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Abstract 1 

 2 

In plants, local adaptation across species range is frequent. Yet, much has to 3 

be discovered on its environmental drivers, the underlying functional traits and their 4 

molecular determinants. Genome scans are popular to uncover outlier loci potentially 5 

involved in the genetic architecture of local adaptation, however links between 6 

outliers and phenotypic variation are rarely addressed. Here we focused on adaptation 7 

of teosinte populations along two elevation gradients in Mexico that display 8 

continuous environmental changes at a short geographical scale. We used two 9 

common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of 10 

annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers 11 

as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed 12 

excess of allele differentiation between pairs of lowland and highland populations 13 

and/or correlation with environmental variables. Our results revealed that phenotypic 14 

differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation 15 

along the elevation gradient indicated that adaptation to altitude results from the 16 

assembly of multiple co-adapted traits into a complex syndrome: as elevation 17 

increases, plants flower earlier, produce less tillers, display lower stomata density and 18 

carry larger, longer and heavier grains. The proportion of outlier SNPs associating 19 

with phenotypic variation, however, largely depended on whether we considered a 20 

neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating 21 

that population stratification greatly affected our results. Finally, chromosomal 22 

inversions were enriched for both SNPs whose allele frequencies shifted along 23 

elevation as well as phenotypically-associated SNPs. Altogether, our results are 24 

consistent with the establishment of an altitudinal syndrome promoted by local 25 
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selective forces in teosinte populations in spite of detectable gene flow. Because 26 

elevation mimics climate change through space, SNPs that we found underlying 27 

phenotypic variation at adaptive traits may be relevant for future maize breeding.  28 

 29 

Keywords: spatially-varying selection; FST-scan; association mapping; altitudinal 30 

syndrome; pleiotropy; chromosomal inversions. 31 

 32 

Author summary  33 

Across their native range species encounter a diversity of habitats promoting local 34 

adaptation of geographically distributed populations. While local adaptation is 35 

widespread, much has yet to be discovered about the conditions of its emergence, the 36 

targeted traits, their molecular determinants and the underlying ecological drivers. 37 

Here we employed a reverse ecology approach, combining phenotypes and genotypes, 38 

to mine the determinants of local adaptation of teosinte populations distributed along 39 

two steep altitudinal gradients in Mexico. Evaluation of 11 populations in two 40 

common gardens located at mid-elevation pointed to adaptation via an altitudinal 41 

multivariate syndrome, in spite of gene flow. We scanned genomes to identify loci 42 

with allele frequencies shifts along elevation, a subset of which associated to trait 43 

variation. Because elevation mimics climate change through space, these 44 

polymorphisms may be relevant for future maize breeding.   45 
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Introduction 46 

 47 

 Local adaptation is key for the preservation of ecologically useful genetic 48 

variation [1]. The conditions for its emergence and maintenance have been the focus 49 

of a long-standing debate nourished by ample theoretical work [2-9]. On the one 50 

hand, spatially-varying selection promotes the evolution of local adaptation, provided 51 

that there is genetic diversity underlying the variance of fitness-related traits [10]. On 52 

the other hand, opposing forces such as neutral genetic drift, temporal fluctuations of 53 

natural selection, recurrent introduction of maladaptive alleles via migration and 54 

homogenizing gene flow may hamper local adaptation (reviewed in [11])�. Meta-55 

analyzes indicate that local adaptation is pervasive in plants, with evidence of native-56 

site fitness advantage in reciprocal transplants detected in 45% to 71% of populations 57 

[12, 13].  58 

While local adaptation is widespread, much has yet to be discovered about the 59 

traits affected by spatially-varying selection, their molecular determinants and the 60 

underlying ecological drivers [14]. Local adaptation is predicted to increase with 61 

phenotypic, genotypic and environmental divergence among populations [6, 15, 16]. 62 

Comparisons of the quantitative genetic divergence of a trait (QST) with the neutral 63 

genetic differentiation (FST) can provide hints on whether trait divergence is driven by 64 

spatially-divergent selection [17-20]. Striking examples of divergent selection include 65 

developmental rate in the common toad [21], drought and frost tolerance in alpine 66 

populations of the European silver fir [22], and traits related to plant phenology, size 67 

and floral display among populations of Helianthus species [23, 24]. These studies 68 

have reported covariation of physiological, morphological and/or life-history traits 69 

across environmental gradients which collectively define adaptive syndromes. Such 70 
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syndromes may result from several non-exclusive mechanisms: plastic responses, 71 

pleiotropy, non-adaptive genetic correlations among traits (constraints), and joint 72 

selection of traits encoded by different sets of genes resulting in adaptive correlations. 73 

In some cases, the latter mechanism may involve selection and rapid spread of 74 

chromosomal inversions that happen to capture multiple locally favored alleles [25] as 75 

exemplified in Mimulus guttatus [26]. While distinction between these mechanisms is 76 

key to decipher the evolvability of traits, empirical data on the genetic bases of 77 

correlated traits are currently lacking [27]. 78 

The genes mediating local adaptation are usually revealed by genomic regions 79 

harboring population-specific signatures of selection. These signatures include alleles 80 

displaying greater-than-expected differentiation among populations [28] and can be 81 

identified through FST-scans [29-35]. However, FST-scans and its derivative methods 82 

[28] suffer from a number of limitations, among them a high number of false positives 83 

(reviewed in [36, 37]) and the lack of power to detect true positives [38]. Despite 84 

these caveats, FST-outlier approaches have helped in the discovery of emblematic 85 

adaptive alleles such as those segregating at the EPAS1 locus in Tibetan human 86 

populations adapted to high altitude [39]. An alternative to detect locally adaptive loci 87 

is to test for genotype-environment correlations [35, 40-45]. Correlation-based 88 

methods can be more powerful than differentiation-based methods [46], but spatial 89 

autocorrelation of population structure and environmental variables can lead to 90 

spurious signatures of selection [47]. 91 

Ultimately, to identify the outlier loci that have truly contributed to improve 92 

local fitness, a link between outliers and phenotypic variation needs to be established. 93 

The most common approach is to undertake association mapping. However, recent 94 

literature in humans has questioned our ability to control for sample stratification in 95 
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such approach [48]. Detecting polymorphisms responsible for trait variation is 96 

particularly challenging when trait variation and demographic history follow parallel 97 

environmental (geographic) clines. Plants however benefit from the possibility of 98 

conducting replicated phenotypic measurements in common gardens, where 99 

environmental variation is controlled. Hence association mapping has been 100 

successfully employed in the model plant species Arabidopsis thaliana, where 101 

broadly distributed ecotypes evaluated in replicated common gardens have shown that 102 

fitness-associated alleles display geographic and climatic patterns indicative of 103 

selection [49]. Furthermore, the relative fitness of A. thaliana ecotypes in a given 104 

environment could be predicted from climate-associated SNPs [50]. While climatic 105 

selection over broad latitudinal scales produces genomic and phenotypic patterns of 106 

local adaptation in the selfer plant A. thaliana, whether similar patterns exist at shorter 107 

spatial scale in outcrossing species remains to be elucidated.  108 

We focused here on a well-established outcrossing plant system, the teosintes, 109 

to investigate the relationship of molecular, environmental, and phenotypic variation 110 

in populations sampled across two elevation gradients in Mexico. The gradients 111 

covered a relatively short yet climatically diverse, spatial scale. They encompassed 112 

populations of two teosinte subspecies that are the closest wild relatives of maize, Zea 113 

mays ssp. parviglumis (hereafter parviglumis) and Z. mays ssp. mexicana (hereafter 114 

mexicana). The two subspecies display large effective population sizes [51], and span 115 

a diversity of climatic conditions, from warm and mesic conditions below 1800 m for 116 

parviglumis, to drier and cooler conditions up to 3000 m for mexicana [52]. Previous 117 

studies have discovered potential determinants of local adaptation in these systems. 118 

At a genome-wide scale, decrease in genome size correlates with increasing altitude, 119 

which likely results from the action of natural selection on life cycle duration [53, 54]. 120 
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More modest structural changes include megabase-scale inversions that harbor 121 

clusters of SNPs whose frequencies are associated with environmental variation [55, 122 

56]. Also, differentiation- and correlation-based genome scans in teosinte populations 123 

succeeded in finding outlier SNPs potentially involved in local adaptation [57, 58]. 124 

But a link with phenotypic variation has yet to be established.  125 

In this paper, we genotyped a subset of these outlier SNPs on a broad sample 126 

of 28 teosinte populations, for which a set of neutral SNPs was also available; as well 127 

as on an association panel encompassing 11 populations. We set up common gardens 128 

in two locations to evaluate the association panel for 18 phenotypic traits over two 129 

consecutive years. Individuals from this association panel were also genotyped at 38 130 

microsatellite markers to enable associating genotypic to phenotypic variation while 131 

controlling for sample structure and kinship among individuals. We addressed three 132 

main questions: What is the extent of phenotypic variation within and among 133 

populations? Can we define a set of locally-selected traits that constitute a syndrome 134 

of adaptation to altitude? What are the genetic bases of such syndrome? We further 135 

discuss the challenges of detecting phenotypically-associated SNPs when trait and 136 

genetic differentiation parallel environmental clines. 137 

 138 

Results 139 

 140 

Trait-by-trait analysis of phenotypic variation within and among populations. 141 

