Tunable contact angle hysteresis by micropatterning surfaces

Damien Debuisson, Vincent Senez, S. Arscott

To cite this version:

Damien Debuisson, Vincent Senez, S. Arscott. Tunable contact angle hysteresis by micropatterning surfaces. Applied Physics Letters, 2011, 98 (18), pp.184101. 10.1063/1.3576921 . hal-02345769

HAL Id: hal-02345769
 https://hal.science/hal-02345769

Submitted on 27 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Tunable contact angle hysteresis by micropatterning surfaces

Cite as: Appl. Phys. Lett. 98, 184101 (2011); https://doi.org/10.1063/1.3576921
Submitted: 06 January 2011 • Accepted: 20 March 2011 • Published Online: 03 May 2011

Damien Debuisson, Vincent Senez and Steve Arscott

ARTICLES YOU MAY BE INTERESTED IN
Wetting on smooth micropatterned defects
Applied Physics Letters 99, 184101 (2011); https://doi.org/10.1063/1.3657140
A model for contact angle hysteresis
The Journal of Chemical Physics 81, 552 (1984); https://doi.org/10.1063/1.447337
How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage
Applied Physics Letters 92, 244108 (2008); https://doi.org/10.1063/1.2945803

Publishing

Tunable contact angle hysteresis by micropatterning surfaces

Damien Debuisson, Vincent Senez, and Steve Arscott ${ }^{\text {a }}{ }^{\text {) }}$
Institut d'Electronique, de Microélectronique, et de Nanotechnologie (IEMN), CNRS UMR-8520, University of Lille, Cite Scientifique, Villeneuve d'Ascq 59652, France

(Received 6 January 2011; accepted 20 March 2011; published online 3 May 2011)
Lithography is used to form circular micropatterns which govern the evaporation of a water droplet. The surfaces are composed of concentric circular defects having a smooth indentation profile. When a droplet encounters a micropattern, evaporation occurs with distinct discontinuities in the droplet wetting contact angle and base radius. The addition of gaps into the patterns enables modification of the contact angle hysteresis; the receding angle of fluorocarbon coated SU-8 can be tuned between 34.6° and 89.1° and that of SU-8 from 5.6° to 43.3° depending on the gap length. A model is developed which accurately predicts the observed behavior. © 2011 American Institute of Physics. [doi:10.1063/1.3576921]

Wetting ${ }^{1}$ is of great scientific interest and has numerous practical applications ranging from the development of new textiles, ${ }^{2}$ self-cleaning surfaces, ${ }^{3}$ and nanotechnology. ${ }^{4}$ Engineering these requires an understanding and control of contact angle hysteresis (CAH), ${ }^{5-8}$ i.e., the difference between the advancing contact angle and the receding contact angle of a moving contact line. Here, we study homogenous surfaces containing smooth indentation defects formed by micropatterning a photoresist to control the CAH.

Consider Fig. 1(a) which shows a droplet pinned to a circular "defect"5 having a radius r_{d} which contains a gap having a lateral length (x direction) G. Figures 1(b) and 1(c) show side-views of the droplet cut along $B B^{\prime}$ and $C C^{\prime} . \theta_{\mathrm{rG}}^{*}$ is the contact angle when the droplet depins from the circular defect at points p and p^{\prime}; we call this the effective receding contact angle for a given G; this is the minimum contact angle a droplet can have on such defects. θ_{r} is the receding contact angle of the droplet on a surface without a circular defect. As we will see, θ_{rG}^{*} can vary between $\theta_{\mathrm{r}}\left(G=2 \pi r_{\mathrm{d}}\right)$ and $\theta_{\mathrm{r}}^{*}(G=0) .{ }^{9}$ Consider the small meniscus formed in the locality of the gap; we have two radii of curvatures: r_{2} and r_{3}, with r_{1} being the radius of curvature of the droplet [Fig. 1(b)]. The component of the force in the y-direction F_{y} is given by

$$
\begin{equation*}
F_{y}=\gamma \int_{\Gamma} \mathrm{d} l \mathbf{e}_{y} \cdot \mathbf{n} \cos \theta \tag{1}
\end{equation*}
$$

