
HAL Id: hal-02345627
https://hal.science/hal-02345627v1

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decentralized Evaluation of Quadratic Polynomials on
Encrypted Data

Chloé Hébant, Duong Hieu Phan, David Pointcheval

To cite this version:
Chloé Hébant, Duong Hieu Phan, David Pointcheval. Decentralized Evaluation of Quadratic Polyno-
mials on Encrypted Data. ISC 2019 - International Conference on Information Security, Sep 2019,
New York, United States. pp.87-106, �10.1007/978-3-030-30215-3_5�. �hal-02345627�

https://hal.science/hal-02345627v1
https://hal.archives-ouvertes.fr


This paper is a slight variant of the Extended Abstract that appears in
the Proceedings of the 22nd Information Security Conference, ISC 2019 (September 16–18, New-York, USA)
Springer-Verlag, LNCS ?????, pages ???–???.

Decentralized Evaluation of Quadratic Polynomials on
Encrypted Data

Chloé Hébant1,2, Duong Hieu Phan3, and David Pointcheval1,2

1 DIENS, École normale supérieure, CNRS, PSL University, Paris, France
2 INRIA, Paris, France

3 Université de Limoges, France

Abstract Since the seminal paper on Fully Homomorphic Encryption (FHE) by Gentry in 2009, a
lot of work and improvements have been proposed, with an amazing number of possible applications.
It allows outsourcing any kind of computations on encrypted data, and thus without leaking any
information to the provider who performs the computations. This is quite useful for many sensitive
data (finance, medical, etc.).
Unfortunately, FHE fails at providing some computation on private inputs to a third party, in
cleartext: the user that can decrypt the result is able to decrypt the inputs. A classical approach
to allow limited decryption power is distributed decryption. But none of the actual FHE schemes
allows distributed decryption, at least with an efficient protocol.
In this paper, we revisit the Boneh-Goh-Nissim (BGN) cryptosystem, and the Freeman’s variant,
that allow evaluation of quadratic polynomials, or any 2-DNF formula. Whereas the BGN scheme
relies on integer factoring for the trapdoor in the composite-order group, and thus possesses one
public/secret key only, the Freeman’s scheme can handle multiple users with one general setup
that just needs to define a pairing-based algebraic structure. We show that it can be efficiently
decentralized, with an efficient distributed key generation algorithm, without any trusted dealer,
but also efficient distributed decryption and distributed re-encryption, in a threshold setting. We
then provide some applications of computations on encrypted data, without central authority.

Keywords: Decentralization, Fully Homormorphic Encryption, 2-DNF

1 Introduction

Decentralized Cryptography is one of the main directions of research in cryptography, especially
in a concurrent environment of multi-user applications, where there is no way to trust any
authority. Recently, the rise of blockchain’s applications also witnessed the importance of de-
centralized applications. However, the blockchain mainly addresses the decentralized validation
of transactions, but it does not help in decentralizing computations. For the computational
purpose, though general solutions can be achieved via multi-party computation, reasonably ef-
ficient solutions only exist for a limited number of protocols, as decentralization usually adds
constraints to the design of protocols: in broadcast encryption [FN94], the decentralized protocol
in [PPS12] is much less efficient than the underlying original protocol [NNL01]; in attribute-
based encryption [SW05], the decentralized scheme [CC09] implies some constraints on the
access control policy, that are removed in [LW11], but at the cost of the use of bilinear groups
of composite order with 3 prime factors; etc.

Decentralized Computing over Encrypted Data. In the last decade, the most active research
direction carries on computing over encrypted data, with the seminal papers on Fully Ho-
momorphic Encryption (FHE) [Gen09] and on Functional Encryption (FE) [BSW11, GKP+13,
GGH+13]. FE was generalized to the case of multi-user setting via the notion of multi-input/multi-
client FE[GGG+14, GGJS13, GKL+13]. It is of practical interest to consider the decentralization
for FHE and FE without need of trust in any authority. In FE, the question in the multi-client
setting was recently addressed by Chotard et al. [CDG+18] for the inner product function and
then improved in [ABKW19, CSG+18], where all the clients agree and contribute to generate
the functional decryption keys, there is no need of central authority anymore. Note that, in FE,
there are efficient solutions for quadratic functions [Gay16, BCFG17] but actually, only linear
function evaluations can be decentralized as none of the methods to decentralize linear schemes

c© Springer 2019.



2

seems to apply, and no new method has been proposed so far. We consider, in this paper, the
practical case of decentralizing FHE in multi-user setting. However, the general solution for
FHE is still not yet practical, as FHE decryption requires rounding operations that are hard to
efficiently distribute. Thus we only consider decentralized evaluation of quadratic polynomials.
Moreover, as only decentralized linear computation was possible before, this paper can improve
the efficiency of multi-party computation scheme by allowing quadratic steps and thus, improve
the number of interactions needed. To motivate our work, we focus on some real-life applica-
tions in the last section which only require evaluations of quadratic polynomials so that specific
target users can get the result in clear, by running re-encryption in a distributed manner under
the keys of the target users.

1.1 Technical Contribution

We design an efficient distributed evaluation for quadratic polynomials, with decentralized gen-
eration of the keys. Boneh-Goh-Nissim [BGN05] proposed a nice solution for quadratic poly-
nomials evaluation. However, their solution relies on a composite-order elliptic curve and thus
on the hardness of the integer factoring. This possibly leads to a distributed solution, but that
is highly inefficient. Indeed, no efficient multi-party generation of distributed RSA modulus is
known, except for 2 parties. But even the recent construction [FLOP18], the most efficient up to
now, is still quite inefficient as it relies on oblivious transfer in the semi-honest setting, and on an
IND-CPA encryption scheme, coin-tossing, zero-knowledge and secure two-party computation
protocols in the malicious setting. Catalano and Fiore [CF15] introduced an efficient technique
to transform a linearly-homomorphic encryption into a scheme able to evaluate quadratic oper-
ations on ciphertexts. They are able to support decryption of a large plaintext space after the
multiplication. However, as in Kawai et al. [KMH+19] which used this technique to perform
proxy re-encryption, they only consider a subclass of degree-2 polynomials where the number
of additions of degree-2 terms is bounded by a constant. This is not enough for most of the
applications and we do not try to decentralize these limited protocols.

Our Approach. Freeman [Fre10] proposed a conversion from composite-order groups to prime-
order groups for the purpose of improving the efficiency. Interestingly, Freeman’s conversion
allows multi-user setting, since a common setup can handle several keys. But we additionally
show it is well-suited for distributed evaluation of 2-DNF formulae. Actually, working in prime-
order groups, we can avoid the bottleneck of a distributed generation of RSA moduli. However,
it is not enough to have an efficient distributed setup. One also needs to distribute any use of
the private keys in the construction: for decryption and re-encryption (see Section A.10). Unfor-
tunately, the Freeman’s generic description with projection matrices does not directly allow the
design of a decentralized scheme, i.e., with efficient distributed (threshold) decryption without
any trusted dealer. We thus specify particular projections, with well-chosen private and public
keys. This leads to an efficient decentralized version with distributed private computations. Our
main contribution is to prove that using particular projection matrices does not weaken the
global construction.

Related Work. In a previous and independent work, Attrapadung et al. [AHM+18] proposed
an efficient two-level homomorphic encryption in prime-order groups. They put forward a new
approach that avoids the Freeman’s transformation from BGN encryption. Interestingly, our
work shows this scheme falls into the Freeman’s framework because their construction is similar
to the simplified non-decentralized version of our scheme which is obtained from BGN via a
Freeman transformation with a particular choice of projections. The concrete implementations
in [AHM+18] show that such a scheme is quite efficient, which applies to our construction, and
even to the distributed construction as each server, for a partial decryption, essentially has
to perform a decryption with its share. In another unpublished work [CPRT18], Culnane et al.



3

considered a universally verifiable MPC protocol in which one of the two steps is to distribute the
key generation in somewhat homomorphic cryptosystems. However, as we mentioned above, the
Freeman’s generic description with projection matrices, as considered in [CPRT18], does not
lead to an efficient distributed decryption. In short, our result bridges the gap between the
objective of decentralization as in [CPRT18] and the efficiency goal as in [AHM+18].

1.2 Applications

Boneh, Goh, and Nissim proposed two main applications to secure evaluation of quadratic poly-
nomials: private information retrieval schemes (PIR) and electronic voting protocols. However,
the use of our decentralized scheme for electronic voting is much more preferable than the BGN
scheme, as there is no way to trust any dealer in such a use-case. We propose two more appli-
cations that are related to the group testing and the consistency model in machine learning.
Our applications are particularly useful in practice in a decentralized setting, as they deal with
sensitive data. Interestingly, the use of distributed evaluation for quadratic polynomials in these
applications is highly non-trivial and will be explained in the last section.

2 Preliminaries

2.1 Notations

We denote by x $← X the process of selecting x uniformly at random in the setX. Let Zp = Z/pZ
be the ring of integers modulo p. For any group G, we denote by 〈g〉 the space generated by
g ∈ G.

2.2 Bilinear Group Setting

A bilinear group generator G is an algorithm that takes as input a security parameter λ and
outputs a tuple (G1,G2,GT , p, g1, g2, e) such that G1 = 〈g1〉 and G2 = 〈g2〉 are cyclic groups of
prime order p (a λ-bit prime integer), and e : G1 ×G2 → GT is an admissible pairing:

– e is bilinear: for all a, b ∈ Zp, e(ga1 , gb2) = e(g1, g2)ab;
– e is efficiently computable (in polynomial-time in λ);
– e is non-degenerate: e(g1, g2) 6= 1.

Furthermore, the bilinear setting (G1,G2,GT , p, g1, g2, e) is said asymmetric when G1 6= G2.
This will be our setting, while the BGN encryption scheme uses a symmetric setting, with
composite-order groups.

2.3 Computational Assumption

Our security results rely on the Decisional Diffie-Hellman assumption:

Definition 1. Let G = 〈g〉 be a cyclic group of prime order p. The advantage Advddh
G (A) of an

adversary A against the Decisional Diffie-Hellman (DDH) problem in G is defined by:

Pr
[
A(g, gx, gy, gxy) = 1|x, y $← Zp

]
− Pr

[
A(g, gx, gy, gz) = 1|x, y, z $← Zp

]
.

We say that the DDH problem in G is (t, ε)-hard if for any advantage A running within time t,
its advantage Advddh

G (A) is bounded by ε.

We denote by Advddh
G (t) the best advantage any adversary can get within time t.



4

Expind-cpa-b
E (A) : param← Setup(λ); (sk, pk)← Keygen(param); (s,m0,m1)← A(pk)

C ← Encrypt(pk,mb); b′ ← A(s, C); return b′

Figure 1. Experiment of IND-CPA
2.4 Security Notions

Let us now recall the semantic security, a.k.a. indistinguishability (or IND-CPA), for a public-key
encryption scheme, according to the experiment presented in Figure 1, where the attack is in
two steps, and so the adversary outputs a state s to resume the process in the second step.