In order to investigate phenotypic variation, we set up two common garden 142 

experiments located in Mexico to evaluate individuals from 11 teosinte populations 143 

(Fig 1). The two experimental fields were chosen because they were located at 144 

intermediate altitudes (S1 Fig). Although natural teosinte populations are not typically 145 
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encountered around these locations [52], we verified that environmental conditions 146 

were compatible with both subspecies (S2 Fig). The 11 populations were sampled 147 

among 37 populations (S1 Table) distributed along two altitudinal gradients that range 148 

from 504 to 2176 m in altitude over ~460 kms for gradient a, and from 342 to 2581m 149 

in altitude over ~350 kms for gradient b (S1 Fig). Lowland populations of the 150 

subspecies parviglumis (n=8) and highland populations of the subspecies mexicana 151 

(n=3) were climatically contrasted as can be appreciated in the Principal Component 152 

Analysis (PCA) computed on 19 environmental variables (S2 Fig). The corresponding 153 

set of individuals grown from seeds sampled from the 11 populations formed the 154 

association panel. 155 

 156 
Figure 1. Geographical location of sampled populations and experimental fields. 157 

The entire set of 37 Mexican teosinte populations is shown with parviglumis (circles) 158 

and mexicana (triangles) populations sampled along gradient a (white) and gradient b 159 

(black). The 11 populations indicated with a purple outline constituted the association 160 

panel. This panel was evaluated in a four-block design over two years in two 161 

experimental fields located at mid-elevation, SENGUA and CEBAJ. Two major cities 162 

(Mexico City and Guadalajara) are also indicated. Topographic surfaces have been 163 

obtained from International Centre for Tropical Agriculture (Jarvis A., H.I. Reuter, A. 164 

Nelson, E. Guevara, 2008, Hole-filled seamless SRTM data V4, International Centre 165 

for Tropical Agriculture (CIAT), available from http://srtm.csi.cgiar.org). 166 

 167 

We gathered phenotypic data during two consecutive years (2013 and 2014). 168 

We targeted 18 phenotypic traits that included six traits related to plant architecture, 169 

three traits related to leaves, three traits related to reproduction, five traits related to 170 

grains, and one trait related to stomata (S2 Table). Each of the four experimental 171 
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assays (year-field combinations) encompassed four blocks. In each block, we 172 

evaluated one offspring (half-sibs) of ~15 mother plants from each of the 11 teosinte 173 

populations using a semi-randomized design. After filtering for missing data, the 174 

association panel included 1664 teosinte individuals. We found significant effects of 175 

Field, Year and/or their interaction for most traits, and a highly significant Population 176 

effect for all of them (model M1, S3 Table).  177 

We investigated the influence of altitude on each trait independently. All traits, 178 

except for the number of nodes with ears (NoE), exhibited a significant effect of 179 

altitude (S3 Table, M3 model). Note that after accounting for elevation, the 180 

population effect remained significant for all traits, suggesting that factors other than 181 

altitude contributed to shape phenotypic variation among populations. Traits related to 182 

flowering time and tillering displayed a continuous decrease with elevation, and traits 183 

related to grain size increased with elevation (Fig 2 & S3 Fig). Stomata density also 184 

diminished with altitude (Fig 2). In contrast, plant height, height of the highest ear, 185 

number of nodes with ear in the main tiller displayed maximum values at intermediate 186 

altitudes (highland parviglumis and lowland mexicana) (S3 Fig).  187 

We estimated narrow-sense heritabilites (additive genotypic effect) per 188 

population for all traits using a mixed animal model. Average per-trait heritability 189 

ranged from 0.150 for tassel branching to 0.664 for female flowering time, albeit with 190 

large standard errors (S2 Table). We obtained higher heritability for grain related 191 

traits when mother plant measurements were included in the model with 0.631 (sd = 192 

0.246), 0.511 (sd = 0.043) and 0.274 (sd = 0.160) for grain length, weight and width, 193 

respectively, suggesting that heritability was under-estimated for other traits where 194 

mother plant values were not available.  195 

 196 
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Figure 2: Population-level box-plots of adjusted means for four traits. Traits are 197 

female flowering time (A), male flowering time (B), grain length (C) and stomata 198 

density (D). Populations are ranked by altitude. Parviglumis populations are shown in 199 

green and mexicana in red, lighter colors are used for gradient ‘a’ and darker colors 200 

for gradient ‘b’.  In the case of male and female flowering time, we report data for 9 201 

out of 11 populations because most individuals from the two lowland populations 202 

(P1a and P1b) did not flower in our common gardens. Covariation with elevation was 203 

significant for the four traits. Corrections for experimental setting are detailed in the 204 

material and methods section (Model M’1). 205 

 206 

Multivariate analysis of phenotypic variation and correlation between traits. 207 

Principal component analysis including all phenotypic measurements 208 

highlighted that 21.26% of the phenotypic variation scaled along PC1 (Fig 3A), a PC 209 

axis that is strongly collinear with altitude (Fig 3B). Although populations partly 210 

overlapped along PC1, we observed a consistent tendency for population phenotypic 211 

differentiation along altitude irrespective of the gradient (Fig 3C). Traits that 212 

correlated the most to PC1 were related to grain characteristics, tillering, flowering 213 

and to a lesser extent to stomata density (Fig 3B). PC2 correlated with traits 214 

exhibiting a trend toward increase-with-elevation within parviglumis, but decrease-215 

with-elevation within mexicana (Fig 3D). Those traits were mainly related to 216 

vegetative growth (Fig 3B). Together, both axes explained 37% of the phenotypic 217 

variation.  218 

 219 

Figure 3: Principal Component Analysis on phenotypic values corrected for the 220 

experimental setting. Individuals factor map (A) and corresponding correlation 221 
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circle (B) on the first two principal components with altitude (Alt) added as a 222 

supplementary variable (in blue). Individual phenotypic values on PC1 (C) and PC2 223 

(D) are plotted against population ranked by altitude and color-coded following A. 224 

For populations from the two subspecies, parviglumis (circles) and mexicana 225 

(triangles), color intensity indicates ascending elevation in green for parviglumis and 226 

red for mexicana. Corrections for experimental setting are detailed in the material and 227 

methods (Model M2). 228 

 229 

We assessed more formally pairwise-correlations between traits after 230 

correcting for experimental design and population structure (K=5). We found 82 231 

(54%) significant correlations among 153 tested pairs of traits. The following pairs of 232 

traits had the strongest positive correlations: male and female flowering time, plant 233 

height and height of the highest ear, height of the highest and lowest ear, grain length 234 

with grain weight and width (S4 Fig). The correlation between flowering time (female 235 

or male) with grain weight and length were among the strongest negative correlations 236 

(S4 Fig).  237 

 238 

Neutral structuring of the association panel. 239 

We characterized the genetic structure of the association panel using SSRs. 240 

The highest likelihood from Bayesian classification was obtained at K=2 and K=5 241 

clusters (S5 Fig). At K=2, the clustering separated the lowland of gradient a from the 242 

rest of the populations. From K=3 to K=5, a clear separation between the eight 243 

parviglumis and the three mexicana populations emerged. Increasing K values finally 244 

split the association panel into the 11 populations it encompassed (S6 Fig). The K=5 245 

structure associated to both altitude (lowland parviglumis versus highland mexicana) 246 
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and gradients a and b (Fig 4A & B). TreeMix analysis for a subset of 10 of these 247 

populations confirmed those results with an early split separating the lowlands from 248 

gradient a (cf. K=2, S6 Fig) followed by the separation of the three mexicana from the 249 

remaining populations (Fig 4C). TreeMix further supported three migration edges, a 250 

model that explained 98.75% of the variance and represented a significant 251 

improvement over a model without admixture (95.7%, Figure S7). This admixture 252 

model was consistent with gene flow between distant lowland parviglumis 253 

populations from gradient a and b, as well as between parviglumis and mexicana 254 

populations (Fig 4C). Likewise, structure analysis also suggested admixture among 255 

some of the lowland populations, and to a lesser extent between the two subspecies 256 

(Fig 4B).  257 

 258 

Figure 4: Genetic clustering, historical splits and admixture among populations 259 

of the association panel.  Genetic clustering visualization based on 38 SSRs is shown 260 

for K=5 (A). Colors represent the K clusters. Individuals (vertical lines) are 261 

partitioned into colored segments whose length represents the membership 262 

proportions to the K clusters. Populations (named after the subspecies M: mexicana, 263 

P: parviglumis and gradient ‘a’ or ‘b’) are ranked by altitude indicated in meters 264 

above sea level. The corresponding geographic distribution of populations along with 265 

their average membership probabilities are plotted (B). Historical splits and 266 

admixtures between populations were inferred from SNP data for a subset of 10 267 

populations of the association panel (C). Admixtures are colored according to their 268 

weight.  269 

 270 

 271 
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Identification of traits evolving under spatially-varying selection.  272 

We estimated the posterior mean (and 95% credibility interval) of genetic 273 

differentiation (FST) among the 11 populations of the association panel using 274 

DRIFTSEL. Considering 1125 plants for which we had both individual phenotypes and 275 

individual genotypes for 38 SSRs (S4 Table), we estimated the mean FST to 0.22 276 

(0.21-0.23). Note that we found a similar estimate on a subset of 10 of these 277 

populations with 1000 neutral SNPs (FST (CI)=0.26 (0.25-0.27)). To identify traits 278 

whose variation among populations was driven primarily by local selection, we 279 

employed the Bayesian method implemented in DRIFTSEL, that infers additive genetic 280 

values of traits from a model of population divergence under drift [59]. Selection was 281 

inferred when observed phenotypic differentiation exceeded neutral expectations for 282 

phenotypic differentiation under random genetic drift. Single-trait analyses revealed 283 

evidence for spatially-varying selection at 12 traits, with high consistency between 284 

SSRs and neutral SNPs (Table 1). Another method that contrasted genetic and 285 

phenotypic differentiation (QST- FST) uncovered a large overlap with nine out of the 286 

12 traits significantly deviating from the neutral model (Table 1) and one of the 287 

remaining ones displaying borderline significance (Plant height=PL, S8 Fig). 288 

Together, these two methods indicated that phenotypic divergence among populations 289 

was driven by local selective forces.   290 
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Table 1. Signals of selection (posterior probability S) for each trait considering SSR 

markers (11 populations) or SNPs (10 populations). 

