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Abstract

Capillary penetration of liquids in porous media is of great importance in many applications and the
ability to tune such penetration processes is increasingly sought after. In general, liquid penetration can
be retarded or restricted by the evaporation of volatile liquid at the surface of the porous media. Moreover,
when capillary penetration occurs in a porous layer with non-uniform cross section, the penetration
process can be accelerated or impeded by adjusting the section geometry. In this work, on the basis of
Darcy’s Law and mass conservation, a theoretical model of capillary penetration combining evaporation
effects in two-dimensional homogeneous porous media of varying cross-section is developed and further
examined by numerical simulations. The effects of sample geometry and liquid evaporation on capillary
penetration are quantitatively analyzed. Results show that the penetration velocity is sensitive to the
geometry of the porous layer, and can be tuned by varying the evaporation rate for a given geometry.
Under given evaporation conditions, penetration is restricted to a limited region with a predictable
boundary. Furthermore, we find that the inhibition of liquid penetration by evaporation can be offset by
varying the geometry of the porous layer. In addition, the theoretical model is further extended to model
the capillary flow in three-dimensional porous media, and the interplay of geometry and evaporation
during the capillary flow process in 3D conditions is also investigated. The results obtained can be used
for facilitating the design of porous structures, achieving tunable capillary penetration for practical
applications in various fields.
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1.
Introduction

When a dry porous medium contacts a liquid
reservoir, the liquid is transported into the
porous medium driven by capillary force.
This phenomenon is known as capillary
penetration. Capillary penetration in porous
media is commonly observed in phenomena
such as water absorbing into paper [1] and
rising damp in concrete walls [2]. Recently,
capillary penetration has attracted increasing
scientific and industrial attention, owing to
the high value of its diverse contemporary
applications including paper-based
microfluidics [3, 4], medical diagnosis [5],
energy-harvesting devices [6, 7], advanced
textile engineering [8, 9], cooling devices
[10], architectural conservation [11], and oil
recovery [12]. Capillary penetration has also
been utilized as an inverse method to
determine the effective properties (e.g., the
pore size distribution and porosity) of porous
media in both numerical [13, 14] and
experimental [15-17] approaches.

Capillary penetration in porous media shares
a similar dynamic mechanism with capillary
flow in hollow tubes, with both processes
resisted by viscous forces [18]. For a
capillary tube with a one-dimensional (1D)
uniform  geometry, dynamic  liquid
penetration is quantified by a diffusive
relationship between the position of the

liquid front L and time t, ie., L*>=Dt,

where D is the diffusive coefficient
depending on the tube size and the liquid
properties [19]. This relationship is best
known as the “Lucas—Washburn (LW) law”,
presented by Lucas [20] and Washburn [21]
a century ago. This classical result has been
found to be valid for both unidirectional and
radial capillary penetration in porous media
[22-25], and is further extended to the

hemispherical penetration in a semi-infinite
porous medium [26] and imbibition in
structured porous media with axially variable
geometries [27]. However, recent studies
have also indicated that this simple model is
not applicable for some complex cases, such
as flow processes in heterogeneous and
random porous media, and some other effects,
e.g., fractal and disorder, should be
incorporated into the analysis [28-32].

Tuning capillary penetration processes in
porous media, with an emphasis on
penetration velocity, is of increasing interest
in the burgeoning field of microfluidics [33].
However, the control of fluid flow is not
readily achievable by tuning the pore size
and porosity for most commonly used porous
media such as paper substrates [34]. For the
purpose of facilitating control, applied
porous media are commonly considered to
have different cross sections in the direction
of capillary flows [27, 35]. Recently, Benner
and Petsev [36] pointed out that varying the
shape of a porous material leads to
gualitative differences in the resulting flow
patterns. Additionally, Shou et al. [37]
explored the geometry-induced asymmetric
capillary flow in porous structures. They
found that the geometrical shape has a
significant effect on the flow behavior.
Subsequently, rational design of porous
structures for enhanced and controlled
capillary flows have been investigated
[38, 39]. Notably, previous studies have
revealed that the capillary penetration in non-
uniform porous structures should be treated
as a two- (2D) or three-dimensional (3D)
situation, and the time dependence of the
flow deviates from the LW 1D case
[26, 36, 39].

Akey factor affecting capillary penetration is
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the evaporation of liquid from the surface of
porous media [40, 41], with particular
relevance for highly volatile liquids, such as
the detecting reagent, used in paper-based
sensors and diagnostics [42]. Evaporation
also has a significant effect on some practical
respects, such as soil penetration of water in
irrigation processes [43], liquid flow in fuel
cells [44], and liquid transfer in capillary
evaporators [45]. Experimental results
revealed that capillary penetration in porous
media is strongly affected by evaporation,
which restricts liquid penetration to a limited

region [46]. In order to quantitatively
investigate the evaporation effect in
unidirectional penetration, the

Lucas—Washburn law was employed and
augmented by Fries et al. [40] to model
dynamic wicking processes. Recently, Liu et
al. [47] reported a model based on Darcy’s
law and the principle of mass conservation
for radial capillary penetration, in which the
boundary of the limited liquid penetrated
region was predicted theoretically. In their
study the geometry was held constant and
thus the penetration process was not tunable.

Although capillary penetration in porous
systems has been extensively investigated,
little work has dealt with the combined
effects of geometry and evaporation during
capillary penetration. The development of
capillary-driven microsystems for energy
and biotechnology applications requires
precise control and regulation of the
penetration process, including velocity and

total penetration time. An improved
mechanistic understanding of capillary
penetration with combined geometrical and
evaporation effects will facilitate the
application and design of porous structures.
From this perspective, we present here a
theoretical and numerical study on the
combined effects of geometry and
evaporation on penetration processes in
porous media, with a view towards tunable
capillary flow. Porous structures with 2D
non-uniform cross-sectional geometric shape
are considered first, and the analysis is
further extended to 3D porous structures.

