e
= @ ) W@ ) T jaF )

§*(p) :=sup{¢ > 0; f,(§) <0},
the function t — f,(t) being defined in Formula (38).

with

We note that the function f,, and therefore also £*(p), only depend on the
dimension n, the geometric properties of the domain ) and the choice of .

9.3 Geometric upper bounds for Courant-sharp eigenval-
ues of convex bodies

We now assume that the set 2 is convex. In that case, £, () = J§,(Q), as
discussed in Remark|[5.7 and therefore dy(€2) = ¢, (€2). To simplify the formulas,
we write t4 := t4 (). Again gq is fixed as in (33]). Additionally, the constants
appearing on the left-hand side of Inequality an be chosen as in the second
row of Table 2| which implies a smaller value of £*(p). Furthermore, again from
Remark Corollary holds, with M = 1 and for any r > 0. The estimate
(37) on the remainder therefore holds without Condition . We conclude
that, if © is Courant-sharp, then

1 4 *
p<max [ (V) £
t+ V?

We now obtain an explicit upper bound for £*(p).
From Inequality and the constants from the second row of Table 2 we

have
1+ ,\*?
Wn _ 1 (14—505_’_12 +80£2> _

(2m)"

2 2nwn /T
S e

=

a_
,05 A(n)% 1 — &0 1 — &

3.22—1 4n—1 Z4+1 n
- (n L e (£+12§%)2 <0. (39)
A(n)zed

In what follows, we use the fact that, by ,

1/n 4
£V2/"u2( - > > wiin

+

since V = |Q] > [By, | = w,t’ as By, C Q.
We also invoke the Mean Value theorem which gives that for N > 1, there
exists z € (0, ) such that

A+2)N —1=NQ1+2)N 1z
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We have that

e 1 121+% )
2 2
> ¢ + 1—|—€0g
n -1 1
14+e0\2 .n 1"‘5 IR R et
2 146 14+12—=9¢72 0 2
150) g ( + n( + 1+€0£ 1+¢o

1+1 L\ gl |
1+ 6n 1+121+€°wn" —f0¢ms

€o

+

>
el Ne)
2|3
N
— =
||+
m [ ™
o 1O
N——
[

P S (14 (R A
_ n 2
17 e R g Rl &7

(€+1265)8 = 5 (14120 H)F <e¥ (14 120, )%,
Substituting these into , we obtain

Wn 1 1420\ 2 2
@r)yr  Am)F (1—ao> :

2 " 3.2371 4n71 4] 2, )
B Y ST
(2m) A(n)%eg

n 21
6n 1+e0)\2? 1""‘% 1+€L _z\° n—1
i 1412 o n " , (40
+A(n)§ <1—60) <1+50 + 1+4+¢g w ¢ ( )

We note that the coefficients of £%, ¢ =R only depend on the dimension, while
the coefficient of €271 depends on the dimension and the isoperimetric ratio.
Inequality (40| implies that

and

¢ < D;! 2nwnﬁp 328 t(anTEH
"o\ @m)n An)iel

n 21
6n 14+e9)\? 1+% 1"'5i 2\’ 3.1
7 | —— 1412 = n " , (41
+A(n)§ <1—€0> <1+€0 + 1+ ¢g « gy, (4

L

—_2 . n
(1412w, " >2p2) ¢t

NE

1
where D,, := (2“7’:)’” E— (1+5°> . Substituting §_i < wp ™ into Inequality

A(n)Z \1-eo

25



, we obtain

21wy, 3.23 7145+l 2 4,
5<Dn4< Nwn /T N A ")2 (14 1207 5)3 2

@n "’ Aln)3ed

6 -1 1 % 1+ 1 1_|_ 1 L21_1 4
n - - _2

4 onen (1 S0 w0 ) (1412 T . (42)
A(n)2 1—¢p 14+ ¢€9 1+¢p

which implies that

2nwy, 3.25-1(4n-1)z+1 _2 .,
p< Dty 2 \fﬂ | p u) (112w ") E
(2m) A(n)zed
-1 n 1 1 3o\ 4
O (L2 (1E 2 () o (IFE) -2
A(n)f 1—¢g 1+¢p 1+¢g
=: Mi(n,p,V). (43)

If instead we consider the bound due to Payne and Weinberger, [13],

2

™
Q> —— 44
H2(8) 2 diam(2)2’ (44)
then .
e < dlam(Ql)2 .
NiA&D
The following bound due to Gritzmann, Wills and Wrase, [§],
Snfl
diam(Q) < ——
iam(Q) < o (V)2
gives that
1 pnfl
R —
Vaw, g
By substituting the latter inequality into Inequality , we have
2nwy, 237 l(4gnm )5+l —2
< DAYE nw \nﬁp 3-2% (n ﬂ)2 (1+ 1207 $)8 2
(2m) A(n)5eg
n n_1 4
n—1 1 7 14+ L 14+ L 5\ 2
+ i 6p < + 60) 50 1 4 12 €0 Wn, n
Jrw?_nE1A(n)E 1—¢o 1+¢o 1+¢9
=: My(n,p,V) (45)

We can summarise both versions of the upper bound in the following propo-
sition.

