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Adrian Popescu*, Pierre-Alain Moéllic**, loannis Kanellos*, Rémi Landais***
*TELECOM Bretagne, France, {adrian.popescu, ioannis.kanellos}@telecom-bretagne.eu
*CEA LIST, France, pierre-alain.moellic@cea.fr
***Exalead, France, remilandais@exalead.com

ABSTRACT

Web image search is inspired by text search techniques; it mainly
relies on indexing textual data that surround the image file. But
retrieval results are often noisy and image processing techniques
have been proposed to rerank images. Unfortunately, these
techniques usually imply a computational overload that makes the
reranking process intractable in real time. We introduce here a
lightweight reranking method that compares each result not only
to the other query results but also to an external, contrastive class
of items. The external class contains diversified images; the
intuition supporting our approach is that results that are visually
similar to other query results but dissimilar to elements of the
contrastive class are likely to be good answers. The success of
visual reranking depends on the visual coherence of queries; we
measure this coherence in order to evaluate the chances of
success. Visual reranking tends to emerge near duplicate images
and we complement it with a diversification function which
ensures that different aspects of a query are presented to the user.
Our method is evaluated against a standard search engine using
210 diversified queries. Significant improvements are reported for
both quantitative and qualitative tests.

Categories and Subject Descriptors
H.3.1 Content Analysis and Indexing

General Terms
Algorithms, Experimentation.

Keywords
Image retrieval, reranking, k-NN.

1. INTRODUCTION

Image retrieval is mainly keyword based. Search engines such as
Live or Google only recently introduced content based retrieval,
as a complement to textual search, only recently. Results obtained
using keyword matching are often irrelevant because the text
around images doesn't always describe image content [7], [8].

An important research effort was directed toward developing
reranking techniques that exploit image processing; but hard
problems are yet to be solved before incorporating image
reranking into search engines architectures. Firstly, the topic
range: Web image queries address a wide range of subjects and it
is impossible to pre-process all possible queries. Consequently,
the reranking process should be fast enough to be performed at
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query time but this is not the case for most existing techniques.
Secondly, the discrepancy between query diversification and
reranking coherence: queries are conceptually and visually diverse
but image reranking performances are good for visually coherent
queries; moreover, they are usually tested on narrow domains. For
instance, the authors of [8] limit their approach to landmarks
while the authors of [11] test it to canine species. To solve this
problem, it would be interesting to have a measure which, given
any query and corresponding results, may evaluate the chances for
image reranking to be successful. Thirdly, a search engine should
maximize results precision and cover different aspects of the
query in the same time [4] but these two measures are often
difficult to maximize simultaneously [1]. We introduce an image
reranking technique which tries to cope with the three problems
cited above. Central to our approach is the conjunction of a
contrast model and a focusing hypothesis, idea borrowed from
Tversky's work [11]. The basic idea is that the similarity between
two items is defined in contrastive, structuralist terms: it is not
only a proximity relationship (the sharing of common features)
but also a distance value that quantifies the dissimilarity to an
opponent class of items. We translate this principle to images and
suppose that an image is relevant for a query if it is visually
similar to other query results and dissimilar to an external class
which contains diversified images. To determine the visual
coherence of a class we consider the best ranked images and
compute the average number of neighbors from the external class.
Visual reranking tends to favor near duplicate images [4]. We
then add a diversification step to our method. We index images
associated to 210 diversified queries using a texture-color content
descriptor [3]. This descriptor is efficient when indexing
heterogeneous datasets and provides a detailed analysis of the
performances of our reranking technique.

2. RELATED WORK

Image reranking can be performed using textual information
associated to images, visual description or a combination of the
two. In [7], the authors adapt the PageRank algorithm to image
retrieval in order to find “authority nodes” in a visual similarity
graph. Both homogeneous and heterogeneous visual concepts are
discussed but the approach is only tested on product images and it
largely outperforms the Google standard search. Van Leuken et al.
[12] propose techniques for diversifying image search results
based on visual clustering. Clustering is applied to both
ambiguous and non-ambiguous queries and it is evaluated against
manually clustered search results. Tests show that the approach
tends to reproduce manual clustering in a majority of cases.
Deselaers et al. [4] discuss the joint optimization of search
precision and diversity, with a focus on diversity. They implement
a dynamic programming algorithm applied on top of a greedy
selection and test their approach on a heterogeneous test database
(ImageCLEF 2008 photo retrieval task [1]). An improvement of
diversity, accompanied by a small precision loss is reported when
comparing results to ImageCLEF runs.