Definition 2. Let E = (Setup,Keygen,Encrypt,Decrypt) be an encryption scheme. Let us de-
note Expind-cpa-b

E (A) the experiment defined in Figure 1. The advantage Advind-cpa
E (A) of an ad-

versaryA against indistinguishability under chosen plaintext attacks (IND-CPA) is Pr[Expind-cpa-1
E (A) =

1]− Pr[Expind-cpa-0
E (A) = 1]. We say that an encryption scheme E is (t, ε)− IND-CPA if for any

adversary A running within time t, its advantage Advind-cpa
E (A) is bounded by ε.

We denote by Advind-cpa
E (t) the best advantage any adversary A can get within time t.

3 Encryption for Quadratic Polynomial Evaluation

To evaluate 2-DNF formulae on encrypted data, Boneh-Goh-Nissim described a cryptosys-
tem [BGN05] that supports additions, one multiplication layer, and additions. They used a
bilinear map on a composite-order group and the secret key is the factorization of the order of
the group. Unfortunately, composite-order groups require huge orders, since the factorization
must be difficult, with costly pairing evaluations.

3.1 Freeman’s Framework

In order to improve on the efficiency, Freeman in [Fre10, Section 5] proposed a system on prime-
order groups, using a similar property of noise that can be removed, with the general definition
of subgroup decision problem. Let us recall the Freeman’s cryptosystem:

Keygen(λ): Given a security parameter λ, it generates a description of three Abelian groups
G,H,GT and a pairing e : G ×H → GT . It also generates a description of two subgroups
G1 ⊂ G,H1 ⊂ H and two homomorphisms π1, π2 such that G1, H1 are contained in the
kernels of π1, π2 respectively. It picks g $← G and h $← H, and outputs the public key
pk = (G,H, g, h,G1, H1) and the private key sk = (π1, π2).

Encrypt(pk,m): To encrypt a message m using public key pk, one picks g1
$← G1 and h1

$← H1,
and outputs the ciphertext (CA, CB) = (gm · g1, h

m · h1) ∈ G×H.
Decrypt(sk, C): Given C = (CA, CB), output m← logπ1(g)(π1(CA)) (which should be the same

as logπ2(h)(π2(CB))).

The Freeman’s scheme is also additively homomorphic. Moroever, if an homomorphism πT exists
such that, for all g ∈ G, h ∈ H, e(π1(g), π2(h)) = πT (e(g, h)), we can get, as above, a ciphertext
in GT of the product of the two plaintexts, when multiplying the ciphertexts in G and H. The
new encryption scheme in GT is still additively homomorphic, and allows evaluations of 2-DNF
formulae.

Remark 3. We note that in the Freeman’s cryptosystem, ciphertexts contain encryptions of m
in both G and H to allow any kind of additions and multiplication. But one could focus on just
one ciphertext when one knows the formula to be evaluated.



5

3.2 Optimized Version

In the Appendix A, we present the translation of the Freeman’s approach with projection
matrices. This indeed leads to a public-key encryption scheme that can evaluate quadratic
polynomials in Zp, under the DDH assumption. However, because of the secret key that must
be a projection matrix, the distributed generation, while possible (see Appendix A.10), is not
as efficient as one can expect. We thus now propose a particular instantiation of projections,
which allows very compact keys and ciphertexts. In addition, this will allow to generate keys in a
distributed manner, without any trusted dealer. While in the generic transformation of Freeman,
the secret key belongs to the whole projection matrix space, our particular instantiation of
projections means that the secret key will belong to a proper sub-space of the projection matrix
space.

Indeed, it is possible to reduce by a factor two the size of the keys: for s ∈ {1, 2}, the
secret key is just one scalar and the public key one group element in Gs. For the keys, we will
consider orthogonal projections on 〈(1, x)〉, for any x ∈ Zp. Thus, sks can simply be described
by x ∈ Zp, which is enough to define the projection. The public key pks can simply be described
by g−xs ∈ Gs, which is enough to define (g−xs , gs), as (−x, 1) is a vector in the kernel of the
projection, to add noise that the secret key will be able to remove.

More precisely, we can describe our optimized encryption schemes, for s ∈ {1, 2, T}, as
Es : (Setup,Keygens,Encrypts,Decrypts) with a common Setup:

Setup(λ): Given a security parameter λ, run and output

param = (G1,G2,GT , p, g1, g2, e)← G(λ).

Keygens(param): For s ∈ {1, 2}. Choose xs $← Zp and output the public key pks = g−xs
s and the

private key sks = xs. From (pk1, sk1)← Keygen1(param) and (pk2, sk2)← Keygen2(param),
one can consider pkT = (pk1, pk2) and skT = (sk1, sk2), which are associated public and
private keys in GT .

Encrypts(pks,m): For s ∈ {1, 2}, to encrypt a message m ∈ Zp using public key pks, choose
r $← Zp and output the ciphertext

Cs = (cs,1 = gms · pkrs, cs,2 = grs) ∈ G2
s.

For s = T , to encrypt a message m ∈ Zp using public key pkT = (pk1, pk2), choose
r11, r12, r21, r22

$← Z4
p and output the ciphertext

CT =


cT,1 = e(g1, g2)m · e(g1, pk2)r11 · e(pk1, g2)r21 ,
cT,2 = e(g1, g2)r11 · e(pk1, g2)r22 ,
cT,3 = e(g1, pk2)r12 · e(g1, g2)r21 ,
cT,4 = e(g1, g2)r12+r22

 ∈ G4
T

Decrypts(sks, Cs): For s ∈ {1, 2}, given Cs = (cs,1, cs,2) and the private key sks, compute d =
cs,1·csks

s,2 and output the logarithm of d in basis gs. For s = T , given CT = (cT,1, cT,2, cT,3, cT,4)
and skT = (sk1, sk2), compute d = cT,1 · csk2

T,2 · c
sk1
T,3 · c

sk1·sk2
T,4 and output the logarithm of d in

basis e(g1, g2).

In G1 and G2, this is actually the classical ElGamal encryption. We essentially extend it to GT ,
to handle quadratic operations:

Add(Cs, C ′s) just consists of the component-wise product in Gs;
Multiply(C1, C2) for C1 = (c1,1 = gm1

1 · pkr1
1 , c1,2 = gr1

1 ) ∈ G2
1 and C2 = (c2,1 = gm2

2 · pkr2
2 , c2,2 =

gr2
2 ) ∈ G2

2, consists of the tensor product:

CT = (e(c1,1, c2,1), e(c1,1, c2,2), e(c1,2, c2,1), e(c1,2, c2,2)) ∈ G4
T



6

Randomizes(pks, Cs) is, as usual, the addition of a random ciphertext of 0 in the same group
Gs. For s ∈ {1, 2}: Given a ciphertext Cs = (cs,1, cs,2) with its public key pks, it chooses
r $← Zp and outputs (cs,1 · pkrs, cs,2 · grs); while for s = T , a public key pkT and a cipher-
text (cT,1, cT,2, cT,3, cT,4), it chooses r′11, r

′
12, r

′
21, r

′
22

$← Zp and outputs (cT,1 · e(g1, pk2)r′
11 ·

e(pk1, g2)r′
21 , cT,2·e(g1, g2)r′

11 ·e(pk1, g2)r′
22 , cT,3·e(g1, pk2)r′

12 ·e(g1, g2)r′
21 , cT,4·e(g1, g2)r′

12+r′
22).

3.3 Security Properties

Whereas the correctness directly comes from the correctness of the Freeman’s construction,
presented in the Appendix A, and verification is straightforward, the semantic security comes
from the classical ElGamal encryption security, under the DDH assumptions, for the basic
schemes in G1 and G2:

Theorem 4. For s ∈ {1, 2}, Es is IND-CPA under the DDH assumption in Gs: for any adversary
A running within time t, Advind-cpa

Es
(A) ≤ 2×Advddh

Gs
(t).

Corollary 5. ET is IND-CPA under the DDH assumptions in G1 or G2.

Proof. The semantic security for ciphertexts in GT comes from the fact that:

EncryptT (pkT ,m) = Multiply(Encrypt1(pk1,m),Encrypt2(pk2, 1))
= Multiply(Encrypt1(pk1, 1),Encrypt2(pk2,m))

Indeed, with this relation, each ciphertext in G1 can be transformed into a ciphertext in GT

(idem with a ciphertext in G2). Let A be an adversary against IND-CPA of ET , in GT .

Game G0: In the first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

ET
(A), where b = 0:

– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sk1, pk1)← Keygen1(param),(sk2, pk2)← Keygen2(param)
– m0,m1 ← A(param, (pk1, pk2)); CT = EncryptT ((pk1, pk2),m0)
– β ← A(param, (pk1, pk2), CT )

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

ET
(A) = 1

]
.

Game G1: The simulator interacts with a challenger in Expind-cpa-0
E1

(A), where b = 0. It
thus first receives param, pk1 from that challenger, generates pk2 by himself to provide
(pkT = (pk1, pk2)) to the adversary. The latter sends back (m0,m1) the simulators for-
wards to the challenger. It gets back C1 = Encrypt1(pk1,m0). It can compute CT =
Multiply(C1,Encrypt2(pk2, 1)), to be sent to the adversary. This game is perfectly indis-
tinguishable from the previous one: PrG1 [E] = PrG0 [E].

Game G2: The simulator interacts with a challenger in Expind-cpa-1
E1

(A), where b = 1:

Pr
G2

[E]− Pr
G1

[E] ≤ Advind-cpa
E1

(t+ 4 · tp + 4 · te),

where tp is the time for one pairing and te the time for one exponentiation.
Game G3: In this final game, the simulator plays the role of the challenger in Expind-cpa-1

ET
(A),

where b = 1. This game is perfectly indistinguishable from the previous one: PrG3 [E] =
PrG2 [E].



7

One can note, that in this last game, PrG3 [E] = Pr
[
Expind-cpa-1

ET
(A) = 1

]
, hence

Advind-cpa
ET

(A) ≤ Advind-cpa
E1

(t+ 4 · tp + 4 · te),

which concludes the proof, since it works exactly the same way for G2. ut

We stress that the security of ET only requires the DDH assumption in one of the two groups,
and not the SXDH assumption (which means that the DDH assumption holds in both G1 and
G2).

4 Decentralized Homomorphic Encryption

Our main motivation was a decentralized key generation and a distributed decryption in order
to be able to compute on encrypted data so that nobody can decrypt intermediate values but the
result can be provided in clear to a target user. We now show that our optimized construction
allows both decentralized key generation without a trusted dealer and distributed decryption.
They are both quite efficient. When a result should be available to a unique user, a classical
technique called proxy re-encryption [BBS98] is to re-encrypt to this target user: this is a virtual
decryption followed by encryption under the new key. We also show this is possible to do it in
a distributed way, without any leakage of information.