2. Theoretical model

To investigate the combined effects of
geometry and evaporation on the capillary
penetration through homogenous porous
media, a trapezoidal thin porous plate with
one end contacting with an unlimited
reservoir is considered, as shown in Fig. 1.
As a simple case of 2D porous sample with a
non-uniform cross section, the trapezoidal
structure has essential geometric features
such as asymmetry and shape variation that
facilitate the investigation of the basic effect
of the sample geometry on fluid penetration
in porous media [37]. The penetration
processes takes place from the liquid
reservoir to the other end of the plate (see,
Fig. 1a), and is weakened by the concurrent
evaporation of liquid from the plate surfaces
(see Fig. 1b).
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FIG. 1. Schematic illustration of capillary penetration incorporating evaporation effect in a
trapezoidal porous plate: (a) oblique view; (b) side view.

As shown in Figure 1a, the considered porous
plate has a trapezoidal geometrical shape.
The width of the plate varies with the
position as the following relation,

W(5):W{l—lé(l—a)} , o)

0

where W, isthe width of the edge in contact

with the reservoir, |, the length of the plate

sample, and o the local position in the
penetrated region. The thickness of the
porous plate H is much smaller than its

length dimension |, such that it can be

treated as a planar problem. To study the
effect of plate geometry we define a

parameter « =W, /W, , where W, is the

width of the top edge. The geometry of the
plate can also be characterized by the base

angle [ of the trapezoid, which is related

to the geometrical factors by

cotf =

%.{(a—l),azl

2l, |(1~a),a<l

It is noteworthy that the liquid penetration in
this trapezoidal porous plate is technically
not a simple 1D problem. As discussed in the
previous work [36], the liquid flux in the
transverse direction of the flow is not
generally zero and depends on the opening
angle of the expansion (contraction), which
is different from the penetration in a uniform
plate (i.e., a=1). The liquid front is in
general not a straight line perpendicular to
the flow direction, which is involved in the
1D case, but an elliptic curve. Therefore, this
case should be regarded as a 2D problem.
According to the results of Elizalde et al., [39]
however, the relative error of flat liquid front
assumption in the 1D model, in comparison
with the 2D model, is small even if the
opening angle as large as 90°, which

corresponds to a base angle £ of 135° in

our model. Therefore, to simplify the
analysis, we adopt the 1D assumption of flat
liquid front (see Fig. 1a) to establish the
theoretical model involving the evaporation
effect, and the predictions are further
examined using numerical simulations in
following Section.

We consider the evaporation of liquid from
the penetrated region shown in Fig. 1b. A
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constant and uniform evaporation rate is
assumed for a given liquid, ambient
temperature, and relative humidity. The total
mass flow rate due to evaporation can be
calculated as

medium is obtained based on Darcy’s law as

; Ak 0P
Q—5A¢——75 ! ()

where A=w(5)-H is the cross sectional

; 1 . .
M, =2-m, -—[W(0)+W(|):|-| , (3)  area of the plate at position z, k is the

’ permeability of the porous medium, gz is
the viscosity of the liquid, and P

pressure of liquid.

. . I is the
where m, is the evaporation rate, which is
used to characterize the evaporation of liquid
(i.e., the mass loss due to the evaporation per
area and time) with the dimension of
[kg/m?.s], and | is the length of the

Combining Egs. (4) and (5), one obtains

P = ¢—’u(l +|—°Jln(1+l(oc-l)]ﬂ
kU at I, dt

+k5)_mHeK.%jm[%(a-ﬁj_g('%ﬂ

penetrated region. From Eq. (1), w(0) can

be calculated as W, . Note that the factor “2”

in the right side of Eq. (3) indicates the
assumption of equal evaporation from front
and back surfaces in Fig. la. Moreover,
evaporation from the secondary side surfaces
are neglected owing to the negligible
thickness assumed here.

When evaporation is included, mass transfer
in porous media conforms to the law of mass

conservation. For the considered thin porous
plate with porosity ¢ and assuming

negligible volume changes, the conservation
of mass can be expressed as

s.w(a)H¢:|'.w(|)H¢+z%%[w(5)+w(|)}(u_5)

: 4)
where p is the fluid density, and

S=ds/dt and [=dl/dt are the local

fluid velocity and the liquid front velocity,
respectively. Furthermore, in the penetration

process, the flow rate Q in a porous

, (6)
where P, =20c0s6, /Ry is the capillary

force, governed by the air-liquid surface
tension, o, the equilibrium contact angle of

the liquid with the solid, 6, , and the

effective pore radius of the porous medium,

R, - The second part of the right side in Eq.

(6) refers to the evaporation-induced viscous

pressure loss P, , which represents the

viscous resistance to liquid front movement
in the penetration process. According to the
above equation, the penetration distance (i.e.,
the liquid front position) can be predicted as
a function of time. It should be noted that this
model is valid only for cases exhibiting a
sharp liquid front, i.e., the penetrated region
behind the interface is fully-saturated. In
addition, its validity is limited to horizontal
penetration or vertical penetration without
gravity.
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Asymmetric penetration is examined by
changing the value of « . As a limiting case
of uniform cross section, =1, Eqg. (6)
reduces to the solution provided by Fries et
al.*°  Another limiting case is that of

negligible evaporation, m, =0, whereby Eq.

(6) reduces to the classical model [38].When

a=1 and m, =0 both meet, the original

LW relation [20, 21] is recovered.

3. Numerical simulation and results
analysis

3.1 Numerical methods

As mentioned in the preceding section, a flat
liquid front is assumed in the theoretical
model, which is only accurate and valid for
the 1D situation. COMSOL Multiphysics
5.2a finite element software (COMSOL Inc.,
Burlington, MA) is used to simulate a full 2D
problem to verify the proposed model (i.e.,

eq. (6)).

The 2D capillary penetration process in
porous media can be controlled by a set of
simultaneous partial differential equations,
viz., Darcy’s law

v:-£VP , (7

U

and the conservation of mass

Ul

where p is the fluid density, k, =k/¢ is

the interstitial permeability, and F is a
source term, which is related to the
evaporation of liquid. For negligible
evaporation, F is set to zero; otherwise, it

can be calculated as F=m,/Hg.

The above Egs. (7) and (8) govern the 2D
penetration process in the full region. When
the cross section of the region is uniform,
they reduce to the 1D case, as given by Egs.
(5) and (4) with a =1. By solving the set
of equations, we can obtain the distribution
of liquid flow velocity and the boundary of
the penetration region at any time.