 

Traitsa SSRb SNPb 

Plant height 0.995 0.972 

Height of the lowest ear* 0.950 0.959 

Height of the highest ear 0.982 0.966 

Number of tillers* 1.000 1.000 

Number of lateral branches* 1.000 0.990 

Number of nodes with ears 0.682 0.699 

Leaf length 0.888 0.875 

Leaf width 0.999 0.996 

Leaf color 0.633 0.583 

Female flowering time* 1.000 1.000 

Male flowering time* 1.000 1.000 

Tassel branching* 0.925 0.908 

Number of grains per ear 0.832 0.622 

Grain length* 1.000 1.000 

Grain width* 0.995 0.984 

Grain weight* 1.000 0.999 

Grain color 0.717 0.689 

Stomata density* 0.999 0.999 

a: Traits displaying signal of selection (spatially-varying traits, S > 0.95) are indicated in bold, 

and marked by an asterisk when significant in QST-FSTComp analysis. We considered the 

underlined traits as spatially varying. For a detailed description of traits see S2 Table. 
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b: Values reported correspond to S from DRIFTSEL. S is the posterior probability that 

divergence among populations was not driven by drift only. Following [60], we used here a 

conservative credibility value of S > 0.95 to declare divergent selection. 

 

 Altogether, evidence of spatially varying selection at 10 traits (Table 1) as 291 

well as continuous variation of a subset of traits across populations in both elevation 292 

gradients (Fig 2, S3 Fig) was consistent with a syndrome where populations produced 293 

less tillers, flowered earlier, displayed lower stomata density and carried larger, 294 

longer and heavier grains with increasing elevation.  295 

 296 

Outlier detection and correlation with environmental variables. 297 

We successfully genotyped 218 (~81%) out of 270 outlier SNPs on a broad set 298 

of 28 populations, of which 141 were previously detected in candidate regions for 299 

local adaptation [58]. Candidate regions were originally identified from re-sequencing 300 

data of only six teosinte populations (S1 Table) following an approach that included 301 

high differentiation between highlands and lowlands, environmental correlation, and 302 

in some cases their intersection with genomic regions involved in quantitative trait 303 

variation in maize. The remaining outlier SNPs (77) were discovered in the present 304 

study by performing FST-scans on the same re-sequencing data (S5 Table). We 305 

selected outlier SNPs that were both highly differentiated between highland and 306 

lowland populations within gradient (high/low in gradient a or b or both), and 307 

between highland and lowland populations within subspecies in gradient b (high/low 308 

within parviglumis, mexicana or both). FST-scans pinpointed three genomic regions of 309 

particularly high differentiation (S9 Fig) that corresponded to previously described 310 
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inversions [55, 56]: one inversion on chromosome 1 (Inv1n), one on chromosome 4 311 

(Inv4m) and one on the far end of chromosome 9 (Inv9e).  312 

A substantial proportion of outlier SNPs was chosen based on their significant 313 

correlation among six populations between variation of allele frequency and their 314 

coordinate on the first environmental principal component [58]. We extended 315 

environmental analyses to 171 outlier SNPs (MAF>5%) on a broader sample of 28 316 

populations (S2 Fig) and used the two first components (PCenv1 and PCenv2) to 317 

summarize environmental information. The first component, that explained 56% of 318 

the variation, correlated with altitude but displayed no correlation to either latitude or 319 

longitude. PCenv1 was defined both by temperature- and precipitation- related 320 

variables (S2 B Fig) including Minimum Temperature of Coldest Month (T6), Mean 321 

Temperature of Driest and Coldest Quarter (T9 and T11) and Precipitation of Driest 322 

Month and Quarter (P14 and P17). The second PC explained 20.5% of the variation 323 

and was mainly defined (S2 B Fig) by Isothermality (T3), Temperature Seasonality 324 

(T4) and Temperature Annual Range (T7).  325 

We first employed multiple regression to test for each SNP, whether the 326 

pairwise FST matrix across 28 populations correlated to the environmental (distance 327 

along PCenv1) and/or the geographical distance. As expected, we found a 328 

significantly greater proportion of environmentally-correlated SNPs among outliers 329 

compared with neutral SNPs (χ² =264.07, P-value=2.2 10-16), a pattern not seen with 330 

geographically-correlated SNPs. That outlier SNPs displayed a greater isolation-by-331 

environment than isolation-by-distance, indicated that patterns of allele frequency 332 

differentiation among populations were primarily driven by adaptive processes. We 333 

further tested correlations between allele frequencies and environmental variation. 334 

Roughly 60.8% (104) of the 171 outlier SNPs associated with at least one of the two 335 
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first PCenvs, with 87 and 33 associated with PCenv1 and PCenv2, respectively, and 336 

little overlap (S5 Table). As expected, the principal component driven by altitude 337 

(PCenv1) correlated to allele frequency for a greater fraction of SNPs than the second 338 

orthogonal component. Interestingly, we found enrichment of environmentally-339 

associated SNPs within inversions both for PCenv1 (χ² = 14.63, P-value=1.30 10-4) 340 

and PCenv2 (χ² = 33.77, P-value=6.22 10-9). 341 

 342 

Associating genotypic variation to phenotypic variation. 343 

We tested the association between phenotypes and 171 of the outlier SNPs 344 

(MAF>5%) using the association panel. For each SNP-trait combination, the sample 345 

size ranged from 264 to 1068, with a median of 1004 individuals (S6 Table). We used 346 

SSRs to correct for both structure (at K=5) and kinship among individual genotypes. 347 

This model (M5) resulted in a uniform distribution of P-values when testing the 348 

association between genotypic variation at SSRs and phenotypic trait variation (S10 349 

Fig). Under this model, we found that 126 outlier SNPs (73.7%) associated to at least 350 

one trait (Fig 5 and S11 Fig) at an FDR of 10%. The number of associated SNPs per 351 

trait varied from 0 for leaf and grain coloration, to 55 SNPs for grain length, with an 352 

average of 22.6 SNPs per trait (S5 Table). Ninety-three (73.8%) out of the 126 353 

associated SNPs were common to at least two traits, and the remaining 33 SNPs were 354 

associated to a single trait (S5 Table). The ten traits displaying evidence of spatially 355 

varying selection in the QST-FST analyses displayed more associated SNPs per trait 356 

(30.5 on average), than the non-spatially varying traits (12.75 on average).  357 

A growing body of literature stresses that incomplete control of population 358 

stratification may lead to spurious associations [61]. Hence, highly differentiated 359 

traits along environmental gradients are expected to co-vary with any variant whose 360 
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allele frequency is differentiated along the same gradients, without underlying causal 361 

link. We therefore expected false positives in our setting where both phenotypic traits 362 

and outlier SNPs varied with altitude. We indeed found a slightly significant 363 

correlation (r=0.5, P-value=0.03) between the strength of the population effect for 364 

each trait – a measure of trait differentiation (S3 Table) – and its number of associated 365 

SNPs (S5 Table).  366 

To verify that additional layers of structuring among populations did not cause 367 

an excess of associations, we repeated the association analyzes considering a 368 

structuring with 11 populations (instead of K=5) as covariate (M5’), a proxy of the 369 

structuring revealed at K=11 (S6 Fig). With this level of structuring, we retrieved 370 

much less associated SNPs (S5 Table). Among the 126 SNPs associating with at least 371 

one trait at K=5, only 22 were recovered considering 11 populations. An additional 372 

SNP was detected with structuring at 11 populations that was absent at K=5. Eight 373 

traits displayed no association, and the remaining traits varied from a single 374 

associated SNP (Leaf length – LeL and the number of tillers – Til) to 8 associated 375 

SNPs for grain weight (S5 Table). For instance, traits such as female or male 376 

flowering time that displayed 45 and 43 associated SNPs at K=5, now displayed only 377 

4 and 3 associated SNPs, respectively (Fig 5). Note that one trait (Leaf color) 378 

associated with 4 SNPs considering 11 populations while displaying no association at 379 

