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A generic road map for objectively defining a single extreme weather event is proposed.

DEFINING SINGLE EXTREME 
WEATHER EVENTS IN A 
CLIMATE PERSPECTIVE

Julien Cattiaux and auRélien Ribes

R etrospective analysis of single weather events  
 has been for a long time a regular activity of  
 weather services. Commenting on and explain-

ing a remarkable episode that is occurring or that 
has just occurred is part of climate monitoring. 
Determining return periods of particular extremes 
(e.g., those causing large socioeconomic impacts) is 
part of the mandatory prevention of natural hazards 
(https://public.wmo.int/en/our-mandate/focus-areas 
/natural-hazards-and-disaster-risk-reduction). More 
recently, single weather events have also received a 
growing attention from a climate change perspective. 
Weather services need to account for nonstationarity 

in the return period estimates (Katz 2010; Cooley 
2013). Climatologists interested in global warming 
attribution aim to quantify how human activi-
ties have affected the risk of occurrence of specific 
events (Stott et al. 2013; Trenberth et al. 2015; Otto 
et al. 2016), and dedicated annual reports have 
been published in BAMS since 2012 [e.g., Peterson 
et al. 2012, among others (www.ametsoc.org/ams 
/index.cfm/publications/bulletin-of-the-american 
-meteorological-society-bams/explaining-extreme 
-events-from-a-climate-perspective/)]. The result 
of such attribution studies is generally provided as 
a risk ratio (RR) or a fraction of attributable risk 
(FAR) given by

 RR =
p
p

1

0

 and FAR
RR

=
−

= −
p p

p
1 0

1

1 1 , (1)

where p1 is the probability of the event occurring in 
the factual world (transposable into a return period) 
and p0 is the probability of the event occurring in a 
counterfactual world without anthropogenic forc-
ings (Stott et al. 2004). Both weather services and 
climatologists have developed a strong expertise in 
answering questions related to single extreme weath-
er events, and even the attribution issue can now be 
addressed within a few days (e.g., van Oldenborgh 
et al. 2016).
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A key prerequisite to all these considerations is 
the definition of the event itself. The question can 
be formulated very easily—for example, What was 
this extreme event?—but the answer involves many 
nontrivial choices. Despite an impressive number of 
single events analyzed over recent years, no system-
atic road map has been proposed to define the event 
to analyze, as particularly highlighted in the recent 
report of the National Academies of Science dedicated 
to attribution: “It would be useful to develop a set 
of objective event … definition criteria” (National 
Academies of Sciences 2016, p. 15). In particular, the 
spatiotemporal scale is chosen arbitrarily in most 
studies. The authors either use predefined areas (e.g., 
a local station, a national territory) and periods (e.g., a 
day, a month, a season) or use the space–time charac-
teristics that best depict the event and/or its impacts 
according to their own expertise. Defining a single 
extreme weather event through predetermined and/
or subjective criteria can be useful to weather services 
or stakeholders, but is questionable from a physical 
perspective. First, this may not faithfully portray the 
event: meteorological phenomena do not conform to 
calendar or geopolitical divisions, while a subjective 
definition may be biased by our perception. Second, 
this may bring some confusion when putting an 
identified extreme event in a climate perspective. For 
instance, attribution results have been shown to be 
sensitive to the spatiotemporal scale (Otto et al. 2012; 
Uhe et al. 2016); although supposedly designating the 
same extreme event, different definitions can thus 
lead to different conclusions.

Here, we propose a straightforward and—as far 
as possible—objective procedure to define a single 
extreme weather event. In particular, we suggest an 
automatic way to designate the most relevant spatio-
temporal scale for a particular event. We first illus-
trate our methodology on the European heat wave of 
summer 2003 (EHW2003), a well-documented event 
(Stott et al. 2004; Beniston 2004; Black et al. 2004; 
Schär et al. 2004; Cassou et al. 2005; Trigo et al. 2005; 
Chase et al. 2006; Barriopedro et al. 2011; Christidis 
et al. 2015). We also consider a precipitation event, the 
Boulder, Colorado, intense rainfall of September 2013 
(BIR2013), which was responsible for severe floods 
in Colorado (Hoerling et al. 2014; Gochis et al. 2015; 
Eden et al. 2016; Pall et al. 2017).