where γ is the liquid-vapor surface energy, θ is the local contact angle, \mathbf{n} is the unit vector normal to the contact line in the $x-y$ plane, \mathbf{e}_{y} is the unit vector pointing in the y-direction, l is the arc length parameter of the contact line, and Γ is the contact line which is composed of: (i) a defect pinned portion Γ_{d} and (ii) a gap associated portion Γ_{G}. When the droplet depins: $\theta=\theta_{\mathrm{rG}}^{*}$ along Γ_{d} and $\theta=\theta_{\mathrm{r}}$ along Γ_{G}. By solving Eq. (1) over the contact line Γ we have

$$
\begin{equation*}
F_{y}=\gamma G\left(\cos \theta_{\mathrm{rG}}^{*}-\cos \theta_{\mathrm{r}}\right) \tag{2}
\end{equation*}
$$

by assuming that the depinning of the liquid is independent of G we have a force f_{d} associated with the defect. ${ }^{5}$ Thus, the

[^0]effective receding contact angle (for a given G) can be written
\[

$$
\begin{equation*}
\theta_{\mathrm{rG}}^{*}=\cos ^{-1}\left(\frac{f_{\mathrm{d}}}{\gamma G}+\cos \theta_{\mathrm{r}}\right) \tag{3}
\end{equation*}
$$

\]

Note that Eq. (2) is a solution for an arbitrary shaped defect. We can now determine expressions for the radii of curvature of the meniscus. Near to the gap the liquid forms a small meniscus of radius r (in the $x-y$ plane). This radius is the intersection of the sphere of radius r_{3} and the $x-y$ plane. Note that r_{1} and r_{2} are positive while r and r_{3} are negative. The Young-Laplace equation ${ }^{10}$ allows us to write

$$
\begin{equation*}
\frac{2}{r_{1}}=\frac{1}{r_{2}}+\frac{1}{r_{3}} \tag{4}
\end{equation*}
$$

Thus, in terms of the parameters: $r, r_{\mathrm{d}}, \theta_{\mathrm{rG}}^{*}$, and θ_{r}, simple geometry can be employed to give the following:

$$
\begin{align*}
& r_{1}=\frac{r_{\mathrm{d}}}{\sin \theta_{\mathrm{rG}}^{*}}, \tag{5}\\
& r_{2}=\left(\frac{2 \sin \theta_{\mathrm{rG}}^{*}}{r_{\mathrm{d}}}-\frac{\sin \theta_{\mathrm{r}}}{r}\right)^{-1}, \tag{6}
\end{align*}
$$

FIG. 1. (Color online) (a) Top view of a droplet pinned to a circular shaped defect of radius r_{d} having a gap of lateral length G. (b) Cross-section of the same droplet along the $B B^{\prime}$ plane as indicated in (a). (c) Cross-section of the meniscus formed by the gap along the $C C^{\prime}$ plane as indicated in (a).

FIG. 2. Scanning electron microscopy image of the cross-section of a smooth trenchlike defect fabricated using photolithography of the photoresist SU-8.

$$
\begin{equation*}
r_{3}=\frac{r}{\sin \theta_{\mathrm{r}}} \tag{7}
\end{equation*}
$$

In order to test the above reasoning we have fabricated micropatterned smooth defects using lithographic methods. Practical control of CAH can be achieved mesa structures; ${ }^{7,8}$ here, we form smooth indentations into the surface. The photoresist SU-8 (Microchem, USA) was used to form circular trenchlike defects; SU-8 is very versatile for microfluidics. ${ }^{11}$ The micropatterned surfaces were fabricated on 3 in . diameter silicon wafers (Siltronix, France) using SU-8 2010. The photoresist was spin coated ($3300 \mathrm{rpm} / 1000 \mathrm{rpm} \mathrm{s}^{-1} / 30 \mathrm{~s}$) and prebaked ($95^{\circ} \mathrm{C}$ for 4 min) which resulted in a thickness of $9.56 \mu \mathrm{~m}(\pm 0.33 \mu \mathrm{~m})$. The micropatterns were defined using a single photomask; optimized lithography ${ }^{12}$ ($7.7 \mathrm{~s} / 10 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$) using a $1 \mu \mathrm{~m}$ linewidth caused Fresnel diffraction underneath the mask ${ }^{13}$ which results in the smooth trenchlike defects as show in Fig. 2. Once the SU-8 surfaces had been prepared a fluorocarbon layer (FC) (thickness $\sim 100 \mathrm{~nm}$) could be deposited using a $\mathrm{C}_{4} \mathrm{~F}_{8}$ plasma (STS Ltd., U.K.).