K=5. Significant genetic associations were therefore highly contingent on the 380 

population structure. Noteworthy, traits under spatially varying selection still 381 

associated with more SNPs (2.00 on average) than those with no spatially varying 382 

selection (1.25 SNPs on average).  383 

 384 

 385 
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Figure 5: Manhattan plots of associations between 171 outlier SNPs and 6 386 

phenotypic traits. X-axis indicates the positions of outlier SNPs on chromosomes 1 387 

to 10, black and gray colors alternating per chromosome. Plotted on the Y-axis are the 388 

negative Log10-transformed P values obtained for the K=5 model. Significant 389 

associations (10% FDR) are indicated considering either a structure matrix at K=5 390 

(pink dots), 11 populations (blue dots) or both K=5 and 11 populations (purple dots) 391 

models.  392 

 393 

Altogether the 23 SNPs recovered considering a neutral genetic structure with 394 

11 populations corresponded to 30 associations, 7 of the SNPs being associated to 395 

more than one trait (S5 Table). For all these 30 associations except in two cases (FFT 396 

with SNP_7, and MFT with SNP_28), the SNP effect did not vary among populations 397 

(non-significant SNP-by-population interaction in model M5’ when we included the 398 

SNP interactions with year*field and population). For a subset of two SNPs, we 399 

illustrated the regression between the trait value and the shift of allele frequencies 400 

with altitude (Fig 6 A&B). We estimated corresponding additive and dominance 401 

effects (S7 Table). In some cases, the intra-population effect corroborated the inter-402 

population variation with relatively large additive effects of the same sign (Fig 6 403 

C&D). Note that in both examples shown in Fig 6, one or the other allele was 404 

dominant. In other cases, the results were more difficult to interpret with negligible 405 

additive effect but extremely strong dominance (S7 Table, SNP_210 for instance).  406 

 407 

 408 

 409 
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Figure 6: Regression of phenotypic average value on SNP allele frequency across 410 

populations, and within-population average phenotypic value for each SNP 411 

genotype. Per-population phenotypic average values of traits are regressed on alleles 412 

frequencies at SNP_149 (A) and SNP_179 (B) with corresponding within-population 413 

average phenotypic value per genotype (C & D). In A and B, the 11 populations of 414 

the association panel are shown with parviglumis (green circles) and mexicana (red 415 

triangles) populations sampled along gradient a and gradient b. Phenotypic average 416 

values were corrected for the experimental design (calculated as the residues of model 417 

M2). Pval refers to the P-value of the linear regression represented in blue. In C and 418 

D, genotypic effects from model M5’ are expressed as the average phenotypic value 419 

of heterozygotes (1) and homozygotes for the reference (0) and the alternative allele 420 

(2). FDR values are obtained from the association analysis on 171 SNPs with 421 

correction for genetic structure using 11 population. 422 

 423 

Independence of SNPs associated to phenotypes. 424 

We computed the pairwise linkage disequilibrium (LD) as measured by r2 425 

between the 171 outlier SNPs using the R package LDcorSV [62]. Because we were 426 

specifically interested by LD pattern between phenotypically-associated SNPs, as for 427 

the association analyses we accounted for structure and kinship computed from SSRs 428 

while estimating LD [63]. The 171 outlier SNPs were distributed along the 10 429 

chromosomes of maize, and exhibited low level of linkage disequilibrium (LD), 430 

except for SNPs located on chromosomes eight, nine, and a cluster of SNPs located 431 

on chromosome 4 (S12 Fig).  432 

Among the 171, the subset of 23 phenotypically-associated SNPs (detected 433 

when considering the 11-population structure) displayed an excess of elevated LD 434 
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values – out of 47 pairs of SNPs phenotypically-associated to a same trait, 16 pairs 435 

were contained in the 5% higher values of the LD distribution of all outlier SNP pairs. 436 

Twelve out of the 16 pairs related to grain weight, the remaining four to leaf 437 

coloration, and one pair of SNPs was associated to both traits. Noteworthy was that 438 

inversions on chromosomes 1, 4, and 9, taken together, were enriched for 439 

phenotypically-associated SNPs (χ² = 8.95, P-value=0.0028). We recovered a 440 

borderline significant enrichment with the correction K=5 (χ² = 3.82, P-value=0.051). 441 

Finally, we asked whether multiple SNPs contributed independently to the 442 

phenotypic variation of a single trait. We tested a multiple SNP model where SNPs 443 

were added incrementally when significantly associated (FDR < 0.10). We found 2, 3 444 

and 2 SNPs for female, male flowering time and height of the highest ear, 445 

respectively (S5 Table). Except for the latter trait, the SNPs were located on different 446 

chromosomes.  447 

 448 

Discussion 449 

 450 

Plants are excellent systems to study local adaptation. First, owing to their 451 

sessile nature, local adaptation of plant populations is pervasive [13]. Second, 452 

environmental effects can be efficiently controlled in common garden experiments, 453 

facilitating the identification of the physiological, morphological and phenological 454 

traits influenced by spatially-variable selection [64]. Identification of the determinants 455 

of complex trait variation and their covariation in natural populations is however 456 

challenging [65]. While population genomics has brought a flurry of tools to detect 457 

footprints of local adaptation, their reliability remains questioned [61]. In addition, 458 

local adaptation and demographic history frequently follow the same geographic route, 459 
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making the disentangling of trait, molecular, and environmental variation, particularly 460 

arduous. Here we investigated those links on a well-established outcrossing system, 461 

the closest wild relatives of maize, along altitudinal gradients that display 462 

considerable environmental shifts over short geographical scales.  463 

 464 

The syndrome of altitudinal adaptation results from selection at multiple co-465 

adapted traits.  466 

Common garden studies along elevation gradients have been conducted in 467 

European and North American plants species [66]. Together with other studies, they 468 

have revealed that adaptive responses to altitude are multifarious [67]. They include 469 

physiological responses such as high photosynthetic rates [68], tolerance to frost [69], 470 

biosynthesis of UV-induced phenolic components [70]; morphological responses with 471 

reduced stature [71, 72], modification of leaf surface [73], increase in leaf non-472 

glandular trichomes [74], modification of stomata density; and phenological 473 

responses with variation in flowering time [75], and reduced growth period [76].  474 

Our multivariate analysis of teosinte phenotypic variation revealed a marked 475 

differentiation between teosinte subspecies along an axis of variation (21.26% of the 476 

total variation) that also discriminated populations by altitude (Fig 2A & B). The 477 

combined effects of assortative mating and environmental elevation variation may 478 

generate, in certain conditions, trait differentiation along gradients without underlying 479 

divergent selection [77]. While we did not measure flowering time differences among 480 

populations in situ, we did find evidence for long distance gene flow between 481 

gradients and subspecies (Fig 4 A & C). In addition, several lines of arguments 482 

suggest that the observed clinal patterns result from selection at independent traits and 483 

is not solely driven by differences in flowering time among populations. First, two 484 
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distinct methods accounting for shared population history concur with signals of 485 

spatially-varying selection at ten out of the 18 traits (Table 1). Nine of them exhibited 486 

a clinal trend of increase/decrease of population phenotypic values with elevation (S3 487 

Fig) within at least one of the two subspecies. This number is actually conservative, 488 

because these approaches disregard the impact of selective constraints which in fact 489 

tend to decrease inter-population differences in phenotypes. Second, while male and 490 

female flowering times were positively correlated, they displayed only subtle 491 

correlations (|r|<0.16) with other spatially-varying traits except for grain weight and 492 

length (|r| <0.33). Third, we observed convergence at multiple phenotypes between 493 

the lowland populations from the two gradients that occurred despite their 494 

geographical and genetical distance (Fig 4) again arguing that local adaptation drives 495 

the underlying patterns.  496 

Spatially-varying traits that displayed altitudinal trends, collectively defined a 497 

teosinte altitudinal syndrome of adaptation characterized by early-flowering, 498 

production of few tillers albeit numerous lateral branches, production of heavy, long 499 

and large grains, and decrease in stomata density. We also observed increased leaf 500 

pigmentation with elevation, although with a less significant signal (S3 Table), 501 

consistent with the pronounced difference in sheath color reported between 502 

parviglumis and mexicana [78, 79]. Because seeds were collected from wild 503 

populations, a potential limitation of our experimental setting is the confusion 504 

between genetic and environmental maternal effects. Environmental maternal effects 505 

could bias upward our heritability estimates. However, our results corroborate 506 

previous findings of reduced number of tillers and increased grain weight in mexicana 507 

compared with parviglumis [80]. Thus although maternal effects could not be fully 508 

discarded, we believe they were likely to be weak. 509 
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The trend towards depleted stomata density at high altitudes (S3 Fig) could 510 

arguably represent a physiological adaptation as stomata influence components of 511 

plant fitness through their control of transpiration and photosynthetic rate [81]. Indeed, 512 

in natural accessions of A. thaliana, stomatal traits showed signatures of local 513 

adaptation and were associated with both climatic conditions and water-use efficiency 514 

[82]. Furthermore, previous work has shown that in arid and hot highland 515 

environments, densely-packed stomata may promote increased leaf cooling in 516 

response to desiccation [83] and may also counteract limited photosynthetic rate with 517 

decreasing pCO2 [84]. Accordingly, increased stomata density at high elevation sites 518 

has been reported in alpine species such as the European beech [85] as well as in 519 

populations of Mimulus guttatus subjected to higher precipitations in the Sierra 520 