In finite element analysis, the boundary
conditions of the numerical model are
defined such that the left and right surfaces
are non-penetrable and symmetric and the
reservoir-contacting boundary is stationary.
Note that the reservoir is exposed the
ambient  atmosphere and thus the

atmospheric pressure, P, , is fixed at the

atm ?
reservoir-contacting edge, while the pressure

at the fluid front is set as P

atm

—P., where

P. is the capillary pressure. To track the

C

velocity of a moving liquid front, a Moving
Mesh module is used in the COMSOL
software [35]. To accommodate upward
motion of the boundary of the fluid front,
side boundaries are allowed to be stretched in
the direction of flow, but not in the direction
perpendicular to flow. As the liquid front
moves automatic re-meshing is implemented
to avoid mesh distortion. Moreover, a mesh
sensitivity study has also been conducted a
priori to ensure the convergence of the
numerical models.

3.2 Results and analysis

By applying the developed numerical model,
the capillary penetration process can be
simulated for different geometrical shapes
and evaporation conditions. The simulation
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results of the time dependent penetration
distance are shown in Fig. 2 as symbols. Also
included are the theoretical predictions given
by Eq. (6), represented by lines. Two sets of
geometrical shapes, (a) a =100 (with

three base angles f =105°, 120°, and 135°)

and (b) a=0.01 (with S =45° 60° and

75°), are considered under different
evaporation rates (i.e., me/m: =0,1,2and
5). The results are made dimensionless by

two scaling parameters |, and t,, where

l, is the length of the plate sample, and

(a)L0

0.4 ® . s Simu_g=105°
Simu_p=120°
® & ¢ Simu p=135°
0.2 — — —-— —---Prediction T
1 2 5 a=100
0.0 L >
4 6 8 10
i/t

t, = uglZ /2kP, is the time scale of the

liquid penetrating from the reservoir to the
other end of a uniform porous plate (i.e., the

special case of « =1). The parameter m;

is the critical evaporation rate that allows
liquid to reach the end of the porous plate
away from the reservoir. The definition and

characteristics of m_ will be discussed later.

For illustration, the representative simulated
results of penetration region with pressure

profiles (i.e., (@) f =120°and (b) S =

60°with m_/m° =0and 2) are included as

inserts in Fig. 2.

(b) 1.0 . .
- “000
= Tee © 20
0.8} -
- o 3 B B
- T2 .“.ua
Qe-l..-
0.6 o
(=)
B BT
= S
~

3 - = Simu_g=45°

Simu_g=60°
0.2 ¢ & & Simu g=75 ]
- = —-=— =--=Prediction
1 2 5 a=0.01

0 \ , \ \
0.0 0.3 0.6 0.9 1.2 1.5
0

FIG. 2. Comparison of numerical simulations (symbols) and theoretical predictions (lines) of
penetration distance versus time for asymmetric capillary penetration in a porous sample with
(@) =100 (with base angles g = 105°, 120°, and 135°) and (b) ¢=0.01 (5 = 45°, 60°, and 75°)
under different evaporation rates (me/mg =0, 1, 2 and 5). Dotted lines indicate the critical

penetration distance. The insets show the simulated results of the penetration region with
pressure profiles. The contours of the insets, from red to blue, indicate the pressure level varying

from P, to

atm

atm Pc :

It can be clearly seen from the inserts in Fig.
2 that the liquid fronts are not straight lines
in the simulations. For « =100, the liquid
front is a convex curve (relative to the
reservoir position), but a concave curve for
a =0.01. For simplification, we choose the
middle point of the concave/convex curve to

represent the liquid front position, with
results are plotted in Fig. 2 as symbols. It
should be noted that other selections of the
representative point for the liquid front
position are also feasible. Although those
selections may lead to different relative
errors, they do not affect the conclusion
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drawn here. Numerical simulation and
theoretical predictions match closely for all
geometrical shapes and evaporation
conditions. Specifically, relative error for all

the three cases of =100 (ie, B =

105°, 120°, and 135°) is less than 5%. The
small error found may arise owing to the
liquid flow velocity, which depends on the
pressure gradient following Darcy’s law, and
is almost the same at the centre line in 1D and
2D conditions. However, for the set of

a=0.01 (ie, B = 45° 60° and 75°),

due to the effect of the initial reservoir-
contacted boundary condition being more
significant than for the case of o =100, the
relative error is also greater. It can be found
that the relative error is larger for smaller
base angles and larger evaporation rates, and
the maximum value at the extreme case of

B =45°and m_/m¢ =0 is about 20%.

While for the cases of £ = 60° and 75° at

the same condition, relative errors are
approximately 10% and 5%, respectively.
Consequently, the theoretical model based on
a 1D assumption is considered valid for most

samples with non-uniform geometrical shape.

Figure 2 also shows the evaporation effect on
asymmetric capillary penetration. It can be

seen that the penetration distance /I,

increases with time t/t, and the speed of
penetration is smaller for larger values of
m, /m¢ for both two sets of geometries

(=100 and «a =0.01). In similarity to
the case of radial capillary penetration,*” we
identify a critical state whereby the
penetrating liquid can just reach the end of

the porous plate under conditions of

m, =y, as shown by the dash lines in Fig.
2. For evaporation rates greater than the

critical value, i.e., me/mg>1, the

penetration  distance  approaches an

1/1, ) for

sufficiently long timeframes. It is thus an
evaporation-limited penetration, with the
critical length of penetration decreasing with
increasing the evaporation rate. In contrast,

asymptote (i.e., the critical

when m,_ /m® <1, liquid penetrates into the

entire region for all geometries.

For unlimited penetration, under conditions
of m,/mS <1, it is interesting to note that

the total penetration time also depends on the
geometrical shape for a given evaporation
rate. Specifically, penetration is faster for
samples with small values of a. Moreover,
the penetration velocity for the case of
o =100 (see Figure 2a) decreases over the
entire penetration process. However, for the
case of a =0.01 shown in Figure 2b, it is
obvious that the penetration velocity first
increases and then decreases with increasing
time. This indicates that we can tune the
capillary penetration process, e.g., the
penetration velocity or the total penetration
time, by controlling the geometrical shape of
the porous layer and the evaporation rate of
the liquid.