The contact angle measurements were performed using a drop shape analysis system DSA100 (Kruss, Germany). The experiments were performed in a class ISO $5 / 7$ cleanroom ($T=20^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C} ; R H=45 \% \pm 2 \%$). A single drop (vol $\sim 2 \mu \mathrm{l}$) of de-ionized water was placed over a micropattern using a pipette and allowed to evaporate (unforced).

If there are no gaps in the circles the receding contact angle of such a micropattern has an effective receding contact angle θ_{r}^{*} which depends on the profile of the indentation. ${ }^{9}$ It will be seen here that by adding gaps the value of θ_{r}^{*} can be modified. The concentric circles had a spacing D of 50 and $100 \mu \mathrm{~m}$ and gap length G which ranged from 20 to

FIG. 3. (Color online) Evolution of the droplet shape as a function of time (a) plan view for $\mathrm{H}_{2} \mathrm{O}$ droplet on $\mathrm{SU}-8$ coated with FC surface containing smooth trenchlike circular defects shown in Fig. 2. (Circle spacing D $=50 \mu \mathrm{~m}$, gap length $G=100 \mu \mathrm{~m}$). Effect of gap length on the CAH for (b) $D=100 \mu \mathrm{~m}, G=0$ and (c) $D=100 \mu \mathrm{~m}, G=50 \mu \mathrm{~m}$. (b) and (c) are an SU-8 surface smooth trenchlike circular defects.

FIG. 4. (Color online) Variation in droplet contact angle and base radius as a function of time for an evaporating droplet $\left(\mathrm{H}_{2} \mathrm{O}\right)$ on a micropatterned surface (SU-8 coated with FC with $D=50 \mu \mathrm{~m}$ and $G=20 \mu \mathrm{~m}$).
$200 \mu \mathrm{~m}$. In each pattern, the largest concentric circle had a diameter of 2 mm ; the capillary length ${ }^{10} \sqrt{\gamma / \rho g}$ of water $\left(\gamma=72.8 \mathrm{~mJ} \mathrm{~m}^{-2} \text { and } \rho=998.2 \mathrm{~kg} \mathrm{~m}^{-3}\right)^{14}$ is around 2.7 mm so gravity effects can be ignored in the interpretation of the results. In addition to testing the micropatterns with the gaps we measured the receding contact angle of water on the SU-8 surface used for the study $\left(43.3^{\circ} \pm 1.6^{\circ}\right)$ and the SU-8 coated with FC $\left(89.1^{\circ} \pm 2.5^{\circ}\right)$ and on a micropattern without

FIG. 5. (Color online) (a) Variation in the effective receding contact angle θ_{rG}^{*} of the droplet (squares $=\mathrm{H}_{2} \mathrm{O}$ on $\mathrm{SU}-8$ coated with FC , triangles $=\mathrm{H}_{2} \mathrm{O}$ on SU-8) as a function of gap length G for micropatterned surfaces containing smooth trenchlike defects shown in Fig. 2. The dashed line corresponds to the model [Eq. (3)] by fitting the average defect force f_{d} calculated from the measurements. (b) A plot of $\cos \theta_{\mathrm{rG}}^{*}-\cos \theta_{\mathrm{r}}$ vs the reciprocal of surface tension-gap length product γG. The dashed line represents a simple linear fit.

TABLE I. Summary of results for SU-8.

SU-8	Experimental			Calculated	
G	$\begin{gathered} \theta_{\mathrm{rG}}^{*} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} r_{1} \\ (\mu \mathrm{~m}) \end{gathered}$	$\stackrel{r}{(\mu \mathrm{~m})}$	$\begin{gathered} r_{2} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} r_{3} \\ (\mu \mathrm{~m}) \end{gathered}$
20	$24.2(\pm 1.1)$	1219.7	-16.8	23.6	-24.5
50	36.5($\pm 0.8)$	840.6	-75.7	87.4	-110.4
100	$39.3(\pm 0.4)$	789.4	-288.7	203.7	-421.0
200	$41.8(\pm 0.9)$	750.2	-291.0	199.1	-424.3

gaps, i.e., closed concentric circles SU-8 $\left(5.6^{\circ} \pm 1.3^{\circ}\right)$ and SU-8 coated with FC ($34.6^{\circ} \pm 3.4^{\circ}$).