Nevada [86]. In our case, higher elevations display both arid environment and cooler 521 

temperatures during the growing season, features perhaps more comparable to other 522 

tropical mountains for which a diversity of patterns in stomatal density variation with 523 

altitude has been reported [87]. Further work will be needed to decipher the 524 

mechanisms driving the pattern of declining stomata density with altitude in teosintes. 525 

Altogether, the altitudinal syndrome was consistent with natural selection for rapid 526 

life-cycle shift, with early-flowering in the shorter growing season of the highlands 527 

and production of larger propagules than in the lowlands. This altitudinal syndrome 528 

evolved in spite of detectable gene flow.  529 

Although we did not formally measure biomass production, the lower number 530 

of tillers and higher amount and size of grains in the highlands when compared with 531 

the lowlands may reflect trade-offs between allocation to grain production and 532 

vegetative growth [88]. Because grains fell at maturity and a single teosinte individual 533 

produces hundreds of ears, we were unable to provide a proxy for total grain 534 
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production. The existence of fitness-related trade-offs therefore still needs to be 535 

formally addressed.  536 

Beyond trade-offs, our results more generally question the extent of 537 

correlations between traits. In maize, for instance, we know that female and male 538 

flowering time are positively correlated and that their genetic control is in part 539 

determined by a common set of genes [89]. They themselves further increase with 540 

yield-related traits [90]. Response to selection for late-flowering also led to a 541 

correlated increase in leaf number in cultivated maize [91], and common genetic loci 542 

have been shown to determine these traits as well [92]. Here we found strong positive 543 

correlations between traits: male and female flowering time, grain length and width, 544 

plant height and height of the lowest or highest ear. Strong negative correlations were 545 

observed instead between grain weight and both male and female flowering time. 546 

Trait correlations were therefore partly consistent with previous observations in maize, 547 

suggesting that they were inherited from wild ancestors. 548 

 549 

Footprints of past adaptation are relevant to detect variants involved in present 550 

phenotypic variation. 551 

The overall level of differentiation in our outcrossing system (FST ≈22%) fell 552 

within the range of previous estimates (23% [93]and 33% [55] for samples 553 

encompassing both teosinte subspecies). It is relatively low compared to other 554 

systems such as the selfer Arabidopsis thaliana, where association panels typically 555 

display maximum values of FST around 60% within 10kb-windows genome-wide [94]. 556 

Nevertheless, correction for sample structure is key for statistical associations 557 

between genotypes and phenotypes along environmental gradients. This is because 558 

outliers that display lowland/highland differentiation co-vary with environmental 559 
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factors, which themselves may affect traits [95]. Consistently, we found that 73.7% 560 

SNPs associated with phenotypic variation at K=5, but only 13.5% of them did so 561 

when considering a genetic structure with 11 populations. Except for one, the latter 562 

set of SNPs represented a subset of the former. Because teosinte subspecies 563 

differentiation was fully accounted for at K=5 (as shown by the clear distinction 564 

between mexicana populations and the rest of the samples, Fig 4A), the inflation of 565 

significant associations at K=5 is not due to subspecies differentiation, but rather to 566 

residual stratification among populations within genetic groups. Likewise, recent 567 

studies in humans, where global differentiation is comparatively low [96] have shown 568 

that incomplete control for population structure within European samples strongly 569 

impacts association results [61, 97]. Controlling for such structure may be even more 570 

critical in domesticated plants, where genetic structure is inferred a posteriori from 571 

genetic data (rather than a priori from population information) and pedigrees are 572 

often not well described. Below, we show that considering more than one correction 573 

using minor peaks delivered by the Evanno statistic (S5 Fig) can be informative.  574 

Considering a structure with 5 genetic groups, the number of SNPs associated 575 

per trait varied from 1 to 55, with no association for leaf and grain coloration (S5 576 

Table). False positives likely represent a greater proportion of associations at K=5 as 577 

illustrated by a slight excess of small P-values when compared with a correction with 578 

11 populations for most traits (S10 Fig). Nevertheless, our analysis recovered credible 579 

candidate adaptive loci that were no longer associated when a finer-grained 580 

population structure was included in the model. For instance at K=5, we detected 581 

Sugary1 (Su1), a gene encoding a starch debranching enzyme that was selected during 582 

maize domestication and subsequent breeding [98, 99]. We found that Su1 was 583 

associated with variation at six traits (male and female flowering time, tassel 584 
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branching, height of the highest ear, grain weight and stomata density) pointing to 585 

high pleiotropy. A previous study reported association of this gene to oil content in 586 

teosintes [100]. In maize, this gene has a demonstrated role in kernel phenotypic 587 

differences between maize genetic groups [101]. Su1 is therefore most probably a 588 

true-positive. That this gene was no longer recovered with the 11-population structure 589 

correction indicated that divergent selection acted among populations. Indeed, allelic 590 

frequency was highly contrasted among populations, with most populations fixed for 591 

one or the other allele, and a single population with intermediate allelic frequency. 592 

With the 11-population correction, very low power is thus left to detect the effect of 593 

Su1 on phenotypes.  594 

Although the confounding population structure likely influenced the genetic 595 

associations, experimental evidence indicates that an appreciable proportion of the 596 

variants recovered with both K=5 and 11 populations are true-positives (S5 Table). 597 

One SNP associated with female and male flowering time, as well as with plant height 598 

and grain length (at K=5 only for the two latter traits) maps within the phytochrome 599 

B2 (SNP_210; phyB2) gene. Phytochromes are involved in perceiving light signals 600 

and are essential for growth and development in plants. The maize gene phyB2 601 

regulates the photoperiod-dependent floral transition, with mutants producing early 602 

flowering phenotypes and reduced plant height [102]. Genes from the 603 

phosphatidylethanolamine-binding proteins (PEBPs) family – Zea mays 604 

CENTRORADIALIS (ZCN) family in maize – are also well-known to act as promotor 605 

and repressor of the floral transition in plants [103]. ZCN8 is the main floral activator 606 

of maize [104], and both ZCN8 and ZCN5 strongly associate with flowering time 607 

variation [101, 105]. Consistently, we found associations of male and female 608 

flowering time with PEBP18 (SNP_15). It is interesting to note that SNPs at two 609 
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flowering time genes, phyB2 and PEBP18, influenced independently as well as in 610 

combination both female and male flowering time variation (S5 Table).  611 

The proportion of genic SNPs associated to phenotypic variation was not 612 

significantly higher than that of non-genic SNPs (i.e, SNPs >1kb from a gene) (χ²(df=1) 613 

= 0.043, P-value = 0.84 at K=5 and χ²(df=1) =1.623, P-value =0.020 with 11 614 

populations) stressing the importance of considering both types of variants [106]. For 615 

instance, we discovered a non-genic SNP (SNP_149) that displayed a strong 616 

association with leaf width variation as well as a pattern of allele frequency shift with 617 

altitude among populations (Fig 6B).  618 

 619 

Physically-linked and independent SNPs both contribute to the establishment of 620 

adaptive genetic correlations. 621 

We found limited LD among our outlier SNPs (S10 Fig) corroborating 622 

previous reports (LD decay within <100bp, [58, 93]). However, the subset of 623 

phenotypically-associated SNPs displayed greater LD, a pattern likely exacerbated by 624 

three Mb-scale inversions located on chromosomes 1 (Inv1n), 4 (Inv4m) and 9 (Inv9e) 625 

that, taken together, were enriched for SNPs associated with environmental variables 626 

related to altitude and/or SNPs associated with phenotypic variation. Previous work 627 

[55, 56] has shown that Inv1n and Inv4m segregate within both parviglumis and 628 

mexicana, while two inversions on chromosome 9, Inv9d and Inv9e, are present only 629 

in some of the highest mexicana populations; such that all four inversions also follow 630 

an altitudinal pattern. Our findings confirmed that three of these inversions possessed 631 

an excess of SNPs with high FST between subspecies and between low- and high-632 

mexicana populations for Inv9e [57]. Noteworthy Inv9d contains a large ear leaf 633 

width quantitative trait locus in maize [106]. Corroborating these results, we found 634 
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consistent association between the only SNP located within this inversion and leaf 635 

width variation in teosinte populations (S5 Table). Overall, our results further 636 

strengthen the role of chromosomal inversions in teosinte altitudinal adaptation.  637 

Because inversions suppress recombination between inverted and non-inverted 638 

genotypes, their spread has likely contributed to the emergence and maintenance of 639 

locally adaptive allelic combinations in the face of gene flow, as reported in a 640 

growing number of other models (reviewed in [107]) including insects [108], fish 641 

[109], birds [110] and plants [26, 111]. But we also found three cases of multi-SNP 642 

determinism of traits (male and female flowering time and height of the highest ear, 643 

Table S5) supporting selection of genetically independent loci. Consistently with 644 

Weber et al. [100], we found that individual SNPs account for small proportions of 645 

the phenotypic variance (S7 Table). Altogether, these observations are consistent with 646 

joint selection of complex traits determined by several alleles of small effects, some 647 

of which being maintained in linkage through selection of chromosomal 648 

rearrangements.  649 

 650 

Conclusion. 651 

 652 

Elevation gradients provide an exceptional opportunity for investigating 653 

variation of functional traits in response to continuous environmental factors at short 654 

geographical scales. Here we documented patterns indicating that local adaptation, 655 

likely facilitated by the existence of chromosomal inversions, allows teosintes to cope 656 

with specific environmental conditions in spite of gene flow. We detected an 657 

altitudinal syndrome in teosintes composed of sets of independent traits evolving 658 

under spatially-varying selection. Because traits co-varied with environmental 659 
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differences along gradients, however, statistical associations between genotypes and 660 

phenotypes largely depended on control of population stratification. Yet, several of 661 

the variants we uncovered seem to underlie adaptive trait variation in teosintes. 662 