4. Tuning capillary penetration in
porous media

With the sustained development of capillary-
based microsystems, such as paper-based
microfluidics, medical diagnosis and energy-
harvesting devices [3-7], precisely tuning of
the capillary penetration process in porous
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media is of emerging interest for both
scientists and engineers in recent years.

4.1 Transition of the penetration velocity

Capillary-driven devices for energy and
biotechnology applications require precise
control of the capillary penetration velocity.
As shown in the preceding section, for some
porous samples with special geometrical
shapes under the appropriate evaporation

1.0

conditions, the penetration velocity can
increase with time following an initial
deceleration. This interesting feature of
tunable capillary penetration has
ramifications towards potential
multifunctional applications in microfluidic
devices for chemical analysis and catalysis,
which necessitate the precise control of flow
velocity [48].

a=0.0/e

0.4 08 o e=0.1/e T
- o o=05/e
a=1.0/e
0.2 06l —— Transition position | -
0.01 0.1 1 10
[#4
0.0 1 1 1
0.0 0.4 0.8 1.2 1.6
f/fo

FIG. 3. Variations of the normalized distance against the normalized time for asymmetric
capillary penetration with different geometrical shapes, the diamond symbols refer to the
transition position of the penetration velocity. Insert: The normalized velocity transition

position as a function of the geometrical factors.

Variation of the normalized capillary
penetration distance with normalized time
for six geometries (¢ =0, 0.1/e, 0.2/e, 0.5/,
1/e, 3/e and 10/e, with e being Euler's number)
are plotted in Fig. 3. As is evident from the
inflection of the plotted curves, the
penetration velocity transitions from a
decreasing to an increasing trend during the
penetration process for samples with

a <1/e. The transition points are marked

with diamond symbols for each line (see Fig.
3), and occur at increasing distances for a

values from 0 to 1/e. When a >1/e, the

transition disappears and the penetration
velocity decreases throughout the entire
process. The variation of the transition
position with the geometrical factor is shown
in the insert in Fig. 3.

The penetration velocity v =dl/dt can be

(6).
dv/dt=0 at the transition position I, the

determined from Eg. Noting that

relationship  between evaporation rate,
geometrical factor and transition position can
be obtained from Eq. (6), as
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0 2(a-)’ {1+|n[1+:;(a-1)}}

s 1+[1+|'t(a-1)]2 ln[1+:‘(a-1)]—2{1+:‘(a-l)}z '“[“:t(“'1)]2‘(“'1):{“:{(“'1)} ,

0 0 0 0 0 0

(9)

where m; =P.-kpH / w4 is a scaling parameter used to make the evaporation rate

dimensionless. For negligible evaporation, the above equation reduces to an explicit expression

for the transition position as

ot
IO

1-e*t
l-«

(10)

This equation relates the transition point to the geometrical factor as shown in the insert of Fig.

3.
@ (b) 1.0
09
~C
~— 038
. NN
=
~" 0.7
06 1 1 1
0.0 0.5 1.0 1.5 2.0
€« me/mecu

FIG. 4. (a) The distribution of the penetration velocity (acceleration or deceleration) under
different evaporation conditions and geometrical shapes; (b) Transition position of the
penetration velocity plotted versus evaporation rate for different geometrical shapes.

When the evaporation effect is non-
negligible, by using Eg. (9), the transition

position I/, can be predicted as a

function of m_/m¢, and «, as illustrated

in Fig. 4a. In the blue region, the penetration
exhibits acceleration, while the decelerating
penetration is described by the green region.
The interface between these two regions
presents the transition position of penetration

velocity I./l, and its dependence on

10

parameters m_/mS, and « , which is

predicted quantitatively by Eqg. (9). In this
3D phase diagram, the interface between
deceleration and acceleration reduces to a
linear boundary when evaporation is
negligible, which has been discussed before
and given in a special case as shown in the
insert in Fig. 3.

In order to more clearly show the transition
position of penetration velocity for different
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geometry and evaporation conditions, 1, /I,

is plotted as a function of m, /m¢, for

different values of « in Fig. 4b. It can be
found that the transition to accelerating
penetration occurs at higher positions for
higher evaporations rates for different
geometries. Furthermore, for a given
evaporation rate, the transition position is
higher for larger geometrical factors. Based
on such charts, the transition position can be
readily determined for analytical purposes,
and for informing the design of porous
structures, such as chemical detection
devices with controllable reaction times
applied at different temperatures [5]. It
should be mentioned that tuning the
penetration  velocity,  especially  the
acceleration is challenging and necessitates
the informed control of sample properties
and environmental conditions.

4.2  Evaporation limited

penetration

capillary

As previously mentioned, the evaporation
effect acts as a viscous resistance to the liquid
front moving in the penetration process
[40, 47]. When the evaporation-induced
viscous pressure loss equals the capillary

pressure (viz., P, =P, ), the velocity of

liquid front reduces to zero, and the
penetration will be restricted to a limited
region with a critical length (see Fig. 2). By
considering the critical condition of

can be

c

P. =P, , the critical length |

obtained as

[LC_,_LJ |n|:1+L(a_1):|_L[i+Lj: mecu 1(11)
l, a-l Iy 21, a1 |, m

e

where ¢, =P.-kpH /u? is the critical
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evaporation rate for a uniform porous plate
that allows penetration through the entire
material. This value has been used as a
scaling parameter to normalize the
evaporation rate in Eq. (9). Furthermore, if
we focus on a special circumstance of the
critical length exactly equaling to the length

of the plate, ie, | =1, , the critical

evaporation rate M can be given as

mo 2(1-a)
m  1-a?+2a%Ina

(12)

c
eu

This equation reveals the relation between

c
e

m; and m;, . The right hand side will

reduce to 1 while a=1, meaning

m; =m;, for the case of a uniform porous

plate.