THE FOUR STEPS OF EVENT DEFINITION. 
First, one must decide which variable to consider. This 
choice is generally well constrained as it relates to the 
type of the natural hazard studied (e.g., heat wave, 
flooding, storm) and the purpose of the analysis (e.g., 

climate oriented vs impact oriented, both being per-
fectly valid). For instance, climate studies would use 
surface atmospheric temperature for heat waves and 
rainfall for heavy precipitation events, while, respec-
tively, heat stress (McGregor et al. 2010; Fischer et al. 
2012) and river discharge would be more relevant for 
impacts studies. Multivariable approaches may also 
be relevant for some applications (Sippel and Otto 
2014); for instance, considering both daily minimal 
and maximal temperatures brings additional infor-
mation for heat wave impacts. Here, we use single 
weather variables, since (i) our purpose is climate 
oriented and (ii) impact variables are more likely to 
be influenced by nonclimatic anthropogenic factors 
(e.g., a change in exposure, the construction of a river 
dam). We thus characterize EHW2003 through the 
daily mean surface temperature and BIR2013 through 
the daily amount of precipitation. Our method can 
nevertheless be applied to any other variable and/or 
generalized to a multivariable framework, enabling it 
to also be used for impact-oriented studies.

Second, it must be noted that a particular event 
has a null probability to happen exactly as it was: for a 
random variable X that has a continuous distribution 
and a given value x0, Pr{X = x0} = 0. The computation 
of the occurrence probability p1 therefore requires 
one to specify a class of events, a topic that has been 
particularly discussed in the attribution community 
recently (Trenberth et al. 2015; Hannart et al. 2016; 
Otto et al. 2016; Shepherd 2016; Harrington 2017). The 
traditional approach (used, e.g., for the computation 
of return periods in climate monitoring) is to define 
the class as all events equally or more intense than the 
observed one. This approach is consistent with risk 
estimation and is commonly referred to as the “risk 
based” approach in attribution studies. In this case, p1 
corresponds to the tail of the distribution (Pr{X ≥ x0}), 
which fits into the mathematical framework of extreme 
value theory (Coles 2001) and is highly relevant for 
most climate and impacts applications. Alternatively, 
it has been recently proposed to define the event as 
accurately as possible and to identify its causal chain 
of contributors in a deterministic way (Shepherd 2016). 
Scrutinizing an event in such a “storyline” perspective 
is indeed helpful for both climate monitoring and 
physical understanding (Hoerling et al. 2013). How-
ever, from a probabilistic point of view, narrowing the 
class of events to those of about the same intensity as 
the observed one (Pr{x0 – ε ≤ X ≤ x0 + ε} with ε → 0) is 
inconsistent with return period estimation and could 
lead to misleading attribution statements, since every 
single cause becomes necessary to explain an event 
exactly as it was. We therefore use the traditional 
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return period approach here (Pr{X ≥ x0}). We choose 
the intensity threshold x0 as the value observed during 
the event itself; using less extreme values (e.g., as in 
Stott et al. 2004) would ease the probability estimation 
but not fully reflect the event rarity.

The third question is whether or not the event 
must be defined conditionally to (i) the concurrent 
state of the climate system (e.g., sea surface tempera-
ture, atmospheric circulation, soil moisture, El Niño 
phase) and/or (ii) the time of year. Technically, this 
amounts to narrowing the class of events by mak-
ing probabilities conditional: Pr{X ≥ x0} becomes 
Pr{X ≥ x0 | Y ∈ Ω} with Y the conditioning variable 
and Ω its observed state. Explaining a particular event 
from the perspective of other variables in the climate 
system can serve physical understanding (Cattiaux 
et al. 2010; Trenberth et al. 2015; Vautard et al. 2016), 
but the conditioning generally confuses climate 
change questions. Some natural hazards could indeed 
become less frequent given a particular atmospheric 
circulation pattern while becoming more frequent in 
general. This is why we do not use any conditioning 
to the concurrent climate state in this paper, though 
the proposed procedure easily extends to conditioned 
event definition if p1 and p0 are made conditional. The 
question of the timing of the event in the seasonal 
cycle is a bit different. Climate monitoring involves 
the description of events with respect to both annual 
maximum values (especially for the most extreme 
events) and the seasonal context. The annual maxima 
approach is particularly relevant for natural hazards 
whose impacts are similar regardless of the season, 
such as the risk of dike overflow by storm surges or 
river floods. By contrast, the calendar conditioning 
makes it possible to study weather events that are not 
particularly unusual at the annual scale but can cause 
specific impacts at the time they occur (winter heat 
waves, summer cold spells, tropical intense rainfall 
during the dry season, etc.). It must however be noted 
that limiting the study to a particular period of the 
year only provides a conditional p1, which should 
not be interpreted as the formal return period of the 
event. Here, we contrast the two approaches (an-
nual maxima and calendar) for EHW2003 and only 
consider the annual maxima approach for BIR2013.

Last, one must define the spatiotemporal scale of 
the event. This choice might again be directly driven 
by the application. For instance, after a flood event, 
weather services mandated to compute the return 
period of the peak discharge at a given location would 
naturally focus at the local and instantaneous scale. 
But for climate monitoring or attribution studies, 
assessing whether the associated heavy rainfall event 

should be considered at an hourly local or a daily 
regional scale can be less trivial. We further illustrate 
this issue in the following section on the basis of the 
EHW2003 event.