Adaptive teosinte trait variation is likely relevant for maize evolution and breeding. 663 

Whether the underlying SNPs detected in teosintes bear similar effects in maize or 664 

whether their effects differ in domesticated backgrounds will have to be further 665 

investigated.   666 
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Material and Methods 667 

 668 

Description of teosinte populations and sampling. 669 

We used 37 teosinte populations of mexicana (16) and parviglumis (21) 670 

subspecies from two previous collections [57, 58, 112] to design our sampling. These 671 

populations (S1 Table) are distributed along two altitudinal gradients (Fig 1). We 672 

plotted their altitudinal profiles using R ‘raster’ package [113] (S1 Fig). We further 673 

obtained 19 environmental variable layers from 674 

http://idrisi.uaemex.mx/distribucion/superficies-climaticas-para-mexico. These high-675 

resolution layers comprised monthly values from 1910 to 2009 estimated via 676 

interpolation methods [107]. We extracted values of the 19 climatic variables for each 677 

population (S1 Table). Note that high throughput sequencing (HTS) data were 678 

obtained in a previous study for six populations out of the 37 (M6a, P1a, M7b, P2b, 679 

M1b and P8b; Fig 1, S1 Table) to detect candidate genomic regions for local 680 

adaptation [58]. The four highest and lowest of these populations were included in the 681 

association panel described below. 682 

We defined an association panel of 11 populations on which to perform a 683 

genotype-phenotype association study (S1 Table). Our choice was guided by grain 684 

availability as well as the coverage of the whole climatic and altitudinal ranges. 685 

Hence, we computed Principal Component Analyses (PCA) for each gradient from 686 

environmental variables using the FactoMineR package in R [114] and added altitude 687 

to the PCA graphs as a supplementary variable. Our association panel comprised five 688 

populations from a first gradient (a) – two mexicana and three parviglumis, and six 689 

populations from a second gradient (b) – one mexicana and five parviglumis (Fig 1).  690 
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Finally, we extracted available SNP genotypes generated with the 691 

MaizeSNP50 Genotyping BeadChip for 28 populations out of our 37 populations [57] 692 

(S1 Table). From this available SNP dataset, we randomly sampled 1000 SNPs found 693 

to display no selection footprint [57], hereafter neutral SNPs. Data for neutral SNPs 694 

(Data S1) are available at: 10.6084/m9.figshare.9901472. We used this panel of 28 695 

populations to investigate correlation with environmental variation. Note that 10 out 696 

of the 28 populations were common to our association panel, and genotypes were 697 

available for 24 to 34 individuals per population, albeit different from the ones of our 698 

association mapping panel.  699 

Common garden experiments  700 

We used two common gardens for phenotypic evaluation of the association 701 

panel (11 populations). Common gardens were located at INIFAP (Instituto Nacional 702 

de Investigaciones Forestales, Agricolas y Pecuaria) experimental field stations in the 703 

state of Guanajuato in Mexico, one in Celaya municipality at the Campo 704 

Experimental Bajío (CEBAJ) (20°31’20’’ N, 100°48’44’’W) at 1750 meters of 705 

elevation, and one in San Luis de la Paz municipality at the Sitio Experimental Norte 706 

de Guanajuato (SENGUA) (21°17’55’’N, 100°30’59’’W) at 2017 meters of elevation. 707 

These locations were selected because they present intermediate altitudes (S1 Fig). 708 

The two common gardens were replicated in 2013 and 2014. 709 

The original sampling contained 15 to 22 mother plants per population. Eight 710 

to 12 grains per mother plant were sown each year in individual pots. After one 711 

month, seedlings were transplanted in the field. Each of the four fields (2 locations, 2 712 

years) was separated into four blocks encompassing 10 rows and 20 columns. We 713 

evaluated one offspring of ~15 mother plants from each of the 11 teosinte populations 714 

in each block, using a semi-randomized design, i.e. each row containing one or two 715 
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individuals from each population, and individuals being randomized within row, 716 

leading to a total of 2,640 individual teosinte plants evaluated. 717 

 718 

SSR genotyping and genetic structuring analyses on the association panel 719 

In order to quantify the population structure and individual kinship in our 720 

association panel, we genotyped 46 SSRs (S4 Table). Primers sequences are available 721 

from the maize database project [115] and genotyping protocol were previously 722 

published [116]. Genotyping was done at the GENTYANE platform (UMR INRA 723 

1095, Clermont-Ferrand, France). Allele calling was performed on electropherograms 724 

with the GeneMapper® Software Applied Biosystems®. Allele binning was carried 725 

out using Autobin software [117], and further checked manually.  726 

We employed STRUCTURE Bayesian classification software to compute a 727 

genetic structure matrix on individual genotypes. Individuals with over 40% missing 728 

data were excluded from analysis. For each number of clusters (K from 2 to 13), we 729 

performed 10 independent runs of 500,000 iterations after a burn-in period of 50,000 730 

iterations, and combined these 10 replicates using the LargeKGreedy algorithm from 731 

the CLUMPP program [118]. We plotted the resulting clusters using DISTRUCT 732 

software. We then used the Evanno method [119] to choose the optimal K value. We 733 

followed the same methodology to compute a structure matrix from the outlier SNPs. 734 

We inferred a kinship matrix K from the same SSRs using SPAGeDI [120]. 735 

Kinship coefficients were calculated for each pair of individuals as correlation 736 

between allelic states [121]. Since teosintes are outcrossers and expected to exhibit an 737 

elevated level of heterozygosity, we estimated intra-individual kinship to fill in the 738 

diagonal. We calculated ten kinship matrices, each excluding the SSRs from one out 739 
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of the 10 chromosomes. Microsatellite data (Data S2) are available 740 

at: 10.6084/m9.figshare.9901472 741 

In order to gain insights into population history of divergence and admixture, 742 

we used 1000 neutral SNPs (i.e. SNPs genotyped by Aguirre-Liguori and 743 

collaborators [57] and that displayed patterns consistent with neutrality among 49 744 

teosinte populations) genotyped on 10 out of the 11 populations of the association 745 

panel to run a TreeMix analysis (TreeMix version 1.13 [122]. TreeMix models 746 

genetic drift to infer populations splits from an outgroup as well as migration edges 747 

along a bifurcating tree. We oriented the SNPs using the previously published 748 

MaizeSNP50 Genotyping BeadChip data from the outgroup species Tripsacum 749 

dactyloides [55]. We tested from 0 to 10 migration edges. We fitted both a simple 750 

exponential and a non-linear least square model (threshold of 1%) to select the 751 

optimal number of migration edges as implemented in the OptM R package [123]. We 752 

further verified that the proportion of variance did not substantially increase beyond 753 

the optimal selected value. 754 

 755 

Phenotypic trait measurements  756 

 We evaluated a total of 18 phenotypic traits on the association panel (S2 757 

Table). We measured six traits related to plant architecture (PL: Plant Height, HLE: 758 

Height of the Lowest Ear, HHE: Height of the Highest Ear, Til: number of Tillers, 759 

LBr: number of Lateral Branches, NoE: number of Nodes with Ears), three traits 760 

related to leave morphologies (LeL: Leaf Length, LeW: Leaf Width, LeC: Leaf 761 

Color), three traits related to reproduction (MFT: Male Flowering Time, FFT: Female 762 

Flowering Time, TBr : Tassel Branching), five traits related to grains (Gr: number of 763 

Grains per ear, GrL: Grain Length, GrWi: Grain Width, GrWe: Grain Weight, GrC: 764 
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Grain Color), and one trait related to Stomata (StD: Stomata Density). These traits 765 

were chosen because we suspected they could contribute to differences among 766 

teosinte populations based on a previous report of morphological characterization on 767 

112 teosinte collections grown in five localities [124]. 768 

We measured the traits related to plant architecture and leaves after silk 769 

emergence. Grain traits were measured at maturity. Leaf and grain coloration were 770 

evaluated on a qualitative scale. For stomata density, we sampled three leaves per 771 

plant and conserved them in humid paper in plastic bags. Analyses were undertaken at 772 

the Institute for Evolution and Biodiversity (University of Münster) as followed: 5mm 773 

blade discs were cut out from the mid length of one of the leaves and microscopic 774 

images were taken after excitation with a 488nm laser. Nine locations (0.15mm2) per 775 

disc were captured with 10 images per location along the z-axis (vertically along the 776 

tissue). We automatically filtered images based on quality and estimated leaf stomata 777 

density using custom image analysis algorithms implemented in Matlab. For each 778 

sample, we calculated the median stomata density over the (up to) nine locations. To 779 

verify detection accuracy, manual counts were undertaken for 54 random samples. 780 