4.1 Decentralized Key Generation

In fact, a classical decentralized t-out-of-n threshold secret sharing allows to generate the shares
of a random element and it seems hard (if one expects efficiency) to use it to generate the shares
of a structured matrix, such as projections required in the generic construction, because its
elements are not independently random. In our specific construction, the secret keys in G1 and
G2 are now one scalar and one can perform a classical t-out-of-n threshold secret sharing: each
player i generates a random polynomial Pi of degree t−1 in Zp[X], privately sends xi,j = Pi(j) to
player j, and publishes g−Pi(0)

s ; each player i then aggregates the values into ski =
∑
j xj,i = P (i),

for P =
∑
j Pj , which leads to a share of x = P (0), and the public key is the product of all the

public values.

4.2 Distributed Decryption

In order to decrypt Cs = (cs,1, cs,2) in G1 or G2, each player in a sub-set of t players sends its
contribution cski

s,2, that can be multiplied with Lagrange coefficients as exponents to obtain the
mask csk

s,2 = pk−rs . To decrypt CT = (cT,1, cT,2, cT,3, cT,4) in GT , one can first use the shares of
sk1 to compute csk1

T,3 and csk1
T,4, and then the shares of sk2 to compute csk2

T,2 and csk1·sk2
T,4 . Under the

DDH assumptions in G1, G2 and GT , one can show that the intermediate values cski
s,2, or c

sk1
T,3,

csk1
T,4, c

sk2
T,2, and c

sk1·sk2
T,4 do not leak more than the decryption itself. Of course, classical verifiable

secret sharing techniques can be used, for both the decentralized generation and the distributed
decryption. This can allow, with simple Schnorr-like proofs of Diffie-Hellman tuples, universal
verifiability.

4.3 Distributed Re-encryption

Besides a distributed decryption, when outsourcing some computations on private information,
a distributed authority may want to re-encrypt the encrypted result to a specific user, so that
the latter can get the result in clear, and nobody else. More precisely, we assume the input
data were encrypted under the keys pk1, pk2, and pkT = (pk1, pk2), which leads, after quadratic



8

evaluations, to a resulting ciphertext under the key pkT , for which the distributed authorities,
knowing a t-out-of-n additive secret sharing (sk1,i, sk2,i)i of (sk1, sk2), will re-encrypt under
PKT = (PK1,PK2) for the target user.

Of course, such a re-encryption can be performed using multi-party computation, but we will
show an efficient way to do it. And we start with the re-encryption of cs = (cs,1 = gms ·pkrs, cs,2 =
grs): player i chooses r′i

$← Zp, computes αi = c
sks,i

s,2 · PKr
′
i
s and βi = g

r′
i
s , and outputs (αi, βi).

Then, anybody can compute, for the appropriate Lagrange coefficients λi’s,

Cs = (Cs,1 = cs,1 ×
∏

αλi
i = gms pkrsgr·sks

s · PKr′
s = gms · PKr′

s , Cs,2 =
∏

βλi
i = gr

′
s )

with r′ =
∑
λir
′
i, where the sum is on the t members available.

For s = T , given a ciphertext cT = (cT,1, cT,2, cT,3, cT,4), player i chooses ui $← Zp, and first
computes and sends α3,i = c

sk1,i

T,4 · e(g1, g2)−ui . With a linear combination for the appropriate
Lagrange coefficients λi’s, anybody can compute, α3 =

∏
αλi

3,i = csk1
T,4 · e(g1, g2)−u, with implicit

u =
∑
λiui. Then each player i chooses r′11,i, r

′
12,i, r

′
21,i, r

′
22,i, vi

$← Zp and computes

α1,i = c
sk2,i

T,2 · e(PK1, g2)r
′
21,i βi = e(g1, g2)r

′
11,i+ui · e(PK1, g2)r

′
22,i

α2,i = c
sk1,i

T,3 · e(g1,PK2)r
′
11,i γi = e(g1,PK2)r

′
12,i · e(g1, g2)r

′
21,i+vi

α4,i = α
sk2,i

3 · e(PK1, g2)vi δi = e(g1, g2)r
′
12,i+r

′
22,i

Again, with linear combinations for the appropriate Lagrange coefficients λi’s, anybody can
compute, with r′jk =

∑
λir
′
jk,i, for j, k ∈ {1, 2}, and v =

∑
λivi:

α1 = csk2
T,2 · e(PK1, g2)r′

21 CT,2 = e(g1, g2)r′
11+u · e(PK1, g2)r′

22

α2 = csk1
T,3 · e(g1,PK2)r′

11 CT,3 = e(g1,PK2)r′
12 · e(g1, g2)r′

21+v

α4 = csk1sk2
T,4 · e(g1,PK2)u · e(PK1, g2)v CT,4 = e(g1, g2)r′

12+r′
22

Then, CT,1 = cT,1 × α1α2α4 = e(g1, g2)m · e(g1,PK2)r′
11+u · e(PK1, g2)r′

21+v, so that CT =
(CT,1, CT,2, CT,3, CT,4) is a re-encryption of cT under PKT .

For random scalars, the re-encryption algorithms (which is just a one-round protocol in G1
and G2, but 2-round in GT ) generate new ciphertexts under appropriate keys that look perfectly
fresh. In addition, one can claim:

Theorem 6. The above distributed protocols for re-encryption do not leak additional informa-
tion than the outputs of the non-distributed algorithms.

Proof. The goal of this proof is to show that the distributed protocol to re-encrypt a ciphertext
under PKs does not leak more information than a direct encryption under PKs. For s ∈ {1, 2},
one is given cs = Encrypts(m, pks; r) = (cs,1, cs,2) and Cs = Encrypts(m,PKs;R) = (Cs,1, Cs,2),
two ciphertexts of the same message m under pks and PKs respectively. One can then note that
Cs,1/cs,1 = PKRs /pkrs = csks

s,2/C
SKs
s,2 .

The Re-Encryption in Gs, for s ∈ {1, 2}.

Game G0: In the first game, the simulator just receives cs = (cs,1, cs,2), and plays the real
protocol using the t-out-of-n distributed keys (sks,i)i to provide the keys to the corrupted
users and to generate the values αi = c

sks,i

s,2 ·PKr
′
i
s and βi = g

r′
i
s , on behalf of the non-corrupted

players. We assume that among t players, ` are honest and t− ` are corrupted. The latter
are assumed to receive the secret keys sks,i and to generate their own outputs (αi, βi). The
view of the attacker consists of the set of all the honest (αi, βi).



9

Game G1: The simulator is now given cs = (cs,1, cs,2) and Cs = (Cs,1, Cs,2) that encrypt the
same message. We want, for the appropriate Lagrange coefficients λi

Cs,1 = cs,1 ·
∏

αλi
i Cs,2 =

∏
βλi
i .

Hence, the simulator can take, for all the honest players except the last one, r′i
$← Zp to

compute αi = c
sks,i

s,2 · PKr
′
i
s and βi = g

r′
i
s . For the last honest player, from all the honest-user

shares and corrupted-user shares, one sets

α` = (Cs,1/cs,1 ·
∏
i 6=`

α−λi
i )1/λ` β` = (Cs,2 ·

∏
i 6=`

β−λi
i )1/λ` .

Then, for the t players:
∏
αλi
i = csks

s,2 · PKr′
s and

∏
βλi
i = gr

′
s , for r′ =

∑
λir
′
i and with the

implicit r′` = (R −
∑
i 6=` λir

′
i)/λ`. So r′ = R. The view of the attacker remains exactly the

same.
Game G2: In this game, the simulator also takes as input a Diffie-Hellman tuple (A = gr, B =

PKrs) with (gs,PKs): it first derives enough independent pairs (Ai, Bi) = (gxi
s ·Ayi ,PKxi

s ·Byi),
for random xi, yi, for all the non-corrupted players (excepted the last one), and computes
αi = c

sks,i

s,2 ·Bi, βi = Ai. Since (gs,PKs, A,B) is a Diffie-Hellman tuple, the view is perfectly
indistinguishable from the previous one.

Game G3: In this game, the simulator now receives a random tuple (A,B), which makes all
the (Ai, Bi) independent random pairs, the rest is unchanged: under the DDH assumption
in Gs, the view is computationally indistinguishable.

Game G4: This is the final simulation, where all the honest shares (αi, βi) are chosen at
random, except the last ones (α`, β`) that are still computed as above to complete the
values using cs and Cs: the view is perfectly indistinguishable from the previous one and
does not leak information.

As a consequence, we have proven that there is a simulator (defined in the last game) that
produces a view indistinguishable from the real view, with just the input-output pairs. This
proves that nothing else leaks. ut

The Re-Encryption in GT . The proof follows the same path as in the previous proof: one is given
two ciphertexts cT = EncryptT (m, (pk1, pk2); r11, r12, r21, r22) and CT = EncryptT (m, (PK1,PK2);
R11, R12, R21, R22) of the same message m under pkT and PKT respectively. One needs to simu-
late all the α1,i, α2,i, α3,i, α4,i, βi, γi, δi for all the non-corrupted players. Since cT and CT encrypt
the same message, and we want

CT,1 = cT,1 ·
∏

αλi
1,i · α

λi
2,i · α

λi
4,i CT,2 =

∏
βλi
i CT,3 =

∏
γλi
i CT,4 =

∏
δλi
i

the simulator can take, for all the honest players except the last one, r′11,i, r
′
12,i, r

′
21,i, r

′
22,i, ui, vi

$←
Zp to compute, in the first round:

α3,i = c
sk1,i

T,4 · e(g1, g2)−ui α3,`
$← GT α3 =

∏
αλi

3,i

and in the second round, for all but the last honest player

α1,i = c
sk2,i

T,2 · e(PK1, g2)r
′
21,i βi = e(g1, g2)r

′
11,i+ui · e(PK1, g2)r

′
22,i

α2,i = c
sk1,i

T,3 · e(g1,PK2)r
′
11,i γi = e(g1,PK2)r

′
12,i · e(g1, g2)r

′
21,i+vi

α4,i = α
sk2,i

3 · e(PK1, g2)vi δi = e(g1, g2)r
′
12,i+r

′
22,i



10

and for the last honest player:

α2,`
$← GT β` = (CT,2 ×

∏
i 6=`

β−λi
i )1/λ`

α4,`
$← GT γ` = (CT,3 ×

∏
i 6=`

γ−λi
i )1/λ`

δ` = (CT,4 ×
∏
i 6=`

δ−λi
i )1/λ`

which implies implicit values for r′11,`, r
′
12,`, r

′
21,`, r

′
22,`, u`, v` because the above system is invert-

ible, where X, Y , and Z are the constant values introduced by cskj

T,i , for some i, j:

λ` ×



log β`
log γ`
log δ`

logα4,`
logα3,`
logα2,`


=



0
0
0
X
Y
Z


+



1 0 0 −sk1 1 0
0 sk2 1 0 0 −1
0 1 0 1 0 0
0 0 0 0 sk2,` −1
0 0 0 0 1 0
1 0 0 0 0 0





r′11,`
r′12,`
r′21,`
r′22,`
u`
v`


Then it is possible to set: α1,` = (CT,1/(cT,1 · α2α4)×

∏
i 6=` α

−λi
1,i )1/λ` .