THE SPATIOTEMPORAL-SCALE ISSUE 
ILLUSTRATED FROM THE EUROPEAN 
HEAT WAVE OF SUMMER 2003. In the first 
event attribution study, Stott et al. (2004) defined 
EHW2003 as a 3-month event [June–August (JJA)] 
over the so-called Mediterranean (MED) Giorgi re-
gion (Giorgi and Francisco 2000) covering southern 
Europe and the Mediterranean basin entirely. Choos-
ing such a large and predefined scale was motivated 
by the wish to prevent what they referred to as a 
“selection bias” (see “Discussion and conclusions” 
section) and ensure the reliability of their climate 
model in simulating the temperature distribution. 
Depicting EHW2003 from this space–time window 
is, however, debatable given (i) the synoptic nature 
of heat waves and (ii) the fact that most EHW2003 
impacts were reported for August and western Eu-
rope (i.e., at a much smaller spatiotemporal scale 
and a slightly different location; World Health Or-
ganization 2003). Alternatively, for climate monitor-
ing over the French territory, Météo-France defined 
EHW2003 as an 18-day event on the basis of arbi-
trary temperature thresholds (www.meteofrance.fr 
/climat-passe-et-futur/impacts-du-changement 
-climatique-sur-les-phenomenes-hydrometeor 
ologiques/changement-climatique-et-canicules). 
Such a 2-week duration appears particularly relevant 
for impact studies such as those focusing on human 
mortality (World Health Organization 2003; Haines 
et al. 2006; Robine et al. 2008). But EHW2003 could 
also be defined as a shorter and local event as some 
daily temperatures of early August were very extreme 
at some locations (Beniston 2004; Trigo et al. 2005).

EHW2003 therefore constitutes a typical case study 
for which the scale selection is nontrivial. It particularly 
matters when putting the event in the perspective of 
climate change. On average, over the whole season 
(JJA) and a large European domain, the temperature 
anomaly of EHW2003—2.5 K relative to 1961–90—gets 
overtaken by the median of phase 5 of the Coupled 
Model Intercomparison Project (CMIP5) representative 
concentration pathway 8.5 (RCP8.5) projections by 2040 
and becomes a cold extreme by 2100 (Fig. 1a; see caption 
for data information). But in the same climate scenario, 
locally in Paris, France, daily temperatures observed in 
early August 2003 remain unusually high by 2100 for 
these calendar days (i.e., reaching their 99th percentiles), 
while the seasonal anomaly is slightly below normal 
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(Fig. 1b). Therefore, depending on whether EHW2003 
is considered at seasonal regional, seasonal local, or 
daily local scale, it can, respectively, be interpreted as 
an extremely cold, a slightly cold, or an unusually hot 
event in late-century climate projections. Similarly, in 
the present-day climate, different probabilities of oc-
currence p1 will be obtained for different scales. One 
thus needs to select the scale that best reflects the event.

SELECTING THE SPATIOTEMPORAL 
SCALE THAT MAXIMIZES THE RARITY. 
Extreme events are, by nature, rare. This is precisely 
why they receive public or scientific attention and 
cause large impacts. In mathematical terms, they 
are thus inherently characterized by a small prob-
ability of occurrence p1. This probability can even be 
considered as the “mugshot” of the event: it portrays 
the event and quantifies how extreme it has been. 
As noted above, p1 varies with the scale at which the 
extreme event is considered. Here, we argue that the 
value that best portrays the extreme feature of the 
event is the minimum p1. Therefore, we suggest that 
the last step of event definition, the selection of the 

spatiotemporal scale, could be made by minimizing 
p1 over all possible space–time windows. Again, this 
optimization is not needed for all applications, and 
predetermined space–time windows remain relevant 
for studies focusing on a particular population center, 
political region, or set of infrastructure.

Defining the event on the basis of p1 translates the 
question of what this extreme event was into what 
the most extreme in this extreme event was, which, 
beyond the definition issue, is a legitimate question 
for climate monitoring. For attribution studies, our 
suggestion does not require additional work since 
estimating p1 is requested to calculate RR or FAR. 
As p1 follows a uniform distribution between 0 and 
1 for each spatiotemporal scale—this is an intrinsic 
property1 of an occurrence probability as defined 