Automatic and manual counts were highly correlated (R²=0.82), indicating reliable 781 

detection (see S1 Annex StomataDetection, Dittberner and de Meaux, for a detailed 782 

description). The filtered data set of phenotypic measurements (Data S3) is available 783 

at: 10.6084/m9.figshare.9901472. 784 

 785 

Statistical analyses of phenotypic variation 786 

In order to test for genetic effects on teosinte phenotypic variation, we 787 

decomposed phenotypic values of each trait considering a fixed population effect plus 788 

a random mother-plant effect (model M1): 789 
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where the response variable Y is the observed phenotypic value, µ is the total mean, αi 790 

is the fixed year effect (i = 2013, 2014), βj  the fixed field effect (j = field station, 791 

SENGUA, CEBAJ), θij is the year by field interaction, γk/ij is the fixed block effect 792 

(k = 1, 2, 3, 4) nested within the year-by-field combination, δl is the fixed effect of the 793 

population of origin (l = 1 to 11), χil is the year by population interaction, ψjl is the 794 

field by population interaction, Pm/l is the random effect of mother plant (m = 1 to 15) 795 

nested within population, and εijklm is the individual residue. Identical notations were 796 

used in all following models. For the distribution of the effects, the same variance was 797 

estimated within all populations. Mixed models were run using ASReml v.3.0 [125] 798 

and MM4LMM v2.0.1 [https://rdrr.io/cran/MM4LMM/man/MM4LMM-799 

package.html, update by F. Laporte] R packages, which both gave very similar results, 800 

and fixed effects were tested through Wald tests. 801 

 For each trait, we represented variation among populations using box-plots on 802 

mean values per mother plant adjusted for the experimental design following model 803 

M’1: 804 

������ � � � �� � �� � ��� � ��/��� ��/� � ������          �M�1� 

where mother plant within population is considered as fixed. We used the function 805 

predict to obtain least-square means (ls-means) of each mother plant, and looked at 806 

the tendencies between population’s values. All fixed models were computed using 807 

lm package in R, and we visually checked the assumptions of residues independence 808 

and normal distribution. 809 

We performed a principal component analysis (PCA) on phenotypic values 810 

corrected for the experimental design, using FactoMineR package in R [114] from the 811 

residues of model M2 computed using the lm package in R:  812 
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Finally, we tested for altitudinal effects on traits by considering the altitude of 813 

the sampled population (l) as a covariate (ALT) and its interaction with year and field 814 

in model M3: 815 

������ � � � �� � �� � ��� � ��/�� � �. ����� �� . ���� � �� . ���� � 
�/� � ������   

�M3� 

where all terms are equal to those in model M1 except that the fixed effect of the 816 

population of origin was replaced by a regression on the population altitude (ALTl).  817 

 818 

Detection of selection acting on phenotypic traits 819 

 820 

We aimed at detecting traits evolving under spatially varying selection by 821 

comparing phenotypic to neutral genotypic differentiation. Qst is a statistic analogous 822 

to FST but for quantitative traits, which can be described as the proportion of 823 

phenotypic variation explained by differences among populations [19, 107]. 824 

Significant differences between QST and FST can be interpreted as evidence for 825 

spatially-varying (QST>FST) selection [126]. We used the R package QstFstComp 826 

[127] that is adequate for experimental designs with randomized half-sibs in 827 

outcrossing species. We used individuals that were both genotyped and phenotyped 828 

on the association panel to establish the distribution of the difference between 829 

statistics (QST-FST) under the neutral hypothesis of evolution by drift - using the half-830 

sib dam breeding design and 1000 resamples. We next compared it to the observed 831 

difference with 95% threshold cutoff value in order to detect traits under spatially-832 

varying selection.  833 
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In addition to QST-FST analyses, we employed the DRIFTSEL R package  [128] 834 

to test for signal of selection of traits while accounting for drift-driven population 835 

divergence and genetic relatedness among individuals (half-sib design). DRIFTSEL is a 836 

Bayesian method that compares the probability distribution of predicted and observed 837 

mean additive genetic values. It provides the S statistic as output, which measures the 838 

posterior probability that the observed population divergence arose under divergent 839 

selection (S∼1), stabilizing selection (S∼0) or genetic drift (intermediate S values) 840 

[59]. It is particularly powerful for small datasets, and can distinguish between drift 841 

and selection even when QST-FST are equal [59]. We first applied RAFM to estimate the 842 

FST value across populations, and the population-by-population coancestry coefficient 843 

matrix. We next fitted both the RAFM and DRIFTSEL models with 15,000 MCMC 844 

iterations, discarded the first 5,000 iterations as a transient, and thinned the remaining 845 

by 10 to provide 1000 samples from the posterior distribution. Note that DRIFTSEL was 846 

slightly modified because we had information only about the dams, but not the sires, 847 

of the phenotyped individuals. We thus modified DRIFTSEL with the conservative 848 

assumption of all sires being unrelated. Because DRIFTSEL does not require that the 849 

same individuals were both genotyped and phenotyped, we used SSRs and phenotype 850 

data of the association panel as well as the set of neutral SNPs and phenotype data on 851 

10 out of the 11 populations. For the SNP analyses, we selected out of the 1000 852 

neutral SNPs the 465 most informative SNPs based on the following criteria: 853 

frequency of the less common variant at least 10%, and proportion of missing data at 854 

most 1%. Finally, we estimated from DRIFTSEL the posterior probability of the 855 

ancestral population mean for each trait as well as deviations of each population from 856 

these values.  857 
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Both QST-FST and DRIFTSEL rely on the assumption that the observed 858 

phenotypic variation was determined by additive genotypic variation. We thus 859 

estimated narrow-sense heritability for each trait in each population to estimate the 860 

proportion of additive variance in performance. We calculated per population narrow-861 

sense heritabilites as the ratio of the estimated additive genetic variance over the total 862 

phenotypic variance on our common garden measurements using the MCMCglmm R 863 

package [129] where half sib family is the single random factor, and the design (block 864 

nested within year and field) is corrected as fixed factor. For three grain-related traits, 865 

we also ran the same model but including mother plants phenotypic values calculated 866 

from the remaining grains not sown. We ran 100,000 iterations with 10,000 burn-in, 867 

inverse gamma (0.001; 0.001) as priors. We then calculated the mean and standard 868 

deviation of the 11 per population h² estimates. 869 

 870 

Pairwise correlations between traits. 871 

We evaluated pairwise-correlations between traits by correlating the residues 872 

obtained from model M4, that corrects the experiment design (year, field and blocks) 873 

as well as the underlying genetic structure estimated from SSRs: 874 

������ �  � �  �� �  �� �  �� �  ��/�� � � �� . ������ 
�

	

�
�

�  ������         �M4� 

where bn is the slope of the regression of Y on the nth structure covariate Cn. Structure 875 

covariate values (Cn covariates, from STRUCTURE output) were calculated at the 876 

individual level, i.e. for each offspring of mother plant m from population l, grown in 877 

the year i field j and block k. Cn are thus declared with ijklm indices, although they are 878 

purely genetic covariates.   879 

 880 
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Genotyping of outlier SNPs on 28 populations 881 

We extracted total DNA from each individual plant of the association panel as 882 

well as 20 individuals from each of the 18 remaining populations that were not 883 

included in the association panel (Table 1). Extractions were performed from 30 mg 884 

of lyophilized adult leaf material following recommendations of DNeasy 96 Plant Kit 885 

manufacturer (QIAGEN, Valencia, CA, USA). We genotyped outlier SNPs using 886 

Kompetitive Allele Specific PCR technology (KASPar, LGC Group) [130]. Data for 887 

outlier SNPs (Data S4 and Data S5) are available at: 10.6084/m9.figshare.9901472. 888 

Among SNPs identified as potentially involved in local adaptation, 270 were 889 

designed for KASPar assays, among which 218 delivered accurate quality data. Of the 890 

218 SNPs, 141 were detected as outliers in two previous studies using a combination 891 

of statistical methods – including FST-scans [131], Bayescan [32] and Bayenv2 [35, 892 

132], Bayescenv [133] – applied to either six of our teosinte populations [58] or to a 893 

broader set of 49 populations genotyped by the Illumina® MaizeSNP50 BeadChip 894 

[57]. The remaining outlier SNPs (77) were detected by FST-scans from six 895 

populations (S7 Fig, S5 Table), following a simplified version of the rationale in [58] 896 

by considering only differentiation statistics: SNPs were selected if they displayed 897 

both a high differentiation (5% highest FST values) between highland and lowland 898 

populations in at least one of the two gradients, and a high differentiation (5% highest 899 

FST values) between highland and lowland populations either within parviglumis (P2b 900 

and P8b) or within mexicana (M7b and M1b) or both in gradient b (S1 Fig). We 901 

thereby avoided SNPs fixed between the two subspecies.  902 

 903 
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Association mapping 904 

We tested the association of phenotypic measurements with outlier SNPs on a 905 

subset of individuals for which (1) phenotypic measurements were available, (2) at 906 

least 60% of outlier SNPs were adequately genotyped, and (3) kinship and cluster 907 

membership values were available from SSR genotyping. For association, we 908 

removed SNPs with minor allele frequency lower than 5%. 909 

In order to detect statistical associations between outlier SNPs and phenotypic 910 

variation, we used the following mixed model derived from [128]:  911 

������ �  � � �� � �� � ��� � ��/�� � � �� . ������ 
�

	

