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Introduction

Classically two-phase flow modeling has been addressed with reduced-order models because generally, even in modern times, the cost of performing high-fidelity simulations is prohibitive for configuration even mildly more complex than academic benchmark cases. A classical work on the subject is [START_REF] Ishii | Two-Fluid Model and Hydrodynamic Constitutive Relations[END_REF] where the multiphase flow equations are derived through an averaging process performed on the instantaneous phase flow equations. Another important result in the frame of two-phase flow modeling is presented in [START_REF] Baer | A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials[END_REF], where the entropy inequality is enforced on the equations system providing a problem that is mathematically well-posed in the context of simulation of solid propellants combustion. [START_REF] Gavrilyuk | A New Form of Governing Equations of Fluids Arising from Hamilton's Principle[END_REF] rediscover the variational approach to derive models for two-phase flow sim-ulation. In [START_REF] Baer | A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials[END_REF], the procedure to derive equations does not explicitly highlight the convective part of the problem w.r.t. the dissipative part as it's done in [START_REF] Gavrilyuk | A New Form of Governing Equations of Fluids Arising from Hamilton's Principle[END_REF] and [START_REF] Drui | A Hierarchy of Simple Hyperbolic Two-Fluid Models for Bubbly Flows[END_REF]. In particular, in the work of Drui et al., a hierarchy of two-phase flow models is retrieved applying a variational approach that clearly provides as outcome the convective part of the system. The dissipative part is then retrieved again enforcing the entropy inequality, clearly depicting the roles of the different parts composing the system. In [START_REF] Drui | A Hierarchy of Simple Hyperbolic Two-Fluid Models for Bubbly Flows[END_REF], an energy term responsible for the pulsation of bubbles in the unresolved scale (subscale energy term) is proposed. In these modeling efforts, geometrical configuration of the interface between the two phases is generally described only through the volume fraction, while richer approaches could be beneficial to simulation fidelity. A first work on the matter has been proposed by [START_REF] Pope | The Evolution of Surfaces in Turbulence[END_REF] and [START_REF] Drew | Evolution of Geometric Statistics[END_REF], where governing equations for geometrical parameters are given in the context of flame front propagation. Moreover [START_REF] Essadki | Statistical Modeling of the Gas-Liquid Interface Using Geometrical Variables: Toward a Unified Description of the Disperse and Separated Phase Flows[END_REF] have shown that intrinsic topological relation as the Gauss-Bonnet theorem can be used to rely different regimes in a two-phase flow system (with particular interest to injector systems) allowing the connection between the Surface Density Function (SDF), i.e. a statistical description locally to the resolved interface, to the Number Density Function (NDF) in the disperse-phase region of an injection system. A first example of a reduced model for two-phase flows that contains additional geometrical contributions is reported in [START_REF] Cordesse | Derivation of a Two-Phase Flow Model with Two-Scale Kinematics, Geometric Variables and Surface Tension Using Variational Calculus[END_REF], where the Least Action Principle (LAP) is used to obtain a set of equations that include a macroscopic term and a microscopic (subscale) term linked to surface tension. Most of the times introducing additional richness to the geometrical description of the interface brings unclosed terms that need closure, the work described in this paper is motivated by the need of developing such closure. The characterization of 3D objects in terms of geometrical features in high-fidelity simulations is not new in literature, even though, at the best of our knowledge, we did not found other studies directly applied to injections problems. Mean and Gauss curvatures are not the only way to parameterize the phase space of interest, in facts [START_REF] Lewiner | Efficient Implementation of Marching Cubes' Cases with Topological Guarantees[END_REF] introduces two non-linear functions of the curvatures above mentioned, Curvedness and Shape Index, that are then used in Bermejo-Moreno and Pullin (2008) and [START_REF] Bermejo-Moreno | Geometry of Enstrophy and Dissipation, Grid Resolution Effects and Proximity Issues in Turbulence[END_REF] to provide a throughout analysis and characterization of objects within turbulent flow. In [START_REF] Leung | Geometry and Interaction of Structures in Homogeneous Isotropic Turbulence[END_REF] Minkowski functionals are used instead to perform a similar analysis. [START_REF] Dopazo | Strain, Rotation and Curvature of Non-Material Propagating Iso-Scalar Surfaces in Homogeneous Turbulence[END_REF] track iso-surfaces in homogeneous turbulence also in terms of curvature value. The prominent flow contributions to the flame curvature generation are highlighted in [START_REF] Cifuentes | Analysis of Flame Curvature Evolution in a Turbulent Premixed Bluff Body Burner[END_REF] within the context of the combustion in a bluff body burner.