Fig. 1. (a) Observed (black) and simulated (violet) land surface temperature anomalies relative to 1961–90 av-
eraged over JJA and the domain 35°–70°N, 10°–30°E (blue area on the map). Smoothed ensemble mean (thick 
violet) and 2003 observed anomaly (dashed black line) are added. (b) JJA 2003 observed daily temperature 
in Paris [red pixel on the map in (a)] compared with the 1961–90 observed climatology (thick black) and the 
2070–99 projected ensemble-mean 1st, 10th, 50th, 90th, and 99th percentiles, respectively, noted P1, P10, P50, 
P90, and P99 on the right y axis [dashed violet, with blue (red) shading between P1 and P10 (P90 and P99)]. 
Paris observations have been provided by B. Dubuisson (Météo-France). European observations are taken from 
the E-OBS, version 13, gridded dataset (Haylock et al. 2008). CMIP5 projections are made of 61 concatenated 
historical and RCP8.5 experiments from 30 models (Taylor et al. 2012). E-OBS and CMIP5 data are both bilin-
early interpolated onto a regular 2.5° × 2.5° grid. List of CMIP5 models: ACCESS1.0 (1 member), ACCESS1.3 
(1), BCC_CSM1.1 (1), BCC_CSM1.1(m) (1), BNU-ESM (1), CanESM2 (5), CCSM4 (6), CESM1(BGC) (1), CMCC-
CESM (1), CMCC-CM (1), CMCC-CMS (1), CNRM-CM5 (5), CSIRO Mk3.6.0 (10), FGOALS-g2 (1), FGOALS-s2 
(3), GFDL CM3 (1), GFDL-ESM2G (1), GFDL-ESM2M (1), GISS-E2-R (1), INM-CM4.0 (1), IPSL-CM5A-LR (4), 
IPSL-CM5A-MR (1), IPSL-CM5B-LR (1), MIROC5 (3), MIROC-ESM (1), MIROC-ESM-CHEM (1), MPI-ESM-LR 
(3), MPI-ESM-MR (1), MRI-CGCM3 (1) and NorESM1-M (1).

1 For a random variable X, its cumulative density function FX 
(assumed continuous), and Z = FX(X), the random variable 
corresponding to the probability of being under a given 
value (i.e., 1 – p1), one can write ∀x,FZ(x) = Pr {FX(X) < x} = 
Pr{X < FX

–1(x)} = FX[FX
–1(x)] = x, which proves that Z (thus p1) 

follows a uniform distribution.
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above (Pr{X ≥ x0})—it provides a fair and unbiased 
comparison across scales.

Back to the EHW2003 event, our suggestion would 
translate into minimizing the probability that an 
event equally or more intense occurs in 2003; that is,

 p1 = Pr{X(t1) ≥ xt1
}, (2)

where X(t1) is the random variable of daily mean 
temperature describing all possible realizations of 
temperature at time t1 = 2003 and xt1

 is the value ef-
fectively observed that year. We show in the following 
that the minimum p1 can be obtained in an automatic 
way. For the sake of clarity, we use here rather simple 
estimation methods for p1 that are realistic enough to 
communicate effectively our main point but should 
not be blindly adopted. Our algorithm remains us-
able with any estimation method, including more 
sophisticated techniques (beyond our scope).

Let us first consider the temporal aspect only, set-
ting the location to the Paris weather station. For each 
day d of JJA 2003 (92 days) and each duration n from 
1 to 92 days, we compute the occurrence probability 
p1 of having a temperature greater than or equal to the 
one observed over the n-day time window centered 
on d. Then we select the minimum of the 92 × 92 p1 
values, which provides the time window that maxi-
mizes EHW2003 rarity at Paris weather station. For 
computational reasons, we only consider an arbitrary 
subset of 24 durations. We empirically estimate p1 by 
fitting a distribution on a sample of 66 yearly values 
xt (corresponding to observed temperatures over 
1950–2015) that we correct for climate change be-
forehand—indeed, the temperature observed in 1950 
is not directly comparable to that of 2015 since the 
climate has changed in the mean time. Three different 
options are taken for the distribution and the sample 
used, corresponding to different choices of calendar 
conditioning [i.e., different definitions of X(t1) and xt1

 
in Eq. (2)]. As for the climate change correction, we 
assume that only the mean of the temperature dis-
tribution has changed (variance and shape are kept 
constant) and that the change is uniform throughout 
the summer season (the same correction is applied 
for all time windows throughout JJA). Again, such 
deliberately strong hypotheses are reasonable for 
our purpose but should not be blindly adopted. The 
detrending involves two steps:

1) The climate change signal xt* is estimated from 
a 10-degrees-of-freedom (df) spline smoothing 
(arbitrary choice) of the multimember mean 
of CMIP5 JJA temperatures. Each grid point is 

treated separately, and trends are then averaged 
over the spatial domain of interest. For the grid 
point of Paris, the estimated change is about 
+1.5 K between 1950 and 2015.

2) The sample of 66 raw values xt is translated into a 
sample xt

(t1) = xt1
 – (xt* – x*t1

), which is representative 
of the climate of the year of the event (t1 = 2003 in 
our case). In other words, we correct for climate 
change before and after t1, keeping xt1

 constant 
[xt1

(t1) = xt1
].