First, this is clear that the α3,i’s do not leak anything as they contain random masks
e(g1, g2)−ui . Then, to prove that all the α1,i, α2,i, α4,i, βi, γi, δi do not leak information, one
can perform a similar proof as above for Gs, by using the DDH assumption in both G1 and G2.
Indeed, each element is masked using a pair either (gr2,PKr2) or (gr1,PKr1), for some random r. If
one wants to have an indistinguishability under the SXDH assumption (and thus only one DDH
assumption in one group), one could add more masks. But this does not make sense to have
one key compromised and not the other one, for the same user. Hence, we tried to make the
re-encryption as efficient as possible. ut

We stress that for the re-encryption in G1 or G2, one just needs the DDH assumption in
this group Gs. But for the re-encryption in GT , one needs the DDH assumption in both G1
and G2 (the so-called SXDH assumption). We could rely on only one of the two, by adding
masking factors, but this does not really make sense for a user to have his private key sk1 being
compromised without sk2 (or the opposite).

In addition, zero-knowledge proofs can be provided to guarantee the re-encryption is honestly
applied: they just consist in proofs of representations, when gsks,i

s are all made public, for s ∈
{1, 2} and all indices i.

4.4 Efficiency

In the concrete case where we have n servers able to perform a distributed protocol as described
above, each of them has two scalars corresponding to a secret key for the encryption in G1 and
a secret key for the encryption in G2. We recall that a ciphertext, in G1 or G2, is composed of
two group elements, and a ciphertext in GT is composed of four group elements. A recipient,
that wants the result of either a decryption or a re-encryption with the help of t servers, has to
perform a few exponentiations. The table below details the number of exponentiations for each
player involved in the distributed protocols.

5 Applications

5.1 Encryption for Boolean Formulae

In this part, we detail the specific case of the evaluation of 2-DNF.



11

per server recipient
distributed decryption in G1/G2 1 t

in GT 4 4t
distributed re-encryption in G1/G2 3 t

in GT 13 7t

First, as explained in [BGN05], a way to guarantee the ciphertexts are encryption of inputs
in {0, 1}, the verification can be done with our scheme (or the one of BGN or Freeman) with
the additional term Addj(Multiply(Cxj ,Add(Cxj , C−1)), multiplied by a random constant, so
that it adds zero if inputs are correct, or it adds a random value otherwise. This introduces
a quadratic term, just for the verification. This is at no extra cost if the Boolean formula is
already quadratic, which will be the case of our applications.

Every Boolean formula can be expressed as a disjunction of conjunctive clauses (an OR of
ANDs). This form is called disjunctive normal form (DNF) and, more precisely, k-DNF when
each clause contains at most k literals. Thus, a 2-DNF formula over the variables x1, . . . , xn ∈
{0, 1} is of the form

m∨
i=1

(`i,1 ∧ `i,2) with `i,1, `i,2 ∈ {x1, x1, . . . , xn, xn}.

The conversion of 2-DNF formulae into multivariate polynomials of total degree 2 is simple:
given Φ(x1, . . . , xn) =

∨m
i=1(`i,1 ∧ `i,2) a 2-DNF formula, define φ(x1, . . . , xn) =

∑m
i=1(yi,1× yi,2)

where yi,j = `i,j if `i,j ∈ {x1, . . . , xn} or yi,j = (1 − `i,j) otherwise. In this conversion, a true
literal is replaced by 1, and a false literal by 0. Then, an OR is converted into an addition, and
an AND is converted into a multiplication. A NOT is just (1−x) when x ∈ {0, 1}. φ(x1, . . . , xn)
is the multivariate polynomial of degree 2 corresponding to Φ(x1, . . . , xn). As just said, this
conversion works if for the inputs, we consider 1 ∈ Zp as true and 0 ∈ Zp as false, but for the
output, 0 ∈ Zp is still considered as false whereas any other non-zero value is considered as true.

To evaluate the 2-DNF in an encrypted manner, we propose to encrypt the data and to
calculate the quadratic polynomial corresponding to the 2-DNF as seen above by performing
Adds and Multiplys. Because the result of the 2-DNF is a Boolean, when a decryption is per-
formed, if the result is equal to 0, one can consider it corresponds to the 0-bit (false) and else,
it corresponds to the 1-bit (true).

Hence, when encrypting bits, we propose two different encodings before encryption, depend-
ing on the situation: either the 0-bit (false) is encoded by 0 ∈ Zp and the 1-bit (true) is encoded
by any non-zero integer of Z∗p; or the 0-bit (false) is encoded by 0 ∈ Zp and the 1-bit (true) is
encoded by 1 ∈ Zp. With this second solution, it offers the possibility to perform one NOT on
the data before Adds and Multiplys by the operation 1 − x. However, one has to be aware of
making Randomize before decryption to mask the operations but also the input data in some
situations: for example, if an Add is performed between three 1s, the result 3 leaks information
and needs to be randomized.

Because one just wants to know whether the result is equal to 0 or the result is different
from 0, we do not need to compute the logarithm: we can decrypt by just checking whether
cs,1 · csks

s,2 = 1s or not (for s = T , if cT,1 · csk2
T,2 · c

sk1
T,3 · c

sk1·sk2
T,4 = 1T ).

5.2 Group Testing on Encrypted Data

In this application we assume that a hospital collects some blood samples and wants to check
which samples are positive or negative to a specific test. Group testing [Dor43] is an efficient
technique to detect positive samples with fewer tests in the case the proportion of positive cases
is small. The technique consists in mixing some samples, and to perform tests on fewer mixes.
More precisely, we denote X = (xij) the matrix of the mixes: xij = 1 if the i-th sample is in



12

the j-th mix, otherwise xij = 0. The hospital then sends the (blood) mixes to a laboratory for
testing them: we denote yj the result of the test on the j-th mix.

If a patient (its sample) is in a mix with a negative result, he is negative (not infected). If
a patient (its sample) is in a mix with a positive result, we cannot say anything. However, for
well-chosen parameters, if a patient is not declared negative, he is likely positive. Thus, for a
patient i, the formula that we want to evaluate is ¬Fi(X,y), which means the patient’s test
is positive (infected) or not, for Fi(X,y) =

∨
j(xij ∧ ¬yj). The latter is indeed true if there is

a mix containing a i-th sample for which the test is negative, and this should claim patient i
negative (false). The matrix X of the samples needs to be encrypted since the patient does not
want the laboratory to know his result. Because of the sensitiveness of the data, the result of
the tests needs to be encrypted too. But the patient will need access to his own result.

In this scenario, the hospital computes for all i, j, Cxij ∈ G2
1, the encryption of xij , and

the laboratory computes for all j, Cyj ∈ G2
2, the encryption of yj . Then, they both send the

ciphertexts to an external database. With our homomorphic encryption scheme, to compute
¬Fi, we can publicly evaluate the following formula: Ci = Randomize(Addj(Multiply(Cxij , Cyj )).
Anybody can publicly verify the computations and if it is correct, a pool of controllers perform
a distributed re-encryption of the result of patient i under his key PKi. In this way, the patient
cannot decrypt the database or the result of the tests directly, but only with the help of a pool
of controller. The goal of the controllers is to limit access to the specific users only. Under an
assumption about the collusions among the controllers, nobody excepted the users will have
access to their own results.

5.3 Consistency Model on Encrypted Data

Another famous application is machine learning, where we have some trainers that fill a database
and users who want to know a function of their inputs and the database. For privacy reasons,
trainers do not want the users to learn the training set, and users do not want the trainers to
learn their inputs. As in the previous case, we will involve a pool of distributed controllers to
limit decryptions, but the controllers should not learn anything either.

Suppose a very large network of nodes in which some combinations should be avoided as
they would result to failures. When a failure happens, the combination is stored in a database.
And before applying a given combination, one can check whether it will likely lead to a failure,
and then change. For example, the network can be a group of people where each of them can
receive data. But, for some specific reasons, if a subgroup A of people is knowing a file a, the
subgroup B must not have the knowledge of a file b. This case of application can be viewed as
a consistency model [Sch14] which can be formally described as: the input is a vector of states
(each being either true or false), and if in the database all the j-th states are true a new input
needs to have its j-th state to be true; if all the j-th states in the database are false, the new
input needs to have its j-th state to be false; otherwise the j-th state can be either true or false.
As a consequence, if we denote the i-th element of the database as a vector xi = (xij)j and
the user’s vector by y = (yj), that vector y is said consistent with the database if the following
predicate is true: ∧

j

(
(∧ixij ∧ yj) ∨ (∧ixij ∧ yj) ∨ (∨ixij ∧ ∨ixij)

)
.

Let Xj = ∧ixij , Yj = ∧ixij , and Zj = ∨ixij ∧ ∨ixij . We define F(x1, . . . ,xm,y) the formula we
want to compute on the encrypted inputs:

F(x1, . . . ,xm,y) =
∧
j

(
(Xj ∧ yj) ∨ (Yj ∧ yj) ∨ Zj

)
.

By definition, Xj , Yj , and Zj are exclusive, as Xj means the literals are all true, Yj means the
literals are all false, and Zj means there are both true and false literals. So we have: Xj∨Zj = Yj



13

and Yj ∨ Zj = Xj . Thus, we have

¬F(x1, . . . ,xm,y) =
∨
j

((Yj ∨ yj) ∧ (Xj ∨ yj)) .

Now, we see how the encryption and the decryption is performed to obtain the result of an
evaluation. First, we explain how the trainers can update the database, when adding a vector
xm. The values Xj are updated into X ′j as

X ′j =
m∧
i=1

xij =
m−1∧
i=1

xij ∧ xmj =
{
Xj =

∧m−1
i=1 xij if xmj = true

false otherwise

which is easy to compute for the trainer, since it knows xm in clear, even if Xj is encrypted:
the trainer can dynamically compute CXj the encryption of Xj , when adding a new line in the
database, by just making a Randomize if xmj is true (to keep the value Xj unchanged), or by
replacing the value by a fresh encryption of 0 otherwise. Similarly, the trainer can update CYj ,
the encryption of Yj . On the user-side, he can compute Cyj and Cyj the encryptions of his inputs
yj and yj respectively. Then, everyone and thus the controllers can compute:

Cj = Randomize
(
Addj

(
Multiply(Add(CYj , Cyj ),Add(CXj , Cyj ))

))
.