According to Eq. (11), the critical length of
the evaporation-limited penetration region

Ic/IO

is plotted as a function of the

evaporation rate 1M, /m¢, and geometrical

factor « in Fig. 5a. It is clear that when
evaporation rate is smaller than a critical

c
e

value, i.e, m,<m, , the critical length

remains the length of the sample, which
means the liquid can penetrate the whole
region. However, the critical length

decreases from |, and approaches 0 when

m, > m; . Note that there is a boundary at the

top surface in Fig. 5a, as shown by a blue line,

which delineates I. =1, at critical

conditions of evaporation rate and
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geometrical factor, and can be quantitatively
described by Eqg. (12) as shown in Fig. 5b.
Figure 5 indicates that the limited penetration
region can be tuned by controlling the
evaporation rate and geometry of the sample.
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A tunable penetration region allows for
optimized distribution of chemical reagents
in a specific test zone in detection devices
[34].

o

FIG. 5. (a) Normalized critical penetration distance versus normalized evaporation rate for
asymmetric capillary penetration with different geometrical shapes; (b) Normalized critical
evaporation rate as a function of geometrical factor.

It should be noted that all the results are given
in a dimensionless form in the above analysis.

Particularly, the evaporation rate m, is
normalized by a critical value m; (or m;,).

According to the expression of m; (i.e., Eq.

(12)), we know that it depends on the
properties of the liquid and the porous
medium, and the geometrical parameters of
the porous media. Moreover, the physical
properties of a liquid (i.e., surface tension,
density and viscosity) are influenced by
environmental conditions, including
temperature and vapor pressure [40, 44, 47].
In order to investigate the effects of these
factors on the critical rate of evaporation,
variations of the critical evaporation rate
against the length of the sample and

12

temperature are plotted in Fig. 6a and 6b,
respectively. Two types of commonly used
liquid, i.e., water and hydrofluoroether
(HFE-7500), are considered. For each case,
three different geometries, ¢ =0.5, 1, and
1.5, are taken into account. The layer
thickness is set to be H = 0.1mm. Other
parameters of the porous medium, water and
HEF-7500 under different temperatures are
retrieved from Fries et al.,** Vargaftik et al.
[49] and Rausch et al. [50], respectively.
Figure 6 represents the linear relation
between critical evaporation rate and the
sample size and temperature. These findings
demonstrate how liquid penetration can be
tuned by changing ambient conditions,
adopting different liquids and controlling
porous media geometries.
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FIG. 6. Variation of the critical evaporation rate against (a) length of the sample at T=20°C and
(b) temperature with l,=0.1m for porous plates with different geometries.

4.3 Geometry-based compensation of penetration time

In the above analyses, we have found that the penetration process is affected by not only liquid
evaporation but also the geometry of the porous media. On one hand, the penetration process
will be retarded by evaporation, on the other hand, changing the geometrical shape of the porous
sample affects penetration in both accelerating and decelerating regimes. It indicates that the
evaporation-retarded penetration can be compensated by choosing a proper geometrical shape
of the porous sample. In other words, we can tune the capillary penetration in porous media by
combining the geometry and evaporation effects. This inspires us to design suitable porous
structures for particular using environment.
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FIG. 7. (a) The critical penetration time versus evaporation rate for the penetration in porous
plate with different geometrical shapes; (b) The coordination condition between geometrical
factor and evaporation effect for compensating the evaporation-retarded penetration time.

For capillary penetration in porous media,
the total penetration time is an important
parameter attracting significant attention in
industrial applications such as chemical
analysis [37, 38]. As shown in Fig. 7a, the
normalized critical time for penetration in the

whole region (i.e., t./t,, where t; is the

critical penetration time of a uniform porous
plate without evaporation) is plotted as
function of normalized evaporation rate for
samples with different geometries. It is clear

13
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that the penetration time increases with
increasing evaporation rate for each
geometrical factor, and approaches infinity
when the evaporation rate tends to a critical
value. After exceeding this critical
evaporation rate, the penetration will be
restricted to a limited region within the
sample. The dotted line in Fig. 7a, which

extends horizontally at t./t, =1, reveals

that tailoring the geometrical shape of a
porous sample can compensate for the
evaporation-retarded penetration.

To further understand this compensation
mechanism, as shown in Fig. 7b, we plot the
distribution of penetration time in a phase

diagram in the space of ™, /mS, and « . It

can be seen that there are three regions in two
main parts, i.e., the complete penetration part

(ie., 1. =1,,theliquid can penetrate into the

whole sample, including the shaded blue and
cyan regions) and the incomplete penetration

part (i.e., I, <l,, the liquid is limited to a

finite region, see the shaded yellow region),
with a purple solid line boundary, which
indicates the limiting condition of complete

penetration with infinite time (i.e., t, =).

C

In the complete penetration region, there is a
boundary between the blue and cyan regions
shown as a green solid line, which is
transplanted from the dotted line in Fig. 7a,
and gives the coordination condition for the
geometrical shape compensating the
evaporation-retarded penetration time to be a

constant (i.e., t, =t;). Inthe blue region, the

total penetration time t. under the

combination of evaporation rate and

14

geometrical factor is smaller than the critical
value t, (i.e, t <t,). Thus, this region

can be considered as an overcompensated
region. In contrast, under-compensation is
found in the cyan region, that is, the total
penetration time is larger than the critical

value, ie., t,>t;.

C

In practical applications, the reference state
for compensation may not always be the
uniform porous plate. For any given
reference state, the coordination condition of

o and m,/mS, can be obtained by

moving the dotted line in Fig. 7a up (for the
case of a>1) or down (for a<1).
Accordingly, the position of the green solid
line in the phase diagram in Fig. 7b also
needs to be adjusted corresponding to the
dotted line. This compensation mechanism
can be used as a basis to precisely control
penetration processes in chemical analytical
devices, with  implications  towards
improving their accuracy [34, 48].

5. Evaporation effect on the capillary
flow in 3D porous structures

In the previous sections, by applying the
proposed theoretical model, the combined
effects of geometry and evaporation on the
capillary penetration in 2D porous structures
are investigated systematically. Nevertheless,
capillary flow processes are also commonly
found in 3D porous structures, such as
capillary evaporators, drug delivery systems,
and construction and geotechnical structures
[10, 11, 45], and most of the 3D porous
structures with non-uniform cross sections
[27]. Here we extend the proposed
theoretical model to cover 3D porous
structures and investigate the interplay of
sample geometry and liquid evaporation
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during the capillary flow process.