Finally, note that we always include the value 
corresponding to the event itself xt1

 in our sample; 
removing it could be regarded as ignoring available 
information and thus biasing the estimation of p1.

The first option—the calendar approach—consists 
of comparing the temperature observed in 2003 for a 
given time window with the temperature distribution 
at the exact same calendar time window. The sample xt 
therefore corresponds to the 1950–2015 temperatures 
observed over the n-day calendar window of interest, 
and the distribution of X(t1) is assumed to be Gaussian 
(Fig. 2). Within this calendar approach, which is com-
mon for climate monitoring (www.meteofrance.fr 
/climat-passe-et-futur/bilans-climatiques/bilan-2017 
/bilan-climatique-de-l-ete-2017; www.metoffice.gov 
.uk/climate/uk/interesting/hot-spell-june-2017), most 

Fig. 2. Illustration of the three methods used to es-
timate p1 for EHW2003 in the case of a 1-day time 
window (1 Jun) at the Paris location. The tempera-
ture observed in 2003 xt1

 (violet) is compared with 
the Gaussian distribution of all 1 Jun temperatures 
(calendar, black), the Gumbel distribution of annual 
1-day temperature maxima (annual maxima, blue), 
and the Gaussian distribution of yearly 1-day tem-
perature maxima within the “1 Jun ± one week” time 
window (local maxima, red). All distributions (lines) 
are empirically fitted on the 66 detrended values of the 
period 1950–2015 xt

(t1) (vertical bars), and estimated p1 
values are given.
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of summer 2003 appears abnormally warm, with the 
exception of early/late July and late August (Fig. 3a). 
Early August is particularly extreme, and the lowest 
p1—or highest rarity—is found for the 8-day time 
window of 5–12 August (p1 = 4 × 10–6). To a lesser 
extent, the entire summer (JJA), as well as both June 
and August months, is also found to be extremely hot 
(p1 = 5 × 10–4), consistent with the literature (Cassou 
et al. 2005; Trigo et al. 2005; Barriopedro et al. 2011).

Our calendar approach, however, prevents us from 
interpreting p1 in terms of return period. A 0.01 prob-
ability on 1 June means that such a warm day would 
occur on average once in 100 years on 1 June, but it 
would certainly occur much more frequently anytime 
in the year. A second option for estimating p1, the an-
nual maxima approach, is to fit the traditional return 
period framework by replacing the n-day calendar 
Gaussian distributions with n-day annual maxima 
Gumbel distributions (Fig. 2). Interestingly, almost 
the same time window is found to minimize p1 (4–12 
August), albeit the gap with the season-scale event is 
reduced (p1 = 0.008 vs p1 = 0.020; Fig. 3b). The annual 
maxima approach provides conventional return peri-
ods but annihilates the rarity of events distant from 
the annual cycle peak; for instance, June 2003 is not 
unusual any more.

As a compromise, we consider a third definition 
for p1, the local maxima approach: we compare a 
given day d (or n-day time window centered on d) of 
2003 with the Gaussian distribution of yearly maxima 
located in its calendar neighborhood d ± k (Fig. 2). 
Taking k = 0 equates to the calendar approach, and 
k = 365/2 is almost identical to the annual maxima; 
k should therefore be chosen as the typical duration 
over which the amplitude of the seasonal cycle re-
mains small relative to the intraseasonal variability. 
Here, we arbitrarily choose k = 7, so a 0.01 probability 
on 1 June means that such a warm day would occur 
on average once in 100 years on 1 June ± one week. 
This 2-week calendar neighborhood seems relevant 
for European temperatures, although a precise opti-
mization of k is beyond our scope. With this method, 
the highest rarity is found for the 11-day time window 
of 3–13 August, and the month of June is found to 
be unusual even if individual days are not (Fig. 3c).

The spatial dimension can be incorporated by re-
peating the above procedure for an ensemble of possi-
ble spatial domains and searching for the global mini-
mum of p1 over all space–time windows. In our case, 
we consider all rectangular domains of size m × n grid 
points that (i) encompass Paris (48.5°N, 2.2°E), (ii) are 
included in the whole European domain (35°–70°N, 
10°W–40°E; size 21 × 15), and (iii) contain at least 

50% of continental grid points. For computational 
reasons, we limit ourselves to squared or near-squared 
domains. We incorporate the local Paris weather sta-
tion as the 0 × 0 dimension. For both annual and local 
maxima approaches, the highest rarity is found for 
an early August event (11–12 days) over France and 
Spain (size 7 × 5; Figs. 3d–f). This p1 minimum also 
arises in the calendar approach but is overtaken by a 
smaller-scale event. Importantly, all methods agree 
that EHW2003 is less extreme when considered over 
the whole season and domain (i.e., the space–time 
characteristics retained in several attribution studies; 
Stott et al. 2004; Christidis et al. 2015).