Cai et al. [2] propose a hierarchical clustering approach in order to
discover semantic clusters within Web search results. Their
method uses textual, visual and link analysis and is mainly
designed for ambiguous queries. In [8], the authors introduce a
multimodal clustering technique (based on k-Means) to produce
relevant and diversified results for Flickr landmarks images. Tags,
user related information, geotags and temporal information are
combined to propose highly accurate results. This technique
surfaces images that are well linked to items uploaded by a large
number of users, giving thus a social relevance to best ranked
results. Whereas the technique in [8] is tuned for landmarks, [9]
implements a shared nearest neighbors algorithm (s-NN) which
clusters both tags and visual content for any given query.
Unfortunately, the technique in [9] is not fast enough to be
performed at query time. Compared to approaches like [8] or [11],
our technique is domain independent. Moreover, it is quite fast
because the underlying algorithm, k nearest neighbors (k-NN), is
simpler to compute than most other classification methods. The
computational complexity has a linear variation with the number
of considered images.

In [6], reranking is applied on video search results. Initial text
search results are reranked using multimodal pair-wise similarity.
The reranking problem is formulated using as a random walk by
building a context graph. More recently, in [10], reranking is seen
as a global optimization problem within a Bayesian framework by
maximising the ranking score using visual similarity features
(global color descriptor) between video shots and minimizing the
ranking distance based on the initial text-based ranking. The paper
is mainly focused on the likelihood optimisation by proposing two
distances between two ranked lists.

Though efficient, techniques like s-NN [9] or dynamic
programming [4] are computationally expensive and are hard to
apply under real time constraints. The use of an external class
which helps surfacing relevant images is central to our method.
To the best of our knowledge, such an approach was not used for
image reranking. Another particularity of our method is the
introduction of a measure that tries to evaluate if the visual
reranking will be efficient for a given query or not. A large
number of features can be used to describe visual content. Global
image descriptors are computed in [11], local features are
extracted in [7] or [9] and a combination of the two types of
features is used in [4]. Choosing the correct descriptors or
combining them are indisputably complex problems, but they fall
outside the scope of this paper.

3. IMAGE RERANKING

The introduction of content based image processing techniques in
Live Search and Google Image proves the feasibility of applying
such techniques to large volume of images. However, in order for
the search process to be computationally efficient, the indexing
process needs to be performed offline. We pre-index our images
using a global texture-color descriptor presented in [3]. Local
based approaches provide more robust information but are clearly
more expensive due to the high dimensionality of classical local
features and usually need nearest neighbors approximation to
perform points matching, like in [7] with an LSH approach used
to speed up the construction of the connectivity graph: for 1000
images (about 500,000 local features), 15 minutes were necessary
to compute the full similarity matrix. At query time, we select
only images associated to the textual query from the index and
calculate the similarity matrix dynamically. Such a process takes
0.8 s on average on a 3.0 GHz Intel processor.

Our reranking technique is based on the visual similarity between
image search results and on their dissimilarity to an external class.
The external class was created by launching a query with “test” in
Flickr and recuperating 300 images from different users. A more
judicious choice would be to manually build the external class so
as to maximize the diversity of its elements. If search results
contain an important number of irrelevant images [4], we presume
that i) noisy results are weakly related to relevant results and ii)
relevant results are visually related to other answers to the same
query. Images in the external class are added to query results in
order to find out which elements are close to the class itself and
far from the external class. To express the relatedness of each
image (noted imgi) to its class, we compare it to other query
results and to the external class using content description and
finally count the number of extraneous items that are found
among the k nearest neighbors of the image (extimg). A small
number of neighbors from the external class indicates that the
image is closely related to other query results.