5.1 Theoretical model for capillary flow in
3D structures

As shown in Fig. 8, we choose a hollow
circular frustum cone (see Fig. 8a) and a
hollow square frustum pyramid (see Fig. 8b)
as two examples of 3D porous structures.
When the porous samples attach with liquid
reservoir, the liquid will transfer to the other
end from the reservoir driven by the capillary
pressure. For the hollow circular frustum, it
is clear that the structure is axisymmetric. Its
intermediate cross-section, i.e., the plane of
symmetry, is an isosceles trapezoid.
According to the symmetry, half of the

intermediate cross-section, i.e., 0,0,Q,Q,,

can be illustrated in Fig. 8c. For the hollow
square frustum, the axisymmetry is not valid,

but half of symmetrical plane O,0,Q,Q,

can also be chose to characterize the basic
geometric features of the whole structure.
Similar to the previous analysis of 2D cases,
half of the width and the porous layer
thickness are assumed to vary with the

(b)

position as

R(z)=R{1—hi(1—aR)} , (13)

and

T(z)=T{1—hi(1—aT)} , (14)
0

where R, and T, are the half width and
layer thickness at the edge in contact with the
reservoir, respectively, h, is the length of

the central axis of the hollow circular frustum
cone and the hollow square frustum pyramid,
z is the local position in the penetrated

region along the central axis, and «, and

o, are the geometric parameters with

respect to the half width and layer thickness,
respectively. Similar to the 2D trapezoidal
porous plate, the geometric feature of these
3D porous sample can be characterized by

the geometric parameters oy and o .

FIG. 8. Schematic illustration of 3D porous structures: (a) hollow circular frustum, (b) hollow
square frustum, and (c) Intermediate cross-section of the 3D porous structures with capillary

penetration incorporating evaporation effect.

For these 3D hollow porous structures, the

liquid front is in general not a flat surface (i.e.,
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a straight line in 2D sample) perpendicular to
the flow direction but a curve surface, similar
to the 2D trapezoidal structures. Specifically,
for the hollow circular frustum (see Fig. 8(a)),
the liquid front is axisymmetric about z axis,
thus the 1D assumption of flat liquid front
(see Fig. 8c) is valid when the opening angle
is not large enough. For the hollow square
frustum (see Fig. 8(b)), it should be noted
that the 1D assumption will induce larger
error, but it can be adopted for the theoretical
model to investigate the basic characteristics

of capillary flow in 3D structures. In addition,
when the liquid penetrates through these
hollow structures, evaporation will take place
at both the inner and outer surfaces of the
penetrated region. To simplify, only the
evaporation at the outer surface is considered,
as shown in Fig. 8c.

For the hollow circular frustum (see Fig.
8(a)), the mass conservation under the
evaporation condition can be expressed as

2.7 R(2)~(R(2)-T (2))' [ =hi-7| R* () ~(R(n)~T (n))’ |¢

, (15)

P

ez J(h=2) +[R(2)-R(0)] -[R(2)+R(n)]

where z and h indicate the local position in the penetrated region and the liquid front

position, respectively, as shown in Fig. 8(c).

Technically, one can obtain the fully control equation for the moving liquid front position by
combining Egs. (5) and (15). However, it should be noted that the pressure gradient, which is
used to determine the flow rate in Eq. (5), is depending on the flow direction. It is clearly seen
from Fig. 8c that the flow direction is not along the central axis (i.e., z axis) anymore, only if
the hollow structure becomes solid. Here, it is assumed that the flow direction is along the inner

boundary of the porous layer, i.e.,

ﬁ in Fig. 8c. Introducing the slant angle y, Eq. (5) can

be rewritten, and the control equation can be obtained by combining with Eg. (15) as

PC’ - %u.[oh zd

¢/Jj~h 2R(h)T (h)- T(h)

" 2R(2)T(2)-T (2)'

(16)

+¢_ﬂ'mej[re( )+R(M)]-(h-2)° +[R(2)
2R(2)T(z )—T( )

k  pg o

—R(NT N '

where P/=P, -(Sin 7)2 , inwhich P, is the capillary force with the same expression as 2D

c

caseas P, =20c0s6, /Ry .

By substituting the expressions of R(z), T(z), R(h) and T (h), through Egs. (13) and

(14), into Eqg. (16), the penetration distance, i.e., the liquid front position, can be calculated as
a function of penetration time. It should be noted that the mass conservation of the hollow
square frustum (see Fig. 8(b)) has the similar expression as Eq. (15) for the hollow circular
frustum, and we can further confirm that Eq. (16) is also valid for the hollow square frustum.
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Noted that there are two integral functions in Eq. (16), the explicit expression is not easy to
obtain for general case. Here we focus on two special cases, i.e., uniform thickness and varying
thickness, to derive the explicit expressions of control equation. When the 3D hollow porous

structure has a uniform thickness, i.e., T(z) =T,, the geometrical parameters can be set to

a, =a and «a; =1. Following these conditions, the control equation can be obtained as

5 duill 1—H/2—(1—a)ﬁ| 1-T1/2 dh
= . n — | —
© ok l1-« 1-T/2-(1-a)h | dt
g J2 :1—(1—05)5:2—112/4'” 1-1/2-(1-a)h | R (1+11/2)h
2pkT/ (1-a)’ 1-T11/2 2 1-a

where |, is the distance of the sample along the flow direction and can be related to the axial

length h, via h,/l,=siny. h= h/h, is the projected length of the penetrated region,

T, =T, / \/1+ (1- oc)2 / H? s the effective thickness of the porous layer at the bottom surface,

and IT1=T,/R, isthe relative thickness with respect to the half width. Following the flat front

assumption, one can find that | = I/I0 =h, where | is the length of the penetrated region

along the flow direction.

When the thickness of the porous layer is much smaller than the width of the sample, i.e.,
IT — 0, hollow square frustum pyramid can be unfolded as four trapezoids. Correspondingly,

Eqg. (17) will reduce to Eqg. (6) by replacing h as | .Furthermore, hollow circular frustum

cone can be unfolded as a sector ring when IT — 0. Hence Eq. (17) can reduce to the

theoretical model for radial penetration in our previous work [47], by replacing h as T

through the relation T=1-h-(1-a).