Because of the Multiply, CYj and Cyj must be ciphertexts in G1, while CXj and Cyj must be
ciphertexts in G2. To allow a control of the final decryption, a pool of controllers re-encrypt for
the user in a distributed way.

Acknowledgments

This work was supported in part by the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 339563 – CryptoCloud) and the French ANR ALAMBIC
Project (ANR16-CE39-0006).

References

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kolhweiss, and Hendrik Waldner. Decentralizing
inner-product functional encryption. Cryptology ePrint Archive, Report 2019/020, 2019. https:
//eprint.iacr.org/2019/020.

AHM+18. Nuttapong Attrapadung, Goichiro Hanaoka, Shigeo Mitsunari, Yusuke Sakai, Kana Shimizu, and
Tadanori Teruya. Efficient two-level homomorphic encryption in prime-order bilinear groups and A
fast implementation in WebAssembly. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim,
Javier López, and Taesoo Kim, editors, ASIACCS 18, pages 685–697. ACM Press, April 2018.

BBS98. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic proxy cryptog-
raphy. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 127–144. Springer,
Heidelberg, May / June 1998.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer,
Heidelberg, August 2017.

BGN05. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer, Heidelberg, February 2005.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March
2011.

CC09. Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority attribute-
based encryption. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, editors, ACM CCS 09,
pages 121–130. ACM Press, November 2009.

https://eprint.iacr.org/2019/020
https://eprint.iacr.org/2019/020


14

CDG+18. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Decentralized multi-client functional encryption for inner product. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer,
Heidelberg, December 2018.

CF15. Dario Catalano and Dario Fiore. Using linearly-homomorphic encryption to evaluate degree-2 func-
tions on encrypted data. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS
15, pages 1518–1529. ACM Press, October 2015.

CPRT18. Chris Culnane, Olivier Pereira, Kim Ramchen, and Vanessa Teague. Universally verifiable MPC with
applications to IRV ballot counting. Cryptology ePrint Archive, Report 2018/246, 2018. https:
//eprint.iacr.org/2018/246.

CSG+18. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive,
Report 2018/1021, 2018. https://eprint.iacr.org/2018/1021.

Dor43. R. Dorfman. The detection of defective members of large populations. The Annals of Mathematical
Statistics, 14(4):436–440, 1943.

FLOP18. Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed
RSA key generation for semi-honest and malicious adversaries. In Hovav Shacham and Alexan-
dra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 331–361. Springer,
Heidelberg, August 2018.

FN94. Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, CRYPTO’93,
volume 773 of LNCS, pages 480–491. Springer, Heidelberg, August 1994.

Fre10. David Mandell Freeman. Converting pairing-based cryptosystems from composite-order groups to
prime-order groups. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages
44–61. Springer, Heidelberg, May / June 2010.

Gay16. Romain Gay. Functional encryption for quadratic functions, and applications to predicate encryption.
Cryptology ePrint Archive, Report 2016/1106, 2016. http://eprint.iacr.org/2016/1106.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,
41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer,
Heidelberg, May 2014.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

GGJS13. Shafi Goldwasser, Vipul Goyal, Abhishek Jain, and Amit Sahai. Multi-input functional encryption.
Cryptology ePrint Archive, Report 2013/727, 2013. http://eprint.iacr.org/2013/727.

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. Cryptology ePrint Archive, Report 2013/774, 2013. http://eprint.iacr.org/
2013/774.

GKP+13. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, 45th ACM STOC, pages 555–564. ACM Press, June 2013.

KMH+19. Yutaka Kawai, Takahiro Matsuda, Takato Hirano, Yoshihiro Koseki, and Goichiro Hanaoka. Proxy re-
encryption that supports homomorphic operations for re-encrypted ciphertexts. IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, E102.A:81–98, 01 2019.

LW11. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidelberg,
May 2011.

NNL01. Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 41–62. Springer, Heidelberg,
August 2001.

PPS12. Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decentralized dynamic broadcast encryp-
tion. In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages 166–183.
Springer, Heidelberg, September 2012.

Sch14. Rob Schapire. Computer science 511 – theoretical machine learning, 2014.
Sha79. Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,

22(11):612–613, November 1979.
SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,

EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

https://eprint.iacr.org/2018/246
https://eprint.iacr.org/2018/246
https://eprint.iacr.org/2018/1021
http://eprint.iacr.org/2016/1106
http://eprint.iacr.org/2013/727
http://eprint.iacr.org/2013/774
http://eprint.iacr.org/2013/774


15

– For x ∈ Zp,A ∈Mm,n(Zp): [x] = gx, [A] = gA = (gaij )ij

– For x ∈ Zp,A,B ∈Mm,n(Zp),X ∈Mn,n′ (Zp),Y ∈Mm′,m(Zp):

x · [A] = gxA [A] ·X = gAX Y · [A] = gYA [A] [B] = [A + B]

– For A ∈Mm,n(Zp), B ∈Mm′,n′ (Zp): [A]1 • [B]2 = [A⊗B]T

Figure 2. Bracket Notations

A Freeman’s Approach

A.1 Notations

The vectors x = (xi)i and matrices M = (mi,j)ij are in bold and the vectors are written
as row vectors, with sometimes components separated by commas for clarity: if x $← Xn,
x = (x1 x2 · · · xn) = (x1, x2, · · · , xn).

We denote byMm,n(Zp) the set of matrices on Zp, of size m × n, and thus m row-vectors
of length n. (Mm,n(Zp),+) is an Abelian group. When A ∈ Mm,n(Zp) and B ∈ Mn,n′(Zp),
the matrix product is denoted A × B ∈ Mm,n′(Zp), or just AB if there is no ambiguity.
(Mn,n(Zp),+,×) is a ring, and we denote by GLn(Zp) ⊂ Mn,n(Zp) = Mn(Zp) the subset of
the invertible matrices of size n (for the above matrix product ×), which is also called the
general linear group.

We will use the tensor product: for two vectors a = (a1, a2, · · · , an) ∈ Znp and b =
(b1, b2, · · · , bm) ∈ Zmp , the tensor product a⊗ b is the vector (a1b, · · · , anb) = (a1b1, · · · , a1bm,
a2b1, · · · , a2bm, · · · , anbm) ∈ Zmnp ; and for two matrices A ∈Mm,n(Zp) and B ∈Mm′,n′(Zp),

A =

a1
...

am

 B =

 b1
...

bm′

 A⊗B =


a1 ⊗ b1
a1 ⊗ b2

...
am ⊗ bm′

 ∈Mmm′,nn′(Zp).

The bilinearity of the tensor product gives, for A,A′ ∈ Mm,n(Zp) and B,B′ ∈ Mm′,n′(Zp),
(A + A′) ⊗ (B + B′) = (A ⊗ B) + (A ⊗ B′) + (A ⊗ B′) + (A′ ⊗ B′). We will also use the
following important relation between matrix product and tensor product: for A ∈ Mm,k(Zp),
A′ ∈Mk,n(Zp), B ∈Mm′,k′(Zp), and B′ ∈Mk′,n′(Zp), (A×A′)⊗(B×B′) = (A⊗B)×(A′⊗B′).

For any group G, we denote by 〈g〉 the space generated by g ∈ G. For a generator g of a
cyclic group G = 〈g〉, we use the implicit representation [a] of any element h = ga ∈ G and by
extension we will use the “bracket” notations, which makes use of the above matrix properties
over the exponents, that are scalars in Zp when G is a cyclic group of order p. See Figure 2 for
more details about the “brackets”. In case of bilinear groups, we also define, for A ∈Mm,n(Zp)
and B ∈ Mm′,n′(Zp), [A]1 • [B]2 = [A ⊗B]T , which can be evaluated with pairing operations
between G1 and G2 group elements.

A.2 Projections

In order to continue with matrix properties and linear applications, a projection π, in a space of
dimension n, is a linear function such that π◦π = π. Any projection of rank 1 can be represented
by the matrix P = B−1UnB, where Un is the canonical projection and B is the change of basis
matrix:

Un =


0 . . . 0 0
0 . . . 0 0
0 . . . 0 0
0 . . . 0 1

 B =


p1
...

pn−1
b





16

where K = 〈p1, . . . ,pn−1〉 is the kernel of the projection and 〈b〉 the image.
Given two projections π1 and π2 of rank 1, that are represented by P1 = B−1

1 UnB1 and
P2 = B−1

2 UnB2, respectively, the tensor product π = π1 ⊗ π2 is represented by P = P1 ⊗P2,
that is equal to

(B−1
1 UnB1)⊗ (B−1

2 UnB2) = (B−1
1 ⊗B−1

2 )× (Un ⊗Un)× (B1 ⊗B2)
= (B1 ⊗B2)−1 ×Un2 × (B1 ⊗B2).

The associated change of basis matrix is thus B = B1 ⊗B2. In dimension 2:

B1 =
(

p1
b1

)
and B2 =

(
p2
b2

)
, then B = B1 ⊗B2 =


p1 ⊗ p2
p1 ⊗ b2
b1 ⊗ p2
b1 ⊗ b2

 ,
hence, the image of π = π1 ⊗ π2 is spanned by b = b1 ⊗ b2, while {p1 ⊗ p2,p1 ⊗ b2,b1 ⊗ p2}
is a basis of the kernel. But, as explained below, p1 ⊗ r2 + r1 ⊗ p2, for r1, r2

$← Z2
p, provides a

uniform sampling in ker(π):

ker(π) = {(x1 + x2) · p1 ⊗ p2 + y2 · p1 ⊗ b2 + y1 · b1 ⊗ p2, x1, x2, y1, y2 ∈ Zp}
= {p1 ⊗ (x2 · p2 + y2 · b2) + (x1 · p1 + y1 · b1)⊗ p2, x1, x2, y1, y2 ∈ Zp}

A.3 Freeman’s Scheme with Projections

The main goal of Freeman’s approach was to generalize the BGN cryptosystem to any hard-
subgroup problems, which allows applications to prime-order groups under the classical Deci-
sional Diffie-Hellman or Decisional Linear assumptions, with high gain in efficiency.

We now present a variant of the Freeman’s cryptosystem allowing multiple users, without the
twin ciphertexts (in G and H). Since we will work in groups G1, G2, and GT , the algorithms
Keygen,Encrypt and Decrypt will take a sub-script s to precise the group Gs in which they
operate, but the Setup is common.

Setup(λ): Given a security parameter λ, run and output

param = (G1,G2,GT , p, g1, g2, e)← G(λ).

Keygens(param): For s ∈ {1, 2}, choose Bs
$← GL2(Zp), let Ps = B−1

s U2Bs and ps ∈ ker(Ps) \
{0}, and output the public key pks = [ps]s and the private key sks = Ps. In the following,
we always implicitly assume that the public keys contain the public parameters param, and
the private keys contain the public keys.
From (pk1, sk1) ← Keygen1(param) and (pk2, sk2) ← Keygen2(param), one can consider
pkT = (pk1, pk2) and skT = (sk1, sk2), which are associated public and private keys in GT ,
as we explain below.