The value of k is an important parameter of the reranking
procedure and we empirically fixed it at 10. In [7], the authors
make a distinction between visually heterogeneous and visually
homogeneous queries (Apple and Mona Lisa). Image reranking is
particularly interesting for queries with a large number of results
(hundreds or more); a value of k which is significantly smaller
than the number of results facilitates the discovery of different
aspects of the query. For instance, images of Apple as fruit and
Apple as a device are visually dissimilar and will tend to be
classified with images that correspond to the same sense of the
term. The reranked list of results will propose images with small
extimgi firstly, because they are well linked to the class and are
likely to be relevant. Clearly, a value of k = 10 will determine a lot
of equal extimgi scores; thus, in order to differentiate between
images with such scores, we introduce a second score intimgi,
which represents the cumulated sum of visual distances between
the image and the 5 nearest neighbors from the class. At equal
extimgi, images with small intimgi will be presented firstly. The
authors of [4] and [12] note that visual reranking techniques, such
as ours, tend to generate results with rather reduced diversity.
Since the similarity matrix between the images associated to a
query is already computed, we may use it in order to diversify
results. In order to ensure that diversified results will be chosen
among well linked images, we retain only the best 30% reranked
elements (which are more likely to be relevant than other images)
and try to find diversified items among them. Once we fixed the
number of images the system will finally present to the user, the
diversification process is iterated until enough images are
retained. We build a list of diversified results by adding new
elements to the list whenever these new images are different
enough from images that were already selected. To express
difference, we count the number of nearest neighbors of the new
image that are not nearest neighbors of selected images and use it
as threshold. The value of the threshold varies from 1 to 11 and
this variation defines an acceptability criterion that is more and
more relaxed. The process stops when there are enough elements
in the list of diversified results. This list includes 20 elements, a
number which roughly corresponds to the number of images on a
Web search engine results page. The complexity of the
diversification is equal to the product between the size of the list
and the number that represents the 30% best ranked results. For a
results set containing 300 images, the diversification takes around
one second on a 1.6GHz processor and this without any focus on
algorithmic optimization.



To characterize the visual coherence (viscor) of a query, we
average extimgi for the N b%st ranked images associated to a query:

viscor = + Z;EXtimgl @)
i

Small values of viscor indicate that the query is visually coherent
and that the visual reranking is likely to be successful. Our notion
of visual coherence is different from the binary separation of
queries in visually homogeneous and heterogeneous proposed in
[7]. For instance, a query with Europe has a low visual coherence
and corresponds to a heterogeneous query as defined in [7]. A
query with Monet paintings is heterogeneous according to [7] but
has a good visual coherence because our k-NN algorithm
stimulates the discovery of local regularities (here individual
paintings).

4. EVALUATION

Our reranking technique is evaluated on a diversified test dataset
comprising 210 concepts which were illustrated with Exalead
images [5]. Queries were selected by Exalead according to the
following criteria: i) frequency—queries should be chosen among
the most frequent queries; ii) diversity—queries should treat a large
range of the target domain (geographic entities, celebrities’
names, artefacts...); iii) visual coverage—this criterion is related to
visual coherence. Examples of concepts in the database include:
airplane, Eiffel Tower, crowd or Bjork. Up to 300 Exalead images
were retained for each query.

The effects of the reranking on results precision and diversity
were analyzed at a query level in a user study with 22 participants.
Then, we performed a smaller scale precision evaluation where
three assessors evaluated the P@10 for the original, the reranked
and the diversified results. Finally, we reused results of the
precision test to assess the utility of viscor (i.e. the visual
coherence measure), by means of a threshold on reranking results.

4.1 Pertinence vs. Diversity

In our user study the participants were asked to compare the
accuracy and the diversity of the results for Exalead images, for
the visual reranking technique and for the visual reranking plus
diversification. Participants were contacted via e-mail; the
participation was voluntary. In order not to overload participants,
we asked them to evaluate at most 30 queries. The test dataset was
split in seven equal parts; participants had to deal with different
parts of the dataset. Since the queries in the dataset were
diversified, it was possible that some of them were unknown to
participants and these last were instructed to assess only queries
they knew well enough. Each query was presented on a distinct
page; the top 12 results for each method were displayed on
separated columns. To avoid the formation of evaluation patterns,
the results columns on different pages were presented in a
different order. Participants were asked to evaluate global
accuracy and diversity on a scale ranging from 0 (bad quality) to 4
(very good quality) for both query and each retrieval method. The
accuracy of results for visually reranked results is significantly
higher compared to “Exalead” accuracy (2.94 vs. 2.57); but the
results diversity is smaller (2.02 vs. 2.84). To test statistical
significance of results difference between “Exalead” and reranked
results, we performed a paired T-test (with p < 0.05) and the result
(0.00257) shows that the two distributions are statistically
different. Values for “Exalead” and “Rerank” in table 1 confirm
that visual reranking is efficient in surfacing relevant elements but
hurts results diversity. As for results after diversification, the