In this study we propose the statistical characterization of two canonical objects of which analytical expression for the curvatures are available (a sphere and an ellipsoid) in order to assess the robustness and reliability of the computational strategy. We then study the Direct Numerical Simulation (DNS) simulation of two droplets colliding against each other in terms of geometrical properties. In section 2 we present the numerical algorithms needed to compute curvature values no the discrete surface triangulation: we present a way of computing these values as 1-ring average values as proposed by [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF]. In section 3 then we analyze the evolution of the geometrical statistical maps while the simulation progresses in order to catch interesting correlations or patterns that could be useful to formulate closures for unknown terms or to enrich existent CFD models and we furthermore clarify how the algorithms behave in term of intrinsic constraints preservation. Section 4 will be reserved to our final remarks. 

Geometrical properties as 1-ring averaged values

In this section we describe the numerical strategies used to estimate the geometrical properties on a triangulated surface. The triangulated surface is obtained applying a contouring procedure [START_REF] Schroeder | Flying Edges: A High-Performance Scalable Isocontouring Algorithm[END_REF]) to the initial level-set that is available on the entire volume. The DNS simulations on which we apply these estimations are performed using the ARCHER code from the CORIA lab [START_REF] Ménard | Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-up of a Liquid Jet[END_REF]. The volumetric level-set field is given on a regular uniform rectangular grid as the one shown in the slice of fig. 1. We must note that the quality of the estimations are influenced not only by the quality of the strategy chosen to approximate the topological parameters, but also on the quality of the triangulation. Even though the Marching Cubes (MC) algorithm (with its variants as the Flying Edges (FE) algorithm used here) is a well-established method to obtain isolines of a field in a volume, there exist also more advanced revisions [START_REF] Lewiner | Efficient Implementation of Marching Cubes' Cases with Topological Guarantees[END_REF]) of the MC algorithm that ensure additional topological guarantees that could improve the initial estimates for the needed quantities.

The algorithm presented in this section is based on [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF]. The idea is to approximate the value of the mean curvature H and the Gauss curvature G on a vertex Figure 3: A mixed for a general case where one of the triangles is obtuse. The light gray area is the 1-ring neighbourhood and the dark gray area is actually A mixed of the triangulated surface with the average value computed around the 1-ring neighbourhood of said vertex. The 1-ring neighbourhood of a point x i is the region included in the set of points x j that are directly connected to x i , fig. 2 shows a graphical representation. The other quantities are derived from H and G. This strategy of computing geometrical properties has been implemented in a GPL-licensed library called Mercur(v)e (Di Battista ( 2018)).

In order to compute the mean curvature value, the algorithm leverages a local to the 1-ring neighbourhood discretization of the Laplace-Beltrami (LB) operator whose continuous expression is reported in eq. (1).

LB(x) = 2H(x) n(x) = K(x) (1) 
The LB operator can be approximated on a triangulated surface via eq. ( 2).

• K (x i ) = 1 2A mixed 1-ring j (cot α ij + cot β ij ) (x i -x j ) (2) With •
• we denote the discrete estimation of a certain quantity on the mesh averaged around the 1-ring. Once the discrete LB has been computed, the scalar value of the mean curvature is simply the half of the norm of the LB vector:

• H = 1 2 • K (3)
A mixed is the equivalent 1-ring area: it is equal to the Voronoi region area if all the triangles that compose the 1-ring are non-obtuse, otherwise is the region whose perimeter is given by all the circumcenters of the non-obtuse triangles and the midpoints of the edges opposed to the obtuse angles for the triangles that are obtuse. See fig. 3 for clarity. The actual algorithm to compute A mixed is given in [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF],

and it is reported in algorithm 1 for reference. What is interesting is to note that the area for a Voronoi region (i.e. the area of the polygon given by all the circumcenters of the triangles composing the 1-ring, all of them being non-obtuse) is given by eq. ( 4), where the (cot α ij + cot β ij ) term can be reused successively in eq. ( 2), saving up on computational cost.