The evolution of the droplet shape from above [Fig. 1(a)] and plan view [Fig. 1(b)] was recorded as a function of time as the droplet evaporated. At least ten measurements were conducted for each point and error bars are the standard deviation. Analysis of the images allowed us to extract the value of r at the moment of droplet depinning from the circular pattern initially at points p and p^{\prime} [Fig. 1(a)].

Figure 3 shows optical microscope images of the evolution of the water droplet shape (plan view) as a function of time ($\sim 80 \mathrm{~s}$). The micropattern here is concentric circles spaced at a distance equal to $50 \mu \mathrm{~m}$ and a gap equal to $100 \mu \mathrm{~m}$. The surface is SU-8 coated with 100 nm of FC. The recorded times between the images are 20 s for (i)-(iii) and 60 s between (iv) and (v). In contrast, the droplet depinning, see the transitions from (i) to (ii), (iii) to (iv), and (v) to (vi), occurs over a relatively short period in $<200 \mathrm{~ms}$). Figures 3(b) and 3(c) show the evolution of the droplet profile (side-view) as a function of time for two different values of G. As the droplet evaporates it becomes pinned on a circular defect with a meniscus forming around the gap. As the contact line moves down the trenchlike defect, the effective contact angle diminishes at constant base radius. ${ }^{9}$ At the moment of depinning, the droplet depins from the gap at points p and $p^{\prime}[$ Fig. 1(a)] and evaporates further to pin onto a smaller concentric circle, the process repeating itself until full evaporation of the water.

Figure 4 shows plots of the droplet contact angle and base radius as a function of time. The two well-known evaporation phases ${ }^{15}$ are visible indicated as A and B (Fig. 4). The first phase A corresponds to evaporation at constant droplet base radius with reducing contact angle while the second phase B corresponds to reducing droplet base radius at constant contact angle. These two phases are observed until the contact line portion Γ_{d} is entirely pinned to a single circle defect. Once the droplet is pinned, a phase C is observed, where the contact angle and the base radius of the droplet evolve in distinct jumps and steps, respectively, as the droplet pins to and depins from successive circular defects. Note that the phase ${ }^{15} B^{\prime}$ (Fig. 4) corresponding to the initial droplet depinning from a circle ($r_{\mathrm{d}}=0.5 \mathrm{~mm}$) finishes between two circular defects as the droplet depins at a larger contact angle than θ_{rG}^{*} due to a surface impurity. The relationship between the droplet base radius and the droplet contact angle in phase C has been given by the authors. ${ }^{9}$ Modeling of flat heterogeneous surfaces ${ }^{6}$ predicts contact angle jumps and a reduction in contact angle as the droplet size becomes small; both effects are observed here but on a chemically homogenous surface containing smooth defects.

TABLE II. Summary of results for SU-8 coated with FC.

SU-8+FC	Experimental			Calculated	
G	$\begin{gathered} \theta_{\mathrm{rG}}^{*} \\ (\mathrm{deg}) \end{gathered}$	$\begin{gathered} r_{1} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} r \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} r_{2} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} r_{3} \\ (\mu \mathrm{~m}) \end{gathered}$
20	$66.5(\pm 2.1)$	66.5	545.2	-14.9	14.1
50	$80.9(\pm 1.1)$	80.9	506.4	-87.3	64.9
100	85.1($\pm 0.4)$	85.1	501.8	-553.7	172.7
200	$87.0(\pm 1)$	87.0	500.7	1366.0	306.5