�
�

� !�� "����� � ������         �M5� 

where ζ is the fixed bi-allelic SNP factor with one level for each of the three 912 

genotypes (o=0, 1, 2; with o=1 for heterozygous individuals), and uijklm is the random 913 

genetic effect of the individual. We assumed that the vector of uijklm effects followed a 914 

Ν(0,K σ2u) distribution, where K is the kinship matrix computed as described above. 915 

 A variant of model M5 was employed to test for SNP association to traits, 916 

while correcting for structure as the effect of population membership (δl), δ being a 917 

factor with 11 levels (populations): 918 

������ �  � � �� � �� � ��� � ��/�� � 	� � !�� "����� � ������      �M5
�    

In order to avoid overcorrection of neutral genetic structure and improve 919 

power, we ran the two models independently for each chromosome using a kinship 920 

matrix K estimated from all SSRs except those contained in the chromosome of the 921 

tested SNP [134]. We tested SNP effects through the Wald statistics, and applied a 10% 922 

False Discovery Rate (FDR) threshold for each phenotype separately. In order to 923 

validate the correction for genetic structure, the 38 multiallelic SSR genotypes were 924 

transformed into biallelic genotypes, filtered for MAF > 5%, and used to run 925 
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associations with the complete M5 and M5’ models, as well as the M5 models 926 

excluding either kinship or both structure and kinship. For each trait, we generated 927 

QQplots of P-values for each of these models. 928 

Multiple SNP models were built by successively adding at each step the most 929 

significant SNP, as long as its FDR was lower than 0.10. We controlled for population 930 

structure considering 11 populations and used the kinship matrix that excluded the 931 

SSR on the same chromosome as the last tested SNP. 932 

 933 

Environmental correlation of outlier SNPs 934 

We tested associations between allelic frequency at 171 outlier SNPs and 935 

environmental variables across 28 populations, using Bayenv 2.0 [40, 111]. Because 936 

environmental variables are highly correlated, we used the first two principal 937 

component axes from the environmental PCA analysis (PCenv1 and PCenv2) to run 938 

Bayenv 2.0. This software requires a neutral covariance matrix, that we computed 939 

from the available dataset of 1000 neutral SNPs (S1 Table). We performed 100,000 940 

iterations, saving the matrix every 500 iterations. We then tested the correlation of 941 

these to the last matrix obtained, as well as to an FST matrix calculated with 942 

BEDASSLE [135], as described in [57]. 943 

For each outlier SNP, we compared the posterior probability of a model that 944 

included an environmental factor (PCenv1 or PCenv2) to a null model. We 945 

determined a 5% threshold for significance of environmental association by running 946 

100,000 iterations on neutral SNPs. We carried out five independent runs for each 947 

outlier SNP and evaluated their consistency from the coefficient of variation of the 948 

Bayes factors calculated among runs. 949 
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In order to test whether environmental distance was a better predictor of allele 950 

frequencies at candidate SNPs than geography, we used multiple regression on 951 

distance matrices (MRM, [136]) implemented in the ecodist R package [137] for each 952 

outlier SNP. We used pairwise FST values as the response distance matrix and the 953 

geographic and environmental distance matrices as explanatory matrices. We 954 

evaluated the significance of regression coefficients by 1000 permutations and 955 

iterations of the MRM. We determined the total number of environmentally and 956 

geographically associated SNPs (P-value<0.05) among outliers. We employed the 957 

same methodology for our set of 1000 neutral SNPs.   958 

 959 
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Supporting information captions 

 

Figure S1: Altitudinal profiles along gradients a and b. Sampled populations are 

plotted on parallel altitudinal profiles for gradients a and b. Darker gray lines indicate 

lower latitude for gradient a and lower longitude for gradient b. Sampled populations 

are plotted by green circles (parviglumis) or red triangles (mexicana). The altitude of 

the two experimental fields (CEBAJ: 1750m and SENGUA: 2017m) are marked with 

stars on y-axes. 

 

Figure S2: Principal Component Analysis of 19 climate variables for 37 teosinte 

populations. A: Projection of parviglumis (in green) and mexicana (in red) 

populations on the first PCA plane with gradients a and b indicated by triangles and 

circles, respectively. The 11 populations evaluated in common gardens are 

surrounded by a purple outline. Populations that were previously sequenced to detect 

selection footprints are shown in bold (S1 Table). B: Correlation circle of the 19 

climatic variables on the first PCA plane. Climatic variables indicated as Tn (n from 1 

to 11) and Pn (n from 12 to 19) are related to temperature and precipitation, 

respectively. Altitude, Latitude and Longitude (in blue) were added as supplementary 

variables, and CEBAJ and SENGUA field locations were added as supplementary 

individuals. 

 

Figure S3: Box-plots of means adjusted by field, year and block, for all traits. 

Populations are ranked by altitude. parviglumis populations are shown in green and 

mexicana in red. Lighter colors are used for gradient ‘a’ and darker colors for gradient 

‘b’. Units of measurement correspond to those defined in S2 Table. For male and 
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female flowering time, we report values for all 11 populations although very few 

individuals from the two most lowland populations (P1a and P2b) flowered. 

Covariation with altitude was significant for all traits except for the number of nodes 

with ears on the main tiller (S3 Table). 

 

Figure S4: Pairwise correlations between phenotypic traits. Pearson coefficient 

sign and magnitude for significant correlations between phenotypic traits after 

correction for experiment design (Model M’1). X: correlations that are not significant. 

 

Figure S5. Evanno method calculations for population number ∆K in the 

association panel genotyped for 38 SSRs.  

 

Figure S6. Genetic clustering of ancestry proportions in the association panel 

genotyped for 38 SSRs. Genetic clustering was computed for K=2 to K=11. Vertical 

lines (individuals) are partitioned into coloured segments whose length represents the 

admixture proportions from the K clusters.  

 

Figure S7. Determination of the migration edge number in the TreeMix model. 

Observed Log likelihood values are plotted against the number of migration edges 

tested from 0 to 10, and two models are fitted to the data (A). Both the simple 

exponential and the non-linear least squares delivered an optimal value of 3 for the 

number of migration edges (change points). The model with 3 migration edges 

explained 98.75% of the variance, a substantial increase from the null model with no 

migration edge which is 95.7% (B). 
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Figure S8: Significance of QST-FST difference for each trait. The dotted blue line 

indicates the 95% threshold of the simulated distributions and the red line refers to the 

observed difference. In this analysis, we considered as spatially-varying traits those 

for which the observed difference fell outside the 95% threshold. Note that Plant 

height was borderline significant. *: Set of traits detected by DRIFTSEL. 

 

Figure S9: Genomic FST-scans on 6 teosinte populations. We computed 4 pairwise-

FST values from 6 populations previously sequenced (S1 Table). Those include FST 

between lowland and highland populations of each gradient (P1a-M6a, P2b-M7b) as 

well as within subspecies on gradient b (P2b-P8b, M1b-M7b). FST values are 

averaged across sliding windows of 20 SNPs with a step of five SNPs (from top to 

bottom, chromosome 1 to 10) and normalized by subtracting the FST mean and 

dividing by the standard deviation across pairwise comparisons. Only the top 1% 

values are represented. The 1‰ thresholds for each pairwise comparisons are 

indicated by colored horizontal lines. Horizontal black bars indicate location of 

inversions on chromosome 1 (Inv1n), chromosome 4 (Inv4m) and chromosome 9 

(Inv9d).  The subset of 171 outlier SNPs analyzed in the present study is indicated 

with black diamond marks along the X axes.  

 

Figure S10: QQ-plots of observed P-values and expected P-values generated 

from 38 SSRs. We employed three versions of the model M5 with correction for 

neither structure nor kinship, with correction for genetic structure (at K=5), with 

correction for genetic structure (at K=5 and with 11 populations) and kinship. 
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Figure S11: Manhattan plots of associations between 171 outlier SNPs and 12 

phenotypic traits. X-axis indicates the positions of outlier SNPs on chromosomes 1 

to 10, black and gray colors alternating per chromosome. Plotted on the Y-axis are the 

negative Log10-transformed P values obtained for the K=5 model. Significant 

associations (10% FDR) are indicated considering either a structure matrix at K=5 

(pink dots), for 11 populations (blue dots), or for both K=5 and 11 populations models 

(purple dots).  

 

Figure S12: Pairwise Linkage Disequilibrium (LD) between outlier SNPs. 

Pairwise LD between 171 SNPs was estimated using r2, and corrected for structure at 

K=5 and kinship computed from 38 SSRs. Blue shaded bars show the 23 SNPs found 

to associate with at least one phenotype under the 11 populations structure correction. 

 

 

 

S1 Table.  Description of 37 teosinte populations and sets of populations used in 

the present study by data types. 

 

S2 Table. List of the 18 phenotypic traits measured and estimates of narrow-

sense heritabilities (h2).  

 

S3 Table. Significance of main effects for each trait as determined by models M1 

and M3.  
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S4 Table. Description of 46 SSRs and genotyping success rate. 

 

S5 Table. Characteristics, association with phenotypes, effects and correlation 

with environment of outlier SNPs. 

 
S6 Table. Number of individuals used to test associations between 171 SNPs and 

18 phenotypes.  

 

S7 Table. Additive and dominance effects of SNPs associated to traits after the 

11-population structure correction.  
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