A voronoi = 1 8 1-ring j (cot α ij + cot β ij ) |x i -x j | 2 (4)
Algorithm 1 Algorithm to compute the mixed area 1: procedure MIXEDAREA(x i ) We compute the A mixed on the 1-ring of x i 2:

A mixed = 0

3:

for T in ONERING(x i ) do For each triangle composing the 1-ring 4:

x i , x ij , x ik ← ANGLES(T )
x ij and x ik are the 1-ring points connected to x i 5:

A ←AREA(T ) 6: if cot x ij > 0 or cot x ik > 0 then 7: A mixed += A/4 8: else if cot x i > 0 then 9: A mixed += A/2 10: else 11: A mixed += 1 8 |x i -x ik | 2 cot x ij + |x i -x ij | 2 cot x ik
In order to compute the value of the Gauss curvature G we can just rely on the definition of G for a geodesic polygon:

Definition 1 given a geodesic polygon close to a point x i of area A, the product of the Gauss curvature times the area of the polygon is equal to 2π minus the defect of the exterior angles k of the polygon

G = 1 A 2π - k k (5)
Since for the triangulation of a surface the 1-ring neighbourhood of a point x i is actually a special case of a geodesic polygon for which the edges are straight lines instead of geodesics, the same relation can be recasted for the internal angles θ j , as shown in eq. ( 6).

• G = 1 A mixed   2π - 1-ring j θ j   (6)
Once the mean and Gauss curvature are calculated, the other typical differential geometry parameters can be retrieved from the values of H and G. For example the principal curvatures k 1 and k 2 are computed as follows:

k 1 (x i ) = • H (x i ) + • ∆ (x) (7) k 2 (x i ) = • H (x i ) - • ∆ (x) (8)
As we will see later in section 3, this strategy allows to provide estimates on the triangulation of 3D objects that are quite smooth w.r.t. to other strategies. A problem that arises, unfortunately, is linked to the fact that H and G are calculated independently one from the other. That means in particular that ∆ = H 2 -G, that in the continuous case is always ≥ 0, in the discrete case can be < 0. This problem is mentioned in [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF] to be an "extremely rare occurrence", while in our computations this happens quite often.

Results

In this section we present some results obtained exploiting the numerical strategies to compute geometrical parameters that are described in section 2. First of all in section 3.1 we benchmark the accuracy and convergence rate of the methods on some canonical objects for which the expressions of the curvatures in Cartesian coordinates are available. These 3D objects are generated using superquadrics primitive from VTK library [START_REF] Schroeder | The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics[END_REF]). We then apply the computation to a DNS and we compute an areaweighted Probability Density Function (PDF) to highlight interesting footprints in the H -G phase space of the topological objects produced at each simulation time step.

Validation on canonical 3D objects

In order to assess the validity and reliability of the algorithm we tested the curvatures computation on a sphere of radius R and on an ellipsoid of semi-axes a, b, c respectively for which analytical expression of curvatures in Cartesian coordinates are available analytically (eqs. ( 9) and (10), [START_REF] Bektas | Curvature of the Ellipsoid with Cartesian Coordinates[END_REF]).