MAXIMIZING THE RARITY DOES NOT 
MAXIMIZE (OR MINIMIZE) THE ATTRIB-
UTABLE RISK. Searching for the spatiotemporal 
scale at which a single extreme weather event has been 
the most extreme (minimum p1) is an academic ques-
tion that is relevant for climate monitoring. It can, 
however, appear disconcerting for attribution studies 
at first sight: as p1 is directly involved in the RR and 
FAR [see Eq. (1)], minimizing p1 is likely to impact 
attribution results. Here, we show that selecting the 
scale that minimizes p1 does have implications for 
attribution results but does not systematically bias 
the RR or FAR toward high or low values.

In our EHW2003 example, a rough estimation 
of the FAR can be obtained by computing p0 as the 
probability that an event equally or more intense than 
EHW2003 occurs not in 2003 but at the beginning of 
our period of study (t0 = 1950):

 p0 = Pr{X(t0) ≥ xt1
}. (3)

In practice, p 0 is est imated from the sample 
xt

(t0) = xt – (xt* – x*t0
), that is, derived from the 1950–

2015 observed temperatures by applying the climate 
change correction described above relative to t0 = 1950 
rather than t1 = 2003. The European climate of 1950 
X(t0) is colder than that of 2003 X(t1), so p0 < p1 and 
FAR > 0. We obtain higher FAR values (between 75% 
and 100%) with calendar conditioning than without 
(between 30% and 90%; Figs. 3g–i). We consider that 
these estimates are consistent with the existing litera-
ture (Stott et al. 2004; Christidis et al. 2015) although 
our estimation method for p0 and p1 is deliberately 
very simple.

The interesting point is that, contrary to the rar-
ity, the FAR of the EHW2003 event clearly increases 
with the spatiotemporal scale for all three approaches 
(Figs. 3g–i). This is consistent with Uhe et al. (2016), 
who show that the RR of another hot event—the 
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Fig. 3. (a)–(c) Estimated EHW2003 p1 at Paris location for time windows of various durations (days, y axis) cen-
tered over days from 1 Jun to 31 Aug (x axis) for the three estimation methods (calendar, annual maxima, and 
local maxima). Dots (crosses) indicate minima for every duration (overall minima). (d)–(f) Minimum EHW2003 
p1 for various spatial sizes (number of grid points, x axis) and various temporal durations (days, y axis) for the 
three estimation methods. Crosses indicate overall minima: 5–12 Aug over 47.5°N, 0°–2.5°E; 3–13 Aug over 
37.5°–52.5°N, 7.5°W–2.5°E; and 2–13 Aug over 40°–50°N, 7.5°W–7.5°E, respectively. Leftmost columns (size 
0 × 0) correspond to Paris location [i.e., dots in (a)–(c)]. (g)–(i) FAR values associated with the p1 plotted in 
(d)–(f) (%). Crosses indicate overall maxima.

European record-breaking yearly temperatures of 
2014—increases with the domain size. In fact, this 
is not surprising given that the RR or FAR directly 
responds to the signal-to-noise ratio of the human-
induced change. For temperatures, the warming 
signal is rather uniform across scales: at the first 

order, the whole distribution shifts toward a warmer 
climate, and daily local temperatures are affected 
similarly as seasonal regional ones. By contrast, the 
noise of temperature variability is highly nonuniform: 
it is stronger (weaker) for small (large) spatiotemporal 
scales. The signal-to-noise ratio of temperature events 
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therefore increases with the scale (as also evidenced 
in Fig. 1) and so does the RR or FAR.

Attribution studies providing quantitative risk-
based results (e.g., RR or FAR), for a specific extreme 
event, can therefore be biased if they use a space–time 
window that does not portray the event supposedly 
analyzed. Here, the term bias does not refer to the RR 
or FAR calculation made in such studies, which can 
be correct, but to the potential mismatch between the 
definition used and the targeted event. In other words, 
all FAR values in Figs. 3g–i are scientifically valid, 
including those obtained for the seasonal regional 
event [comparable to Stott et al. (2004) and Christidis 
et al. (2015)]; however, we argue that not all should be 
interpreted as the FAR of the EHW2003 event. To take 
an exaggerated example, one could perfectly compute 
the FAR of the global and annual mean temperature in 
2003, but it would be unfair to consider it as the FAR 
of the EHW2003 event. For temperature extremes, us-
ing a too-large space–time window to define a single 
event can inflate the RR or FAR ascribed to that event.