Encrypts(pks,m,As): For s ∈ {1, 2}, to encrypt a message m ∈ Zp using public key pks and
As = [a]s ∈ G2

s, choose r
$← Zp and output the ciphertext Cs = (m · [a]s r · [ps]s, [a]s) ∈

G2
s ×G2

s.
For s = T , with As = ([a1]1, [a2]2), set [a]T = [a1]1 • [a2]2 ∈ G4

T , choose [r1]1 $← G2
1, [r2]2 $←

G2
2, and output CT = (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2, [a]T ) ∈ G4

T ×G4
T .

Decrypts(sks, Cs): For s ∈ {1, 2}, given Cs = ([cs,1]s, [cs,2]s) and sks = Ps, let C ′s = ([cs,1]s ·
Ps, [cs,2]s ·Ps).
For s = T , compute C ′T = ([cT,1]T · (P1 ⊗P2), [cT,2]T · (P1 ⊗P2)).
In both cases, output the logarithm of the first component of c′s,1 in base the first component
of c′s,2.



17

As already explained above, the encryption process masks the message by an element in the
kernel of a certain projection. The secret key is the corresponding projection Ps which later
removes this mask. In the Decrypt algorithm, C ′s is a Diffie-Hellman tuple (whatever the group
under consideration), the discrete logarithm of one component is enough to decrypt, since the
plaintext is the common exponent.

One can note that matrices B1 and B2 are drawn independently, so the keys in G1 and G2
are independent. For any pair of keys (pk1 = [p1]1, pk2 = [p2]2), one can implicitly define a
public key for the target group. To decrypt in the target group, both private keys sk1 = P1
and sk2 = P2 are needed. Actually, one just needs P1 ⊗ P2 to decrypt: C ′T = ([cT,1]T · (P1 ⊗
P2), [cT,2]T · (P1⊗P2)), but P1⊗P2 and (P1,P2) contain the same information and the latter
is more compact.

With the algorithms defined above, we have three encryption schemes Es : (Setup,Keygens,
Encrypts,Decrypts) for s = 1, 2 or T , with a common Setup.

A.4 Correctness of E1, E2, and ET

Proposition 7. For s ∈ {1, 2, T}, Es is correct.

Proof. For s = 1, 2:

[cs,2]s ·Ps = [a]s ·Ps = [aPs]s
[cs,1]s ·Ps = (m · [a]s r · [ps]s) ·Ps = m · [a]s ·Ps r · [ps]s ·Ps

= m · [aPs]s r · [psPs]s = m · [aPs]s r · [0]s = m · [aPs]s

For s = T :

[cT,2]T · (P1 ⊗P2) = [a]T · (P1 ⊗P2) = [a(P1 ⊗P2)]T
[cT,1]T · (P1 ⊗P2) = (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2) · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T ([p1]1 • [r2]2) · (P1 ⊗P2) ([r1]1 • [p2]2) · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T [p1 ⊗ r2]T · (P1 ⊗P2) [r1 ⊗ p2]T · (P1 ⊗P2)
= m · [a(P1 ⊗P2)]T [p1P1 ⊗ r2P2]T [r1P1 ⊗ p2P2]T
= m · [a(P1 ⊗P2)]T [0⊗ r2P2]T [r1P1 ⊗ 0]T = m · [a(P1 ⊗P2)]T

In both cases, C ′s,1 = [c′s,1]s = m · [c′s,2]s = m ·C ′s,2. Whatever the size of the vectors, one discrete
logarithm computation is enough to extract m. ut

A.5 Homomorphic Properties

As BGN, Freeman cryptosystem also allows additions, one multiplication layer, and additions:
we detail the homomorphic functions below.

Add(Cs, C ′s): Given two ciphertexts Cs = ([cs,1]s, [cs,2]s), C ′ = ([c′s,1]s, [c′s,2]s) in one of G2
1 ×

G2
1,G2

2 × G2
2,G4

T × G4
T , if [cs,2]s = [c′s,2]s, it outputs ([cs,1]s [c′s,1]s, [cs,2]s), otherwise it

outputs ⊥.
Multiply(C1, C2): Given two ciphertexts C1 = ([c1,1]1, [c1,2]1) ∈ G2

1 × G2
1 and C2 = ([c2,1]2,

[c2,2]2) ∈ G2
2 ×G2

2, it outputs CT = ([c1,1]1 • [c2,1]2, [c1,2]1 • [c2,2]2) ∈ G4
T ×G4

T .
Randomizes(pks, Cs): Given a ciphertext Cs = ([cs,1]s, [cs,2]s), for s ∈ {1, 2} and a public key

pks = [ps]s, it chooses α, r $← Zp and outputs (α · ([cs,1]s r · [ps]s), α · [cs,2]s); while for
s = T and a public key pkT = ([p1]1, [p2]2), it chooses α $← Zp, [r1]1 $← G2

1 and [r2]2 $← G2
2,

and outputs (α · ([cT,1]T [p1]1 • [r2]2 [r1]1 • [p2]2), α · [cT,2]T ).

Instead of performing a systematic randomization of ciphertexts as proposed by Freeman each
time an Add or a Multiply is computed, we create a specific function Randomize usable at any
time, when more privacy is required.



18

A.6 Correctness of the Homomorphic Properties
Let us check the correctness of the three homomorphic functions:
Proposition 8. Add and Multiply are correct.
Proof. Let us first consider the addition operations:
– For s = 1, 2:

Add(Encrypts(pks,m, [a]s; r),Encrypts(pks,m′, [a]s; r′))
= ([ma + rps]s · [m′a + r′ps]s, [a]s) = ([(m+m′)a + (r + r′)ps]s, [a]s)
= Encrypts(pks,m+m′, [a]s; r + r′)

– For s = T :

Add(EncryptT (pkT ,m, ([a1]1, [a2]2); r1, r2),
EncryptT (pkT ,m′, ([a1]1, [a2]2); r′1, r′2))

= ([m([a1]1 • [a2]2) + r1 ⊗ p2 + p1 ⊗ r2]T ·
[m′([a1]1 • [a2]2) + r′1 ⊗ p2 + p1 ⊗ r′2]T , [a1]1 • [a2]2)

= ([(m+m′)([a1]1 • [a2]2) + (r1 + r′1)⊗ p2 + p1 ⊗ (r2 + r′2)]T , [a1]1 • [a2]2)
= EncryptT (pkT ,m+m′, ([a1]1, [a2]2); r1 + r′1, r2 + r′2)

About multiplication, we can see that

Multiply(Encrypt1(pk1,m1, [a1]1; r1),Encrypt2(pk2,m2, [a2]2; r2))
= ([m1a1 + r1p1]1 · [m2a2 + r2p2]2, [a1]1 • [a2]2)
= ([(m1a1 + r1p1)⊗ (m2a2 + r2p2)]T , [a1]1 • [a2]2)
= ([m1a1 ⊗m2a2 +m1a1 ⊗ r2p2 + r1p1 ⊗m2a2 + r1p1 ⊗ r2p2]T , [a1]1 • [a2]2)
= ([m1a1 ⊗m2a2 +m1a1 ⊗ r2p2 + r1p1 ⊗ (m2a2 + r2p2)]T , [a1]1 • [a2]2)
= ([m1m2(a1 ⊗ a2) + p1 ⊗ (r1m2a2 + r1r2p2) + (r2m1a1)⊗ p2]T , [a1]1 • [a2]2)
= EncryptT (pkT ,m1m2, ([a1]1, [a2]2);m1r2a1,m2r1a2 + r1r2p2) ut

Proposition 9. For s ∈ {1, 2, T}, Randomizes is correct, with α = 1.
Proof. For s ∈ {1, 2}:

Randomizes(pks,Encrypts(pks,m, [a]s; r), α, r′)
= ([α(ma + rps + r′ps)]s, [αa]s) = ([m(αa) + α(r + r′)ps]s, [αa]s)
= Encrypts(pks,m, [αa]s;α(r + r′))

Since r′ is uniformly distributed, the mask of the first component of the ciphertext is uniformly
distributed, as in a fresh ciphertext, while with α = 1, the basis in the second component
remains unchanged. In addition, the random α also randomizes the basis [αa]s, in the second
component of the ciphertext, but computationally only, under the DDH assumption in Gs.

For s = T :

RandomizeT (pkT ,EncryptT (pkT ,m, ([a1]1, [a2]2); r), α, r′1, r′2)
= (α · (m · [a]T [p1]1 • [r2]2 [r1]1 • [p2]2 [p1]1 • [r′2]2 [r′1]1 • [p2]2, [a]T ),
([αa1]1, [αa2]2))
= (α · (m · [a]T [p1]1 • [r2 + r′2]2 [r1 + r′1]1 • [p2]2), ([αa1]1 • [αa2]2))
= EncryptT (pkT ,m, ([αa1]1, [αa2]2);α(r2 + r′1), α(r2 + r′2))

Again, since r′1 and r′2 are uniformly distributed, the mask of the first component of the cipher-
text is uniformly distributed, as in a fresh ciphertext. In addition, the random α randomizes
the basis in the second component of the ciphertext, but computationally only, under the DDH
assumption in both G1 and G2. ut



19

A.7 Security Properties

Theorem 10. For s ∈ {1, 2}, Es is IND-CPA under the DDH assumption in Gs: for any adver-
sary A running within time t, Advind-cpa

Es
(A) ≤ 2×Advddh

Gs
(t).

Proof. We denote by Advind-cpa
Es

(A) the advantage of A against Es. We assume the running time
of A is bounded by t.

Game G0: In this first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

Es
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m0 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

E (A) = 1
]
.

Game G1: Now the simulator takes as input a Diffie-Hellman tuple ([p]s, [r]s), with r =
r · p for some scalar r, and emulates Keygens and Encrypts by defining pks ← [p]s and
Cs ← (m0 · [a]s [r]s, [a]s). Thanks to the Diffie-Hellman tuple, this game is perfectly
indistinguishable from the previous one: PrG1 [E] = PrG0 [E].

Game G2: The simulator now receives a random tuple ([p]s, [r]s): PrG2 [E] − PrG1 [E] ≤
Advddh

Gs
(t).

Game G3: The simulator still receives a random tuple ([p]s, [r]s), but generates Cs ← (m1 ·
[a]s [r]s, [a]s). Thanks to the random mask [r]s, this game is perfectly indistinguishable
from the previous one: PrG3 [E] = PrG2 [E].

Game G4: The simulator now receives a Diffie-Hellman tuple ([p]s, [r]s), with r = r · p for
some scalar r: PrG4 [E]− PrG3 [E] ≤ Advddh

Gs
(t).