Proposition 9.3. Let Q be an open, bounded and convex set with a C? bound-
ary. If p is a Courant-sharp eigenvalue of the Neumann Laplacian on Q or of
—Ag, we have

# < max (tl?ﬁ%w My (n, p(S2), |Q|)> (46)
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and ,
p < max e Ma(n, p(), Q)
t+(Q)47 ’ ’ ’

with My and My defined in Formulas and respectively.

Similarly to the end of Section [ we can find simpler, although less explicit,
upper bounds.

Proposition 9.4. Let Q be an open, bounded and convez set with a C? bound-
ary. Let p = pk(Q) or p = pr(Q, 8), with B a non-negative Lipschitz continuous
function on Q. There exist positive constants C,, and C! that do not depend
on 0 such that, if p is Courant-sharp,

o, p()°
<, + 53
a <t+(§2)4 Q=

1 2n
Q=
k<G <t|+(|Q)> o

The first inequality in Proposition follows from Inequalities (42)) and

(46)), taking into account p(Q) > \/nwz". The second follows from the first and
Corollary together with Remark after applying Young’s inequality
repeatedly. Both C,, and C/, could be computed explicitly.

As described in the introduction for the case of dimension 2, the previous
inequality implies that a sufficiently regular convex set with a large number
of Courant-sharp eigenvalues has a large isoperimetric ratio or a point in its
boundary where the curvature is large (or both). Additionally, if there exists
Tt ()74, the set

and

a Courant-sharp eigenvalue which is large with respect to |2
has a large isoperimetric ratio.
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A An upper bound for the Neumann counting
function of a convex domain

Proposition A.1. Let Q be an open, bounded and convex set in R™ with a C?
boundary. Then, for all p > 0, we have

. aa ( n—1 )wl
2 (3 n—i—1
= : (47)

NY < = Qluz e Q -

3

where t4(2) is the smallest radius of curvature, as defined by Equation .
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Proof. We combine the Payne-Weinberger lower bound (see Inequality )
with Neumann bracketing. Reference [4] uses a similar approach with Dirichlet
bracketing.
For o € Z", we define the open hypercube C, := o + (0,1)". Let us fix
a > 0. We define
Ty :={a€Z";aCyNQ+# 0}
and denote by K (a) the cardinality of Z,. For all € Z,,, we define Q, 4 :=

Q2 NaC,. By construction, €2, , is a convex, open set with diameter bounded
from above by v/na. We define

f'Za = U Qa,a7

a€Zl,

which is open and bounded, but not connected. _

We consider the spectrum of the Neumann Laplacian on €2,, which we denote
by (x(a))k>1. Since Q, has K(a) connected components, 0 is an eigenvalue of
multiplicity K (a), that is

0=p(a) = p2(a) =+ = px(a).

The eigenvalue fif (4)+1(a) is the smallest among the non-trivial eigenvalues of
the sets 2, , with a € Z,, and therefore, according to the Payne-Weinberger

inequality,
2
T < (a)
na? = PE(a)+1(a).
It follows from the variational characterisation of the eigenvalues that ux(a) <

ux () for any integer k (see, for example, Proposition 4(c) of [16]), so that
2
T
— <tk (a)+1(9).
nad = KK ( )+1( )

Equivalently, the counting function N (-) satisfies

N (7
To finish the proof, let us give an upper bound for K(a). We define D, as the

interior of
U Cos

a€Zl,

and note that |D,| = K(a)a™. Furthermore, we have
D, C Q+ vnaB,

where B is the ball of radius 1 in R™ and the right-hand side is understood as
a Minkowski sum. We obtain

K(a) <a™"|Q+ vnaB|. (49)

Using normal coordinates in the exterior of Q (similarly to Subsection but
for the outer parallel sets), we find, for any § > 0,

k) n—1
|2+ 0B = |9 +/ (/ H(l +tri(z")) dx’) dt.
o \Joa ;3
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Expanding and using #;(z') < ¢4 (Q)7! for all 2’/ € 0Q and i € {1,...,n — 1},
we find

n—1 ( " _ 1 > 5i+1
(3
Q0B < (0 +100 Y AL
; (1 + 1)t ()

We now choose 0 := y/na := m/,/ji. We obtain the desired result by substituting
this value into the previous inequality and by using Inequalities and
successively. O

Let us denote by F,(|],]09],t+(2), 1) the right-hand side of Inequality
. It is a continuous and increasing function of u.

Corollary A.2. Let Q be an open, bounded and convex set in R™ with a C?
boundary. For any integer k > 1,

k< Fa(190, 109, £ (2), i (). (50)
Proof. Let us fix e > 0. We have NY ((1 + &)ur(2)) > k. We obtain Inequality
by applying Inequality and letting € go to 0. O

Remark A.3. We recall that p(2) < ur (82, B) for every non-negative Lipschitz
continuous function S on 98, and every k > 1. Since F,(|Q],]0Q],t4+(2), 1) is
increasing in W, Inequalities and hold when substituting Ng(u) for
NY (1) and pg (2, B) for ui(Q), respectively.
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