G sphere (x) = 1/R 2 H sphere (x) = 1/R (9) G ell (x) = 1 abc x 2 a 4 + y 2 b 4 + z 2 c 4 2 H ell (x) = x 2 + y 2 + z 2 -a 2 -b 2 -c 2 2 (abc) 2 x 2 a 4 + y 2 b 4 + z 2 c 4 3 2 (10) 
The 3D objects are generated internally without any contouring procedure in order to provide high-quality triangulation w.r.t. MC-contoured level-sets (as generally done for full DNS), with the idea of separating effects due to the calculation of curvatures from the ones associated to triangulation quality. Two examples of triangulated objects are shown in fig. 4. In fig. 5a and fig. 5b we display the convergence rate for the two objects at increasing number of points. It is possible to notice that for both objects the algorithm computes the values of the two curvatures with reasonable precision and with a stable convergence rate. It is interesting to note how the convergence plot has a minimum around 10 5 points for both cases. We will show that the limit is related to float arithmetic bounds associated to very small cells that progressively start to appear on the object near the poles -this behaviour is associated to the way VTK library uses to build superquadrics surfaces -, caused by the trigonometric functions (notably the cot(α)) that are used to approximate 1-ring averaged H and G in [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF]. In addition, the error level for H and G for the ellipsoid case (fig. 5b) are different. This is due to the fact that the two parameters are estimated independently, without any guarantee on the coupled committed error. For this same reason, as we introduced in section 2, the algorithm produces some points for which ∆ 0; fig. 7 shows the percentage of outliers respectively for the sphere (7a) and the ellipsoid (7b). In the first case, outliers are a big part of the total points, spanning from ∼ 23% to ∼ 16% of the total, while for the ellipsoid outliers are way less (< 2% for most of the resolutions). This behaviour is linked to the fact that for a sphere, on each point of the surface, ∆ = 0 exactly, hence all the analysis is played along the boundary of the admissible curvature values, and the algorithm is not able to cope with this constraint. Nonetheless in fig. 6 an area-weighted error distribution of the relative er- In order to have a better understanding on the error behaviour and the influence of the cell size, we computed two bi-variate PDFs, with and without area-weighting, that are reported in fig. 8 and fig. 9. The area-weighting means that each sample of the distribution is accounted for in the PDF taking into account its associated cumulative 1-ring area in such a way that small triangles are less important in w.r.t. big triangles. Figure 6 is indeed an integrated version of the PDF shown in figs. 8 and 9.

P(E) =

A P(A, E) dA (11)
The zone for which the error E is negative are the zones of points that do not respect the ∆ ≥ 0 constraint. The bigger contributions to the error are given by points that have a relatively big 1-ring area associated to them and, hence, a less precise approximation of the curvature values. In addition, these "big" 1-rings are associated to outliers, since the associated error is always negative. It is worth to note, in addition, that increasing the resolution of the object and consequently reducing the area of the smallest triangles, triggers the generation of error associated to the loss of precision of floating point arithmetic: as we can see, in fig. 8, that is for a coarsely resolved sphere, the error distribution in the space (A, E) is substantially a one-dimensional sub-manifold, for all the surface areas, while for fig. 9, in the zones with very small triangles, the error is populated in all directions, that is with a different propagation mechanism than the one associated to discretization accuracy. This error associated to floating point precision loss explains the rising, after a certain resolution scale, of the L1-error for both curvatures that is shown in fig. 5a: small cells become too small to compute the curvature estimation and they add up to the global error.

Computation on DNS

Once we assessed the capabilities of our strategy on welltriangulated objects, we chose to perform the curvatures estimation on a representative two-phase flow benchmark case: the collision of two droplets. Two droplets with a radius respectively of 130 µm and 200 µm are configured at the beginning of the simulation with a negative relative velocity one w.r.t. to the other. The two spherical objects, then, start to approach until they collide causing surface deformation and topology changes. The simulation of the droplets collision is a DNS performed using the ARCHER code [START_REF] Ménard | Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-up of a Liquid Jet[END_REF]. In order to investigate the influence of the mesh resolution on the topological configurations we used three different mesh refinement levels: a coarse configuration with 128 × 128 × 256 cells, a medium case with 256 × 256 × 512 cells and a fine case with 512 × 512 × 1024 cells. We characterize the footprint of each topological object with an areabased PDF in the phase space H -G, P(H, G): A(H, G) is the area associated to a point in the phase space and it is used as a weighting function for the PDF. This PDF is computed on the data after filtering out outliers for which ∆ < 0 

(H- √ G) √ G Area Weighted point density sphere -4 -2 0 2 4 6 •10 -5 0 2 4 6 8 •10 -2 (H- √ G) √ G
Area-weighted point density sphere N being N the total number of points in the surface. The corresponding values of H, G are normalized with the equivalent curvatures defined as in eq. ( 12).