Game G5: In this game, the simulator can perfectly emulate the challenger in the experiment
Expind-cpa-1

Es
(A), where b = 1: This game is perfectly indistinguishable from the previous

one: PrG5 [E] = PrG4 [E].

One can note, that in this last game, PrG5 [E] = Pr
[
Expind-cpa-1

Es
(A) = 1

]
, hence

Pr
[
Expind-cpa-1

Es
(A) = 1

]
− Pr

[
Expind-cpa-0

Es
(A) = 1

]
≤ 2×Advddh

Gs
(t),

which concludes the proof. ut

Corollary 11. ET is IND-CPA under the DDH assumptions in G1 or G2. More precisely, for
any adversary A running within time t,

Advind-cpa
ET

(A) ≤ 2×min{Advddh
G1 (t+ tm + te),Advddh

G2 (t+ tm + te)},

where tm is the time for one multiplication and te the time for one encryption.

Proof. The semantic security for ciphertexts in GT comes from the fact that:

EncryptT (pkT ,m, ([a1]1, [a2]2))
= Multiply(Encrypt1(pk1,m, [a1]1),Encrypt2(pk2, 1, [a2]2))
= Multiply(Encrypt1(pk1, 1, [a1]1),Encrypt2(pk2,m, [a2]2))

Indeed, with this relation, each ciphertext in G1 can be transformed into a ciphertext in GT

(idem with a ciphertext in G2). Let A be an adversary against IND-CPA of ET , in GT .



20

Game G0: In the first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

ET
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sk1, pk1)← Keygen1(param),(sk2, pk2)← Keygen2(param)
– m0,m1, [a]1, [a]2 ← A(param, (pk1, pk2))
– CT = EncryptT ((pk1, pk2),m0, ([a]1, [a]2))
– β ← A(param, (pk1, pk2), CT )

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

ET
(A) = 1

]
.

Game G1: The simulator interacts with a challenger in Expind-cpa-0
E1

(A), where b = 0. It thus
first receives param, pk1 from that challenger, generates pk2 by himself to provide (pkT =
(pk1, pk2)) to the adversary. The latter sends back (m0,m1, [a]1, [a]2), from which it sends
(m0,m1, [a]1) to the challenger. It gets back C1 = Encrypt1(pk1,m0, [a]1). It can compute
the ciphertext CT = Multiply(C1,Encrypt2(pk2, 1, [a2]2)), to be sent to the adversary. This
game is perfectly indistinguishable from the previous one: PrG1 [E] = PrG0 [E].

Game G2: The simulator interacts with a challenger in Expind-cpa-1
E1

(A), where b = 1:

Pr
G2

[E]− Pr
G1

[E] ≤ Advind-cpa
E1

(t+ tm + te),

where tm is the time for one multiplication and te the time for one encryption.
Game G3: In this final game, the simulator plays the role of the challenger in the experiment

Expind-cpa-1
ET

(A), where b = 1. This game is perfectly indistinguishable from the previous
one: PrG3 [E] = PrG2 [E].

One can note, that in this last game, PrG3 [E] = Pr
[
Expind-cpa-1

ET
(A) = 1

]
, hence

Pr
[
Expind-cpa-1

ET
(A) = 1

]
− Pr

[
Expind-cpa-0

ET
(A) = 1

]
≤ Advind-cpa

ET
(t+ tm + te),

which concludes the proof, since it works exactly the same way for G2. ut

A.8 Re-Encryption

We have three efficient encryption schemes able to compute homomorphic operations and sup-
porting multiple users. Re-encryption, in order to transform a ciphertext for Alice into a ci-
phertext to Bob, might then be useful, as it will allow to target a specific end-user. With the
Freeman’s approach, and our formalism, this is just a change of basis in the exponents: we
can re-encrypt a message encrypted under a private key pka into another encryption for a pri-
vate key pkb by using a special secret key called re-encryption key rka→b. Below we describe
REKeygens that creates the re-encryption key from the secret keys and Re-encrypts the function
to re-encrypt a ciphertext, but under a different basis.

REKeygens(skas , skbs): For s = 1, 2, from two different secret keys skas = Ps and skbs = P′s
associated respectively to the two public keys pkas and pkbs, compute Bs,B′s ∈ GL2(Zp) such
that Ps = B−1

s UBs and P′s = B′s
−1UB′s and output rka→bs = Rs = B−1

s B′s the secret
re-encryption key. From the re-encryption keys rka→b1 = R1 ← REKeygen1(ska1, skb1) and
rka→b2 = R2 ← REKeygen2(ska2, skb2), we will consider rka→bT = (rka→b1 , rka→b2 ), as the matrix
RT actually is R1 ⊗R2.

Re-encrypts(rka→bs , Cs): To re-encrypt a ciphertext C = ([cs,1]s, [cs,2]s):
– for s = 1, 2, output ([cs,1]s · rka→bs , [cs,2]s · rka→bs );



21

– for s = T , output ([cT,1]T · (rka→b1 ⊗ rka→b2 ), [cT,2]T · (rka→b1 ⊗ rka→b2 )).

We stress that the basis a is modified with the re-encryption process, into aRs or a(R1 ⊗R2),
which could leak some information about the re-encryption key. But as explained above, the
randomization process can provide a new ciphertext that computationally hides it, under DDH
assumptions. However, this requires this basis a to be part of the ciphertext as it cannot be a
constant.

A.9 Correctness of Re-Encryption

The correctness of the re-encryption is based on a change of basis that transforms an element
in the kernel of Ps in an element in the kernel of P′s: let p ∈ ker(Ps) and p′ ∈ ker(P′s) because
ker(Ps) and ker(P′s) are of dimension 1 in Z2

p, there exist a, b, k ∈ Zp, such that p = k · (a, b)
and a′, b′, k′ ∈ Zp, such that p′ = k′ · (a′, b′). We have:

p · rk = p ·B−1B′ = k(1, 0)B′ = k(a′, b′)⇒ p · rk = kk′
−1p′ = r′p′

for some r′ ∈ Zp and with that, the correctness follows, where rka→bs is denoted Rs: for s ∈ {1, 2},

Re-encrypts(rka→bs ,Encrypts(pkas ,m,a, r)) = ([cs,1]s · rka→bs , [cs,2]s · rka→bs )
= ([maRs + rpsRs]s, [aRs]s) = ([maRs + rr′p′s]s, [aRs]s)
= Encrypts(pkbs,m,aRs; rr′)

For s = T ,

Re-encryptT (rka→bT ,EncryptT (pkaT ,m,a; r1, r2))
= ([cT,1]T · (rka→b1 ⊗ rka→b2 ), [cT,2]T · (rka→b1 ⊗ rka→b2 ))
= ([(ma + p1 ⊗ r2 + r1 ⊗ p2) · (R1 ⊗R2)]T , [a · (R1 ⊗R2)]T )
= ([ma(R1 ⊗R2) + p1R1 ⊗ r2R2 + r1R1 ⊗ p2R2]T , [a · (R1 ⊗R2)]T )
= ([ma(R1 ⊗R2) + r′1p′1 ⊗ r2R2 + r1R1 ⊗ r′2p′2]T , [a · (R1 ⊗R2)]T )
= ([ma(R1 ⊗R2) + p′1 ⊗ r′1r2R2 + r′2r1R1 ⊗ p′2]T , [a · (R1 ⊗R2)]T )
= EncryptT (pkbT ,m,a(R1 ⊗R2); r′2r1R1, r′1r2R2)

A.10 Distributed Decryption

When a third-party performs the decryption, it is important to be able to prove the correct
decryption, which consists of zero-knowledge proofs, as described in the Appendix B. But this
is even better if the decryption process can be distributed among several servers, under the
assumption that only a small fraction of them can be corrupted or under the control of an
adversary.

To decrypt a ciphertext in Gs with s ∈ {1, 2}, one needs to compute ([cs,1]s · sks, [cs,2]s · sks).
In a Shamir’s like manner [Sha79], one can perform a t-out-of-n threshold secret sharing by
distributing sks such that sks =

∑
i∈I λI,isks,i with I ⊂ {1, . . . , n} a subset of t users, and for

all i ∈ I, λI,i ∈ Zp and sks,i is the secret key of the party Pi.
For s = T and with just the distribution of sk1 and sk2, it is also possible to perform a

distributed decryption, using the relation sk1 ⊗ sk2 = (sk1 ⊗ 1)× (1⊗ sk2). One can thus make
a two round decryption, first in G1 and then in G2.

Remark 12. Because the operations to decrypt or re-encrypt are the same, one can make dis-
tributed re-encryption in the same vein: in our applications, computations will be performed on
data encrypted under a controller ’s key, where the controller is actually a pool of controllers
with a distributed decryption key. The latter will be used to re-encrypt the result under the
targer end-user’s key.



22

However, in this scheme, the secret key must be a projection matrix, which is not easy to
generate at random: for this key generation algorithm, a trusted dealer is required, which is not
ideal when nobody is trusted. This is the goal of the rest of the paper, to show that we can
optimize this generic construction, and distribute everything without any trusted dealer.

B Verifiability

When a ciphertext is randomized or re-encrypted by a third party, one may want to be sure the
content is kept unchanged. Verifiability is thus an important property we can efficiently achieve,
with classical zero-knowledge proofs of discrete logarithm relations à la Schnorr. Such linear
proofs of existence of k scalars that satisfy linear relations generally consist of a commitment c,
a challenge e ∈ Zp and the response r ∈ Zkp (details on the example below). The non-interactive
variant just contains e and r, and thus k + 1 scalars.

Example 13. Let M ∈ M2(Zp) and ([x]s, [y]s), ([x′]s, [y′]s) ∈ G2
s. We will make the zero-

knowledge proof of existence of M such that both [y]s = [x]s ·M and [y′]s = [x′]s ·M, where
[x]s, [y]s, [x′]s and [y′]s are public, but the prover knows M. This is the classical zero-knowledge
proof of equality of discrete logarithms with matrices.

The prover chooses M′ $←M2(Zp) and sends the commitments [c]s = [x]s ·M′ and [c′]s =
[x′]s ·M′ to the verifier that answers a challenge e ∈ Zp. The prover constructs its response
R = M′ − eM in M2(Zp) and the verifier checks whether both [c]s = [x]s · R e[y]s and
[c′]s = [x′]s ·R e[y′]s, in G2

s. To make the proof non-interactive, one can use the Fiat-Shamir
heuristic with e generated by a hash function (modeled as a random oracle) on the statement
([x]s, [y]s), ([x′]s, [y′]s) and commitments ([c]s, [c′]s). The proof eventually consists of (e,R).
From this proof, one can compute the candidates for ([c]s, [c′]s), and check whether the hash
value gives back e.