For the special case of equal proportional thickness, i.e., ar = a; =« the control equation

can be derived as

_ gl —7= dh wml? R’
p=2 11 (1-g)R R 24 ANk | .
S R G U 20KT, 1-T1/2 (18)

In this case, when IT=1, the hollow structure becomes solid. Furthermore, when « =1, Eq.
(18) will reduce to the classical 1D model given by Fries et al. [40].

17
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According to the developed theoretical geometric parameters, i.e., a=2.0 and
models, i.e., Egs. (17) and (18), the a =0.5. For each geometry, three samples
capillary penetration process in 3D porous with different relative layer thickness, i.e.,
structures can be predicted for samples with IT =001la,05a and 1.0a (where
different geometrical shapes and under a=a when a<l and a=1 when
different evaporation conditions. Here we a >1), are considered, as shown by solid
focus on the hollow porous sample with lines with different colors. For the purpose of
uniform layer thickness as an example. As comparison, the prediction of 2D model (Eqg.
shown in Fig. 9, the normalized penetration (6)) are also plotted by symbols and
distances are plotted as a function of definitely consist with the 3D case of I1 =
normalized penetration time for two sets of 00lcx.

(a) 10

. . (b) 1.0
0.8 0.8
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=~ a=2.0 =) a=0.5
~ 04 = m/m; | ~ 04 = m/m
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; 3D, 11=0.01 3D, 11=0.01la
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t/ to t/ l

FIG. 9. Normalized penetration distance versus penetration time for capillary penetration in
hollow porous sample (lines) with: (a) = 2.0 (under evaporation rates me/m: =0.0and 1.0)

and (b) = 0.5 (M, /m’ = 0.0, 0.3 and 1.0) with relative layer thickness IT = 0.01&, 0.5&

and 1.0 @ . The results of 2D model prediction (symbols) are also included for the purpose of
comparison.

It can be seen from Fig. 9 that, for both two sample with larger relative thickness.
sets of geometries, the evaporation of liquid However, for the case of a=0.5, it is
weaken the penetration process generally, i.e., interesting to find that there is a transition of
higher evaporation rate leads to slower flow the effect of relative layer thickness on the
velocity for all the three samples with penetration from negative to positive by
different relative thickness. However, for a varying the evaporation rates, see Fig. 9(b).
given evaporation condition, the effect of
relative layer thickness on the penetration
will depend on the geometric shape of the found for the thicker sample, but on the
sample. Specifically, for the case of contrary, faster flow velocity is obtained in
a = 2.0 under two evaporation rates (i.e.,

When i, /m¢ =0, slower flow velocity is

the thinner sample when m,_/m¢ = 1. The

m_/m; =0and 1.0), as shown in Fig. 9(a), L .
9/ € ) 9-9@) transition is approximately occurred at

slower flow velocity can be found for the . .
Y m, /mS = 0.3, and the flow velocity is not

18
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dependent on the relative layer thickness at
this special evaporation condition. This
interesting transition phenomenon will have
significant effect on the compensation
mechanism in 3D conditions.

5.2 Compensation mechanism in 3D

conditions

As we have discussed in Section 4.3, the
evaporation-retarded penetration can be
compensated by tailoring geometrical shape
of the porous sample. For the 2D porous
sample, only the geometric factor is tunable,
but for the 3D porous sample, one more
parameter (i.e., the relative layer thickness)
will be introduced to increase the design
flexibility. Here we also choose the critical

penetration time for the whole region (t,) as

an object variable of the compensation, and
the corresponding reference is the critical
penetration time of a uniform porous cylinder

without evaporation (t, ).

First, we focus on the 3D hollow porous
structure with uniform thickness. As shown
in Fig. 10, the normalized critical penetration

time (i.e., t /t,) is plotted as a function of

evaporation rate for porous samples with
different geometrical shapes (i.e., =0, 0.1,
0.25, 0.5, 1.0 and 2.0). For each geometry,
three samples with different relative
thickness, i.e., II =0.01a,05a and 1.0
a , are considered. When the relative layer
thickness approaches zero (e.g., I =0.01
a ), the results of 3D cases are consistent
with the 2D results (as shown by symbols).
Similar as the 2D cases (see Fig. 7(a)), the
penetration time increases with increasing
evaporation rate for each sample with
different geometric factor and relative
thickness. Additionally, the penetration time
approaches infinity when the evaporation
rate tends to a critical value, and the limited
penetration will occur when the evaporation
rate exceeds the critical value.

0.0 0.5

1.0 1.5 2.0

eu

FIG. 10. The critical penetration time versus evaporation rate for the penetration in 3D porous
samples (lines) with different geometrical shapes (i.e., =10, 0.1, 0.25, 0.5, 1.0 and 2.0). The
results of 2D model prediction (symbols) are also incorporated as comparison.

For the samples with given geometric factor,
the relation between critical penetration time
and evaporation rate is dependent upon the

relative layer thickness of the sample.
However, it can be interestingly found that
this dependence vanishes at the state of
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t./t,=1 , which reveals that the

coordination condition of compensation for
the evaporation-retarded penetration is not
depending on the relative layer thickness. By
extracting the intersection point at the
horizontal dotted line in Fig. 10, the
compensation condition for 3D porous
structures can be plotted in Fig. 11(a). This
condition is corresponding to the phase
boundary line in left side of Fig. 7(b) for the
2D compensation. Similar as the 2D case, for
a given 3D porous structure, when the

(@) L6 : - - :

00h

0.50 0.75

o

0.00 0.25

1.00

condition of evaporation and geometric
shape situate in the overcompensated region,
which is located in the left side of the red line,

the total penetration time t, is smaller than

the critical value t, (i.e., t <t;). On the

contrary, the larger total penetration time (i.e.,

t,>t, ) can be found in the under-

compensation region, which is located in the
right side of the red line.

(b) 20 T T T
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FIG. 11. (a) The coordination condition between geometrical factor and evaporation effect for
compensating of the evaporation-retarded penetration time; (b) Normalized critical evaporation
rate for the complete penetration in 3D porous sample with different relative layer thickness
(i.e.,, TT =0.01,0.25,0.50,0.75and 1.00) are plotted as a function of geometrical factor (lines).
The critical condition for the complete penetration in 3D sample (symbols) are also

incorporated as compression.