R eq = R 1 + R 2 2 H eq = 1 R eq G eq = 1 R 2 eq ( 12 
)
We performed the outliers statistics analysis also in the droplets collision case. In fig. 10 we can appreciate again how outliers are more probably produced when the topological objects resemble a sphere, in facts at the beginning of the simulation, when we have two exact spheres in the domain, the outliers are large in absolute terms, even if for the finest case they are percentually less than the other cases. Once the objects is deformed after the collision, the outliers percentage steeply drops and stays averagely the same along the simulation. It's interesting to highlight how the number of outliers is not influenced by the triangulation refinement level but it's quite exclusively associated to the intrinsic topological configuration of the object: more the object is closer to a sphere, higher the number of outliers. We underline that, at least in this specific case, the outliers distribution is not really improved going from a coarse triangulation to a fine one.

A general remark we can provide is that the topological configurations at the same time-step are strongly influenced by the mesh refinement level: in multiphase flow, differently from what it happens in single-phase flow where a minimal scale can be defined -i.e. the Kolmogorov scale -, we do not have a minimal scale that, once reached with the numerical simulation, allows us to resolve everything with a DNS. That means we are always going to commit some sort of error that lies in the fact we are cutting artificially the resolution (due to computational resources) and for this reason we will be always under-resolving something at a certain scale.

In addition to that the physics is strongly influenced by this (for example in the simulation at hands, producing a different number of satellite droplets depending on the case resolution). We can infer this for example comparing fig. 13b with figs. 14a and 14b: more the case is refined, smoother is the PDF that is extracted from the dataset. This behaviour can be related in this specific case to the precision which the surface tension, that depends on the mean curvature, is computed with. The more the mesh is resolved, the more accurate is the surface tension force, directly influencing the topological configuration. 

Conclusions

In this work we presented a framework to exploit geometrical information in order to gain some insight on two-phase flow behavior through the post-processing of DNS. We have shown how the algorithm of [START_REF] Meyer | Discrete Differential-Geometry Operators for Triangulated 2-Manifolds[END_REF] fails to ensure ∆ ≥ 0 for objects that are close in slope to a sphere and in addition it cannot be used for cell sizes that are too small since float arithmetic problems arise. We performed the analysis on a real DNS simulation at three different resolutions extracting topological maps that emphasize the different physical behaviour associated to a different surface tension estimation, or in general different physical reproducibility due to the different resolution of the computational meshes. In [START_REF] Essadki | Statistical Modeling of the Gas-Liquid Interface Using Geometrical Variables: Toward a Unified Description of the Disperse and Separated Phase Flows[END_REF] an averaging kernel that preserves Gauss-Bonnet theorem is presented: studying the in- fluence of that averaging process on the outliers and phasespace statistics would be very interesting in order to achieve a more robust strategy w.r.t. curvature changes during topological changes, since the average would take care of bounding the maximum values of curvature in these pathological cases. A preliminary implementation in Python was already present in the work of Essadki et al., it was used to compute NDFs on DNS cases exploiting the Gauss-Bonnet preserving feature together with the averaging process that mitigates the effect of small or misshaped triangles resulting from the isocontouring MC procedure. We plan to implement the same averaging kernel in Mercur(v)e as an indispensable tool to perform a complete analysis of injection cases [START_REF] Blanchard | Modélisation et simulation multiéchelles de l'atomisation d'une nappe liquide cisaillée[END_REF] and [START_REF] Vaudor | A Consistent Mass and Momentum Flux Computation Method for Two Phase Flows. Application to Atomization Process[END_REF]) in terms of topological maps and number statistics in order to gather enough insight to develop closure terms for the reduced models available nowadays. As an additional future perspective, comparing other algorithm to estimate curvatures on discrete surface would allow to choose the most suitable strategy for the specific interfaces that are encountered in injection systems, in terms of robustness against topological changes and performance.

Figure 1 :Figure 2 :

 12 Figure 1: A central slice at τ = 0 of the volumetric levelset field on a uniform grid. The black lines are the 0-isoline of the level-set function
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 678910 Figure 6: Error distribution for the sphere outliers. (6a) coarsest resolution. (6b) finest resolution
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 11 Figure 11: Beginning of the simulation (τ = 0). The color mapping for the 3D objects is on the Gauss curvature G
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 121314 Figure12: (τ = 0.3 × 10 -3 ). The color mapping for the 3D objects is on the Gauss curvature G
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