Figure 5(a) shows plots of θ_{rG}^{*} as a function of G for the two different surfaces measured (SU-8 and SU-8 coated with FC). Equation (3) is also plotted in Fig. 5(a) using the value of f_{d} extracted from the measurements and the value of θ_{r} measured on flat surfaces. The value of f_{d} was calculated from the data to be $534.4 \mathrm{nN} \pm 9.5 \mathrm{nN}$ and $283.7 \mathrm{nN} \pm 14.9 \mathrm{nN}$ for $\mathrm{SU}-8$ coated with FC and SU-8, respectively. As G increases then the value of θ_{rG}^{*} tends to θ_{r}. However, as the value of G diminishes clearly our model does not predict the value of θ_{r}^{*} for a circle having $G=0$; $5.6^{\circ} \pm 1.3^{\circ}$ in the case of $\mathrm{SU}-8$ and $34.6^{\circ} \pm 3.4^{\circ}$ in the case of SU-8 coated with FC. ${ }^{9}$ The physical reason for this is that the value of θ_{rG}^{*} cannot be smaller that the value measured on a closed concentric circle $(G=0)$. Thus in reality, θ_{rG}^{*} will follow the horizontal dashed lines (red and blue) [Fig. 5(a)]. In this way we are able to predict the minimum value of G which can have an influence on the value of θ_{rG}^{*}; this value is $9 \mu \mathrm{~m}$ for SU-8 coated with FC and $14.5 \mu \mathrm{~m}$ for SU-8, for the defect profile studied here. A plot of $\cos \theta_{\mathrm{rG}}^{*}-\cos \theta_{\mathrm{r}}$ versus $1 / \gamma G$ [Fig. 5(b)] reveals a straight line passing through the origin which is predicted by our model; a simple linear fit to the data yields a defect force f_{d} of 548 nN and 257 nN on SU-8 coated with FC and SU-8, respectively. Note that f_{d} is larger on SU-8 coated with FC than on SU-8 which is more hydrophilic. This is because f_{d} is linked to the CAH induced by a defect on the receding contact angle and not to the wettability. Thus, the origin of f_{d} has more complex causes, e.g., the surface roughness and the liquid micromeniscus behavior. ${ }^{5}$ By measuring the value of the meniscus radius r [Fig. 1(c)] at the moment of depinning and knowing the value of θ_{rG}^{*} one can calculate the values of the radii of curvature [Fig. 1(c)] at each value of G on a given surface (for $r_{\mathrm{d}}=0.5 \mathrm{~mm}$). Tables I and II present numerical results of the study.

[^1]
[^0]: ${ }^{\text {a) }}$ Electronic mail: steve.arscott@iemn.univ-lille1.fr.

[^1]: ${ }^{1}$ D. Quéré, Mater. Res. 38, 71 (2008).
 ${ }^{2}$ X. J. Feng and L. Jiang, Adv. Mater. (Weinheim, Ger.) 18, 3063 (2006).
 ${ }^{3}$ R. Blossey, Nature Mater. 2, 301 (2003).
 ${ }^{4}$ J. B. Hannon, S. Kodambaka, F. M. Ross, and R. M. Tromp, Nature (London) 440, 69 (2006).
 ${ }^{5}$ J. F. Joanny and P. G. De Gennes, J. Chem. Phys. 81, 552 (1984).
 ${ }^{6}$ H. Kusumaatmaja and J. M. Yeomans, Langmuir 23, 6019 (2007).
 ${ }^{7}$ M. Reyssat and D. Quéré, J. Phys. Chem. B 113, 3906 (2009).
 ${ }^{8}$ J. W. Krumpfer and T. J. McCarthy, Faraday Discuss. 146, 103 (2010).
 ${ }^{9}$ D. Debuisson, R. Dufour, V. Senez, and S. Arscott (unpublished).
 ${ }^{10}$ P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).
 ${ }^{11}$ J. Carlier, S. Arscott, V. Thomy, J. C. Fourier, F. Caron, J. C. Camart, C. Druon, and P. Tarbourier, J. Micromech. Microeng. 14, 619 (2004).
 ${ }^{12}$ M. Gaudet, J. C. Camart, L. Buchaillot, and S. Arscott, Appl. Phys. Lett. 88, 024107 (2006).
 ${ }^{13}$ Y. Cheng, C.-Y. Lin, D.-H. Wei, B. Loechel, and G. Gruetzner, J. Microelectromech. Syst. 8, 18 (1999).
 ${ }^{14}$ CRC Handbook of Chemistry and Physics, 69th ed., edited by R. C. Weast (CRC Press, Florida, USA, 1988).
 ${ }^{15}$ R. G. Picknett and R. Bexon, J. Colloid Interface Sci. 61, 336 (1977).