An objective definition procedure such as that 
proposed here may therefore guide the monitoring 
and attribution of single weather events. Interestingly, 
Fig. 3 clearly illustrates that defining an extreme event 
from the spatiotemporal scale that maximizes its rar-
ity does not maximize (or minimize) its RR or FAR.

A PRECIPITATION CASE STUDY: THE 
BOULDER INTENSE RAINFALL OF SEP-
TEMBER 2013. The signal-to-noise behavior of 
temperatures should however not apply to all climate 
variables. For instance, the response of the distri-
bution of precipitation to climate change is more 
complex than a shift: changes in mean precipitation 
are rather small and depend on the location, while 
extremes are expected to undergo a more robust and 
spatially generalized increase (Kharin et al. 2013). 
Therefore, contrary to temperature, both signal (cli-
mate change) and noise (variability) vary with scale 
for precipitation, possibly with complex consequences 
for measures like RR or FAR.

We illustrate this point by applying our defini-
tion road map to the BIR2013 event. All the three 
approaches used for EHW2003 could be applied, 
but since the calendar conditioning is less relevant 
for precipitation extremes (smaller seasonal cycle), 
here we only consider the annual maxima approach 
for simplicity. We now use Eq. (2) with X(t1) being 
the random variable for rainfall annual maxima, 
t1 = 2013, and xt1

 the value observed during BIR2013. 
As for EHW2003, we empirically estimate p1 from 
1901 to 2014 detrended series of observations (Fig. 4a; 

see caption for data information). However, the de-
trending procedure differs, since climate change does 
not affect the precipitation distribution as it affects 
temperatures. We proceed in two steps. First, as for 
EHW2003, we estimate the local long-term warming 
from the CMIP5 ensemble; we obtain about 1.6 K 
between 1901 and 2014 at the Boulder grid point. 
Second, we estimate the change in n-day precipita-
tion extremes relative to the local warming (% K−1) 
from the CMIP5 ensemble;2 the scaling is assumed 
to be spatially uniform over Colorado and ranges 
from 2.5% K−1 for 1-day annual maxima to 0.7% K−1 
for 92-day annual maxima. Such a small increase 
in precipitation extremes in this region—typically 
between 0 and the Clausius–Clapeyron rate—is con-
sistent with the literature (Hoerling et al. 2014; Eden 
et al. 2016). Within this procedure, a stronger cli-
mate change signal is diagnosed for short-duration 
precipitation events. Ultimately, we compute p1 as-
suming that X(t1) follows a generalized extreme value 
(GEV) distribution with a shape parameter ξ = 0.1 
(Fig. 4a), which is a convenient value in our case as it 
is consistent across all space–time windows tested for 
BIR2013. Using a constant ξ ensures that the prob-
ability to exceed a given amount of rainfall (mm) 
increases with time duration. We compute p0 and the 
FAR similarly, taking t0 = 1901.

Exploring all time windows within August–Oc-
tober 2013 and all domains from the Boulder station 
(40°N, 105°W) to Colorado (37°–41°N, 102°–109°W), 
we find that the space–time window that maximizes 
the rarity of the BIR2013 event is the 5-day period of 
11–15 September at local scale (p1 = 7 × 10–5; Figs. 4b 
and 4c). This might not be surprising given that for 4 
of these 5 days, the observed daily amount of rainfall 
exceeds the median of the 1-day annual maxima 
distribution. This 5-day local scale happens to be 
the definition of BIR2013 used in existing literature 
(Hoerling et al. 2014; Eden et al. 2016; Pall et al. 2017). 
Given the small increase in precipitation extremes de-
rived from CMIP5 models (between 0.7% and 2.5% K−1, 
depending on the duration), the obtained FAR is only 
slightly positive for this event, typically between 10% 
and 25% (Fig. 4d). Given the large uncertainties as-
sociated with our simple computation procedure of 
p1 and p0, we consider that this estimate is consistent 
with previous analysis (Hoerling et al. 2014; Eden et al. 

2 Scaling estimated from an exponential fit: log(P) = αT + β, 
with P the series of annual n-day precipitation maxima and 
T the smoothed series of yearly temperatures. An estimation 
is made for each model separately and then averaged over 
the ensemble.
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Fig. 4. As in Fig. 3, but for the BIR2013 event. (a) The rainfall observed during 11–15 Sep 2013 xt1
 (violet) is 

compared with the GEV distribution of 5-day rainfall annual maxima (blue), empirically fitted on the 114 de-
trended values of the period 1901–2014 xt

(t1) (vertical bars). The estimated p1 is given. (b) Estimated BIR2013 p1 
at Boulder location for all time windows. (c) Minimum BIR2013 p1 for all spatial sizes and temporal durations. 
(d) Associated FAR (%). Boulder observations are taken from the corresponding station in the Global Histori-
cal Climatology Network (GHCN)-Daily dataset (Menne et al. 2012). Gridded data at 1° resolution have been 
created from GHCN-Daily and provided by M. Hoerling (Hoerling et al. 2014).