Before entering into the details of the relations to be proven, for each function of our en-
cryption scheme, we rewrite the Keygens and REKeygens algorithms to prepare the verifiability
of Decrypts and Re-encrypts. These new Keygens and REKeygens algorithms consist of the orig-
inal Keygens and REKeygens but with more elements in the output: they both output a public
version of the produced secret key plus a zero-knowledge proof of the correctness of the keys.
This significantly simplifies the relations to be proven afterwards for Decrypts and Re-encrypts.
At the end of this section, we prove that adding those elements do not compromise the security
of the encryption scheme.

Keygens for Verifiability. While the secret key is the projection Ps, the verification key vsks
consists of [Ps]s:

Keygens(param): For s ∈ {1, 2}. Choose Bs
$← GL2(Zp). Let Ps = B−1

s U2Bs and ps ∈ ker(Ps)\
{0}. Output the public key pks = [ps]s, the private key sks = Ps and vsks = [Ps]s a verifiable
public version of the secret key with the proof πs:

{∃sks ∈M2(Zp), vsks 6= [0]s ∧ vsks = [1]s · sks ∧ pks · sks = [0]s}.

The proof πs guarantees that all the keys are well-formed: vsks is the exponentiation of a 2× 2-
matrix sks, for which the discrete logarithm of pks is in the kernel. Hence, sks is not full rank,
and vsks 6= [0]s proves that sks is of dimension 1: a projection. As a consequence, πs consists of
5 scalars of Zp, using the above non-interactive zero-knowledge technique à la Schnorr.

From (vsk1, vsk2), we consider vskT = vsk1•vsk2. It satisfies vskT = [P1⊗P2]T if (vsk1, vsk2) =
([P1]1, [P2]2).



23

REKeygens for Verifiability. As above, while the secret re-encryption key is an invertible
change of basis matrix rka→bs , the verification key vrka→bs consists of [rka→bs ]s. But in order to
prove the matrix rka→bs is invertible, one can show it is non-zero, and not of rank 1, which would
mean that vrka→bs would consist of a Diffie-Hellman tuple:

REKeygens(skas , skbs): For s = 1, 2, from two different secret keys skas = Ps and skbs = P′s
associated respectively to the two public keys pkas and pkbs, compute Bs,B′s ∈ M2(Zp)2

such that Ps = B−1
s UBs and P′s = B′s

−1UB′s. Let rka→bs = Ra→b
s = B−1

s B′s be the secret
re-encryption key, vrka→bs = [rka→bs ]s be a verifiable public version of the re-encryption key
and [r′]s = λ · [r12]s where λ is such that r21 = λ · r11 (with r11, r12, r21, r22 the components
of rka→bs , and πa→bs :

{∃rka→bs ∈M2(Zp),∃λ ∈ Zp,
vrks 6= [0]s ∧ vrka→bs = [1]s · rka→bs ∧ pkbs = pkas · rka→bs

∧ [r′]s = λ · [r12]s ∧ [r21]s = λ · [r11]s ∧ [r′]s 6= [r22]s}

Output (rka→bs , vrka→bs , [r′]s, πa→bs ).

The proof πa→bs guarantees that vrka→bs is well-formed and, since in M2(Zp), the matrices are
0, or of rank 1 as a projection, or invertible: πa→bs first checks it is not 0, and then not of rank
1 either, as vrka→bs is not a Diffie-Hellman tuple.

The two checks vrka→bs 6= [0]s and [r′]s 6= [r22]s are just simple verifications, thus πa→bs needs
6 scalars of Zp as a proof à la Schnorr.

Similarly as for vsks, from (vrk1, vrk2), we consider vrkT = vrk1 • vrk2. So that, vrkT =
[R1 ⊗R2]T if (vrk1, vrk2) = ([R1]1, [R2]2).

Now, we explain for each function, the relations to be proven:

The function Randomizes. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pks and produces a ciphertext C ′s = ([c′s,1]s, [c′s,2]s) such that:

– for s ∈ {1, 2} and pks = [ps]s, it exists α, r ∈ Zp such that:

[c′s,1]s = α · ([cs,1]s r · [ps]s) ∧ [c′s,2]s = α · [cs,2]s

– for s = T and pkT = ([p1]1, [p2]2), it exists α ∈ Zp, r1, r2 ∈ Z2
p such that:

[c′T,1]T = α · ([cT,1]T [p1]1 • [r2]2 [r1]1 • [p2]2) ∧ [c′T,2]T = α · [cT,2]T

These relations are equivalent to the linear relations:

– for s ∈ {1, 2}, it exists α, r ∈ Zp such that:

[c′s,1]s = α · [cs,1]s r · [ps]s ∧ [c′s,2]s = α · [cs,2]s

– for s = T , it exists α ∈ Zp, r1, r2 ∈ Z2
p such that:

[c′T,1]T = α · [cT,1]T [p1]T · r2 r1 · [p2]T ∧ [c′T,2]T = α · [cT,2]T

These proofs consist of 3 scalars of Zp for s ∈ {1, 2}, and 6 scalars of Zp for s = T .

The functions Add and Multiply. They are public and deterministic thus everyone can check
the operations.



24

The function Decrypts. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pks and produces its decryption m such that:

– for s ∈ {1, 2} and pks = [ps]s, it exists sks = Ps ∈M2(Zp) such that:

[ps]s ·Ps = [0]s ∧Ps 6= 0 ∧ [cs,1]s ·Ps = m · [cs,2]s ·Ps

– for s = T and pkT = ([p1]1, [p2]2), it exists skT = (P1,P2) ∈M2(Zp)2 such that:

[p1]1 ·P1 = [0]1 ∧ [p2]2 ·P2 = [0]2 ∧P1 6= 0 ∧P2 6= 0
∧ [cT,1]T · (P1 ⊗P2) = m · [cT,2]T · (P1 ⊗P2)

Instead of proving these relations, the prover will use vsks for s ∈ {1, 2, T} produced by Keygens
for verifiability and will make the proof of the relations:

– for s ∈ {1, 2}, it exists sks = Ps ∈M2(Zp) such that:

[vsks]s = [1]s ·Ps ∧ ([cs,1]s m · [cs,2]s) ·Ps = [0]s

– for s = T , it exists skT = (P1,P2) ∈M2(Zp)2 such that:

[vskT ]T = [1]T · (P1 ⊗P2) ∧ ([cT,1]T m · [cT,2]T ) · (P1 ⊗P2) = [0]T

The linear proofs consist of 5 scalars of Zp for s ∈ {1, 2} and 17 scalars of Zp for s = T .

The function Re-encrypts. It takes a ciphertext Cs = ([cs,1]s, [cs,2]s) encrypted with a public
key pkas and produces a ciphertext C ′s = ([c′s,1]s, [c′s,2]s) encrypted with a public key pkbs such
that:

– for s ∈ {1, 2}, it knows rka→bs = Rs ∈ GL2(Zp) such that:

([c′s,1]s, [c′s,2]s) = ([cs,1]s ·Rs, [cs,2]s ·Rs) ∧ pkbs = pkas ·Rs

– for s = T , pkaT = (pka1, pka2), pkbT = (pkb1, pkb2) and vrkT = ([R1]1 • [R2]2), it knows rka→bT =
(R1,R2) ∈ GL2(Zp)2 such that:

([c′T,1]T , [c′T,2]T ) = ([cT,1]T · (R1 ⊗R2), [cT,2]T · (R1 ⊗R2))
∧ pkbT = (pkb1, pkb2) = (pka1 ·R1, pka2 ·R2)

Instead of proving these relations, the prover will use vrks for s ∈ {1, 2, T} produced by
REKeygens for verifiability and will make the proof of the relations below:

– for s ∈ {1, 2}, it knows rka→bs = Rs ∈M2(Zp) such that:

([c′s,1]s, [c′s,2]s) = ([cs,1]s ·Rs, [cs,2]s ·Rs) ∧ vrka→bs = [1]s ·Rs

– for s = T , it knows rka→bT = (R1 ⊗R2) ∈M4(Zp) such that:

([c′T,1]T , [c′T,2]T ) = ([cT,1]T · (R1 ⊗R2), [cT,2]T · (R1 ⊗R2))
∧ vrka→bT = [1]T · (R1 ⊗R2)

This proof needs 5 scalars of Zp for s ∈ {1, 2} and 17 scalars of Zp for s = T .

Proposition 14. For s ∈ {1, 2}, Es with verifiability is still secure. More precisely, for any
adversary A running within time t,

Advind-cpa
Es

(A) ≤ 4×Advddh
Gs

(t).



25

Proof. The modified Keygens also outputs vsks and a zero-knowledge proof πs. This implies that
some games need to be added before the first game in the security proof of Es for Theorem 10:

Game G0: In the first game, the simulator plays the role of the challenger in the experiment
Expind-cpa-0

Es
(A), where b = 0:

S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks, vsks, πs)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m0 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

We are interested in the event E: b′ = 1. By definition,

Pr
G0

[E] = Pr
[
Expind-cpa-0

Es
(A) = 1

]
.

Game G1: The first modification is to replace πs by its simulation, possible thanks to the
zero-knowledge property. This game is statistically indistinguishable from the previous one,
under the statistical zero-knowledge property of the proof à la Schnorr in the Random
Oracle Model.

Game G2: Now the simulator takes as input a Diffie-Hellman tuple ([a]s, [b]s), with b = r ·a
for some scalar r, and emulates Keygens by defining vsks = ([a]s, [b]s). Thanks to the Diffie-
Hellman tuple this corresponds to the matrix of a projection, and thus this game is perfectly
indistinguishable from the previous one: PrG2 [E] = PrG1 [E].

Game G3: The simulator now receives a random tuple ([a]s, [b]s): PrG3 [E] − PrG2 [E] ≤
Advddh

Gs
(t). In this game, there is no information in vsks anymore and the zero-knowledge

proofs are simulated. In the original proof, sks is never used, thus we can plug the games
from the original proof here. To finish the proof we need to unravel the games of vsks and
πs in order to have:

Game G4: S(λ):
– param = (G1,G2,GT , p, g1, g2, e)← Setup(λ)
– (sks, pks, vsks, πs)← Keygens(param)
– m0,m1, [a]s ← A(param, pks)
– Cs = (m1 · [a]s r · [ps]s, [a]s)← Encrypts(pks,m0, [a]s)
– b′ ← A(param, pks, Cs)

the experiment Expind-cpa-1
Es

(A).

Hence, we have:

Pr
[
Expind-cpa-1

Es
(A) = 1

]
− Pr

[
Expind-cpa-0

Es
(A) = 1

]
≤ 4×Advddh

Gs
(t).

ut

Corollary 15. ET with verifiability is still secure.

Proof. Similarly to the previous proof, the zero-knowledge proofs are replaced by their simula-
tions. Then, vsk1 and vsk2 are replaced by random matrices in M2(Zp). Thus, vskT is also a
random matrix. ut