When the evaporation rate is larger enough,
the liquid penetration will be limited in a
finite region. By employing the equilibrium

condition of P, =P, , the critical condition

for the complete penetration (i.e., the liquid
can penetrate into the whole sample exactly)
can be obtained as

mgu_a2—n2/4ln a-T2| 1 1+I12
m,  (1-a) 1-M2 | 2 1-«a

(19)
It can be found that, when the relative layer

20

thickness TT — 0, Eq. (19) will reduce to
Eg. (12), which is governing the critical
condition for the complete penetration in 2D
porous samples. By applying Eqg. (19), the
normalized critical evaporation rate for the
complete penetration in 3D porous sample
can be plot as a function of geometrical factor
in Fig. 11(b). Five cases with different
relative thickness, i.e., II = 0.01, 0.25,
0.50, 0.75 and 1.00, are considered here, and
the case with IT = 0.01 is consisting with
the 2D results (as shown by symbols). Due to
the relative thickness is confined with
IT<a, it is clearly seen that the critical
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condition between geometrical factor and
evaporation rate is truncated at o =11 for
each case. Additionally, for a given
geometrical factor, larger relative thickness
corresponds to smaller critical evaporation
rate, that means the complete penetration is
easier to attain for the sample with larger
relative thickness.

All the discussion presented above are
focusing on the 3D hollow porous structures
with uniform layer thickness. However, we

(a) 80 -

6.0

2.0

0.0
0.1

10

cannot access the properties of solid
cylindrical porous sample by changing the
geometrical parameters, even if the inner
radial reduces to zero. To this end, here we
consider the liquid penetration process in 3D
hollow porous structures with proportional
layer thickness. Applying the proposed
model, i.e., Eq. (18), the variation of the
liquid front with penetration time can be
calculated for 3D hollow porous structure
with different geometrical shape under
different evaporation condition.

(b) 80

4.0

0.50 0.75 1.00

m, / n,,

0.25

FIG. 12. The critical penetration time for the penetration in 3D porous samples versus (a)
geometrical factor, and (b) evaporation rate for different geometrical shapes.

When the evaporation is negligible, i.e.,
m, =0, by integrating Eq. (18), the relation

between penetration distance and penetration
time can Dbe obtained explicitly as

h?-2/3-(1-a)h®=T with T=t/t, .

For the complete penetration, i.e., h =1,the
critical condition can be further simplified as
1/3+2a/3=1 , where T =t /t, is the
normalized critical penetration time. The

critical penetration time T, is plotted as a

function of the geometrical factor « inFig.
12(a) with semi-log coordinates. The
asymmetric capillary flow is clearly found

21

when « varying from 0.1 to 10. Moreover,

the linear variation of { to « s also

shown in the insert of Fig. 12(a) with initial

value of T, =1/3 when « =0.

When the evaporation is non-negligible, as
we have discussed before, the evaporation -
restarted penetration can be compensated by
changing the geometrical shape of the porous
sample. For the 3D hollow porous structures
with proportional layer thickness, the
normalized critical penetration time can be
plotted as a function of evaporation rate for
samples with different geometrical shapes
(i.e., a =0.5,1.0and2.0), as shown in Fig.
12(b). Three samples with different relative
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thickness, i.e., IT =0.01a,05a and 1.0
a , are considered for each geometry. It is
clearly seen that the relative thickness has no
effect on the critical time when the

evaporation is negligible (i.e., m,=0).

With the evaporation rate increasing, the
significance of the effect of relative thickness
on the critical time is increasing. Following
the horizontal dotted line in Fig. 12(b), one
can find that the coordination condition of
compensation is depending on the relative
layer thickness, which is different from the
results of 3D structures with uniform layer
thickness. Additionally, the critical condition
of complete penetration is also depending on
the relative thickness.

The findings presented in this section provide
us more clear understanding about the
capillary flow in 3D porous structures,
especially the compensation mechanism in
3D conditions. By means of these findings,
the design of capillary flow devices can be
improved to facilitate the applications in a
wide range, especially for the devices with
high precision and sensitivity requirements.

6. Conclusion

In summary, a general framework has been
developed to quantitatively investigate the
significant effects of sample geometry and
the liquid evaporation on capillary
penetration processes in both 2D and 3D
porous media with non-uniform cross
sections. By combining the effects of
geometry and evaporation, the velocity and
extent of capillary penetration can be tuned
with implications for diverse practical
applications. Numerical simulations have
been performed to support the developed
theoretical model for 2D porous media. Good
agreement is obtained for the base angles
between 45° and 135°.
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For 2D porous media, the velocity of
capillary penetration is found to be sensitive
to the geometry of the porous sample, and it
is found to transition from a decreasing to an
increasing trend during the penetration
process for a given geometry. Moreover, the
distribution of penetration velocity can be
modified by evaporation effects. The
transition position has been predicted
guantitatively as a function of the
evaporation rate and the geometrical factor.
Furthermore, a critical value of the
evaporation was found to exist, above which
liquid penetration is restricted to a limited
region with a predictable boundary. The
critical length of the limited penetration
region depends on the evaporation rate and
geometrical factor. It is particularly
interesting to note that evaporation-retarded
penetration can be compensated by choosing
an appropriate sample geometry, and the
coordination condition is given theoretically.

The capillary penetration in 3D porous
structures was investigated. It is found that
the relative layer thickness (uniform of
variable) has a significant effect on the
penetration process and the critical condition
of the complete penetration in 3D structures.
Another interesting finding is that the
compensation condition for the evaporation-
retarded penetration in 3D porous structures
with uniform thickness does not depend on
the layer thickness, but such dependence is
found for porous structures with proportional
thickness.

The present analysis provides a useful
framework to investigate the underlying
mechanisms of penetration processes by
combining geometry and evaporation effects.
Insights gained from this work warrant new
designs of more complex and actual porous
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architectures to achieve active control of the
capillary penetration processes for a wide
range of practical applications. Furthermore,
it is worth mentioning that the present
framework to consider geometrical factors
can be applied to alternative shapes, other
than the trapezoid and hollow circular/square
frustum we discussed here.
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