average accuracy is 2.74, compared to 2.57 for “Exalead”. The
result of the T-test for accuracy in this case (0.1342) is clearly less
convincing but the accuracy gain is obtained with little diversity
loss (2.76 vs. 2.84). The diversification function has its
acceptability parameter set up to a limit case and with a relaxation
of this parameter, it is easy to obtain performances ranging from
“Rerank+Diversification” to “Rerank” (table 1).

Table 1. Accuracy and diversity for the three tested
techniques averaged on a panel of 22 participants. The scale is
from 0 (bad) to 4 (good quality results).

Method
Exalead | Rerank Rerank+Diversification
Accuracy 257 2.94 2.74
Diversity 2.84 2.02 2.76

The evaluation of image search results is a subjective and context
dependant task. In our test, we also noted important variations
between the participants. Accuracy varies between 1.87 and 3.21
for “Exalead”, between 2.31 and 3.68 for “Rerank” and between
2.125 and 3.43 for “Rerank+Diversification”. When considering
accuracy, all users preferred Rerank to Exalead and only 5 users
out of 22 preferred “Exalead” to “Rerank+Diversification”. Visual
reranking seems to be preferred to a classical keyword-based
approach by a large majority of the users. A results example is
presented in figure 1.

4.2 Precision Evaluation

The user study focused on a global characterization of answers
sets; but we also wanted to assess the precision at 10 (P@10) for
all the three methods. To do this, we selected 60 queries from the
test dataset and computed the P@10 for each query.

Table 2. P@10 for a sample of 60 queries and three users.

P@10
Exalead | Rerank Rerank+Diversification
User 1 0.628 0.693 0.615
User 2 0.671 0.735 0.676
User 3 0.713 0.807 0.747

In table 2, precision at 10 for “Exalead” varies between 0.628 and
0.713 and between 0.693 and 0.807 for “Rerank”. The performed

T-tests show statistically significant differences between “Rerank”
and “Exalead” for the three users. All participants ranked the three
methods in the order they have also done for the global
evaluation: “Rerank” scores best followed by
“Rerank+Diversified” for User 2 and User 3 and by “Exalead” for
User 1. These concordant results indicate that there is a
correlation between the global assessment of results quality and
the detailed assessment using P@10. Globally, P@10 results
confirm the global quality evaluation and show that the highest
accuracy is  obtained for “Rerank”, followed by
“Rerank+Diversified” and “Exalead”.

4.3 Role of Visual Coherence

We hypothesize that it is worth reranking the results for a given
query only if its associated visual coherence is sufficiently big
(small value of viscor defined in equation 1). We use viscor as a



threshold to decide if a query should be reformulated or not and
present accuracy results for viscor varying from 0.1 to 7, with a
step of 0.1. The use of viscor to decide which queries should be
reranked introduces a slight improvement of results (0.1 for all
three participants with a threshold value around 2). To confirm the
results reported here, the utility of viscor should be evaluated on
larger scale query samples; and, of course, with more participants.

5. CONCLUSION

We introduced an image reranking method that relies on the use
of an external class in order to surface relevant images. The
method improves results accuracy but hurts diversity and a
diversification function was introduced as a compromise. We also
defined a visual coherence measure and used it to evaluate if
reranking is likely to improve results for a particular query or not.
Preliminary tests show that this measure improves results over the
use of visual reranking for all queries. Our reranking method is
generic, fast and easy to integrate in existing Web image search
architectures.

We currently investigate the introduction of other content
descriptors in the reranking framework, focusing on the use of the
visual coherence measure for automatically selecting the best
descriptor (or combination of descriptors) for a query. We will
also compare our approach with techniques such as VisualRank.
Finally, we will investigate the effect of constructing the external
class manually and the performances of the method when
retaining more than 300 images per query.
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Figure 1. Results for Eiffel Tower using Exalead, the Reranking procedure and the Reranking+diversification procedure.