2016). Interestingly, the FAR is found to be larger for 
short-duration events, meaning that, in this case, the 
signal-to-noise ratio of climate change is dominated by 
the behavior of the signal. Beyond this example, our 
analysis shows that for precipitation events as well, the 
choice of the space–time characteristics can substan-
tially affect attribution results. But again, maximizing 
the rarity of this event does not pull its RR or FAR 
toward particularly high or low values.

DISCUSSION AND CONCLUSIONS. The aim 
of this study is to demonstrate that an as-objective-
as-possible definition road map for single extreme 

weather events may guide their monitoring and 
attribution to climate change. Our main suggestion 
is to select the spatiotemporal scale in an automatic 
way, by minimizing the probability of occurrence p1 
of the event over all possible space–time windows. 
Here, we discuss some of the potential shortcomings 
associated with our suggestion.

Searching for the minimum p1 can complicate the 
estimation of p1 itself (and p0 if needed), as it possibly 
requires venturing far in the tails of the distribution. 
However, dealing with small probabilities is inherent 
to the analysis of extreme events, and mathematical 
tools exist (e.g., the extreme value theory; Coles 2001) 
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to cope with distribution tails and enable statistical 
inference on rare values. Further, the most extreme 
events are typically those causing the largest impacts 
and/or drawing the most public and scientific at-
tention. To us, it seems paradoxical to be willing to 
analyze very extreme events but to intentionally use a 
definition that makes them less extreme (e.g., through 
threshold or spatiotemporal scale selection) for the 
only reason that it makes the estimation of relevant 
quantities (p1 and p0) easier.

This decision is nevertheless regularly made in 
attribution studies using large ensembles of simula-
tions to empirically estimate p1 and p0 [e.g., in the 
pioneer study of Stott et al. (2004), among many 
others]. In this approach, using a “too extreme” event 
definition can result in no simulation reproducing the 
event, which translates into estimated probabilities 
p^1 = p^0 = 0, so no conclusion can be drawn on the 
RR or FAR. We argue that, in this case, revising the 
estimation method (e.g., using extreme-value theory 
rather than empirical frequencies) seems more ap-
propriate than revising the event definition. Further, 
we consider that the lack of conclusion due to uncer-
tainties in RR or FAR is not necessarily an issue and 
that, above all, single extreme events should not be 
defined in order to provide a particular response to 
the attribution question.

Another criticism that could potentially be made 
to our suggestion of minimizing p1 is related to what 
some authors of attribution studies refer to as a “selec-
tion bias.”3 For instance, Stott et al. (2004, p. 610) ex-
plicitly chose a predefined region to define EHW2003 
“in order to minimize any bias that could result from 
selecting [the] region already knowing where the most 
extreme temperatures occurred.” In our view, there 
is no bias in selecting the scale that best portrays the 
extreme feature of an event; searching for a minimum 
value (here, for p1) does not make it biased as long as 
the estimation is correct. Further, for attribution pur-
poses, minimizing p1 does not induce any systematic 
bias on the RR or FAR, as evidenced in Figs. 3 and 4. 

In fact, this is the opposite: Fig. 3 highlights that using 
a too-large space–time window to depict EHW2003 
can inflate the RR or FAR ascribed to that particular 
event and thus bias—at least quantitatively—the at-
tribution statement.

Overall, p1 appears as an objective way to select the 
spatiotemporal scale associated to a single extreme 
weather event. It can also help to compare the rar-
ity of different events, for example, two heat waves 
occurring in different years and/or at different loca-
tions. In particular, it could be used to objectively 
designate the most extreme events within a year for 
BAMS dedicated annual reports and therefore alle-
viate the often-reported geographical selection bias 
(National Academies of Sciences 2016). In this study, 
we acknowledge that our estimation procedures for 
p1, p0, and the FAR are rather simple. More sophis-
ticated techniques could be used, including more 
complex distributions and/or formal detection and 
attribution methods to properly estimate the climate 
change signal. Accounting for the uncertainties in 
the estimation of p1, p0, and their ratio (RR or FAR) 
would also constitute an important improvement; 
in particular, considering confidence intervals for p1 
would provide the ensemble of space–time windows 
for which p1 is statistically consistent with the minima 
found in Figs. 3 and 4. As (i) our main objective was to 
advertise the relevance of p1 to define events, and (ii) 
our overall procedure would be usable with any esti-
mation method for p1 (including confidence intervals), 
we leave such potential improvements for future work. 
Besides, while we only focus on two illustrations in 
this piece (EHW2003 and BIR2013), our generic road 
map can be applied to analyze any extreme weather 
event from both climate and impacts perspectives.
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