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Cornelia Maier, Markus G. Weinbauer, 
and Jean-Pierre Gattuso

Abstract

This chapter addresses the question as to how 
Mediterranean cold-water corals might fare in the future 
under anthropogenically-induced global climate change. 
The focus on three most prominent scleractinian cold-
water corals species, the two branching and habitat-
forming forms Madrepora oculata, Lophelia pertusa and 
the solitary cup coral Desmophyllum dianthus. We pro-
vide an introduction to climate change principals, high-
light the current status of the marine environment with 
regard to global climate change, and describe how climate 
change impacts such as ocean acidification are predicted 
to affect key calcifiers such as scleractinian cold-water 
corals in the Mediterranean region. A synthesis of the 
experimental cold-water coral studies conducted to date 
on climate change impacts: The present state of knowl-
edge reviewed in this chapter takes into account the num-
ber of experiments that have been carried out in the 
Mediterranean as well as for comparative purposes in 
other parts of the world, to examine the effects of climate 
change on the corals. We assess the statistical robustness 
of these experiments and what challenges the presented 
experiments. A comprehensive multi-study comparison is 
provided in order to inform on the present state of knowl-
edge, and knowledge gaps, in understanding the effects of 
global climate change on cold-water corals. Finally we 
describe what the fate could be for the important sclerac-
tinian coral group in the Mediterranean region.

Keywords
Mediterranean cold-water coral · Climate change · Ocean 
acidification · Temperature · Calcification · Respiration

�44.1	 Introduction

44.1.1	� Global Climate Change

Climate change refers to a change in weather conditions over 
a longer period of time, taking place from decades to mil-
lions of years and usually referring to (regional) rise or fall of 
mean temperatures, changes in precipitation and parameters 
such as the frequency of extreme weather events. Throughout 
Earth’s history long-term climate change and climate events 
have taken place as a consequence of internal or external 
forcing of the naturally occurring climate system. The most 
recent, relatively short-term change in the global climate 
however, has been more dramatic and due to anthropogeni-
cally produced greenhouse gases that have acted on the cli-
mate system by reducing the heat radiation to space. 
Anthropogenically induced global warming trend had 
already been described in the late nineteenth century 
(Arrhenius 1896). At that time, the contribution of industri-
ally produced CO2 was thought to have minor effects with 
respect to the overall natural climate dynamics and it was 
believed that the observed warming would at least be par-
tially beneficial to human prosperity: “…there is good mixed 
with the evil. …, we may hope to enjoy ages with more equa-
ble and better climates, especially as regards the colder 
regions of the earth…” (Arrhenius 1908). Since this time 
research to investigate climate change impacts has intensi-
fied and there is now strong evidence, that besides the 
increase in temperature, our global climate has become less 
stable with more frequent and intense weather events due to 
the present day atmospheric levels of CO2 concentration 
being higher than at any time during the last 2.6 million 
years (Lewandowsky et al. 2016). Since pre-industrial times, 
atmospheric CO2 increased from 280 to 400 ppm and a fur-
ther doubling is projected until the end of the century (IPCC 
2013). This rate of change is unprecedented with a anthropo-
genic CO2 release rate being 14,000 times faster than the 
natural net release of CO2 (Zeebe et al. 2016).
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44.1.2	� The Role of the Oceans

The oceans play an important role in global climate through 
gas and heat exchange and it is this thermal capacity of the 
oceans that moderates the climate and slows down global 
warming. Heat exchange with the ocean affects the upper 
ocean layers more strongly than the deep ocean and up to 
90% of the additional heat and about one third of anthropo-
genic CO2 released since pre-industrial times has been 
absorbed by the oceans. Since the 1970s ocean temperatures 
too have increased by 0.11 °C per decade in the upper 75 m 
and by 0.015 °C at 700 m water depth (Levitus et al. 2012; 
Rhein et al. 2013). An apparent ‘hiatus’ in global warming 
and sea surface heat uptake during the last 15 years had been 
identified (IPCC 2013), while the deeper ocean has contrib-
uted significantly to an additional and recent heat sequestra-
tion. This factor explains the observed slowing down of 
atmospheric warming during the last decade (Hansen et al. 
2011; Meehl et al. 2011; Chen and Tung 2014; Cheng et al. 
2015; Yan et al. 2016; Desbruyères et al. 2016; Bova et al. 
2016), with recent research substantiating the ongoing ocean 
warming trend (Kosaka and Xie 2013; Karl et  al. 2015; 
Lewandowsky et al. 2016; Fyfe et al. 2016; Song et al. 2016; 
Hausfather et al. 2017). Global change not only affects the 
general heat content and warming of the oceans, but has 
widespread consequences related to the temperature depen-
dent state of water as solid ice, liquid or vapour. Changes in 
sea level, salinity and freshwater content show strong regional 
trends dependent on the ratio of evaporation, precipitation, 
river discharge and melting of glaciers and ice caps (Church 
et al. 2011; Pierce et al. 2012; Levermann et al. 2013; Rhein 
et al. 2013). Since the 1950s the contrast between high- and 
low-salinity regions has increased by 0.13 (Rhein et al. 2013). 
These changes in seawater temperature and salinity affect the 
density and volume of seawater causing changes to the steric 
sea level (Antonov et al. 2002; Llovel et al. 2014), circulation 
of water masses and to ocean currents (Purkey and Johnson 
2010; England et al. 2014; McGregor et al. 2014).

44.1.3	� Ocean Acidification

Anthropogenic CO2 released to the atmosphere is partially 
taken up by the oceans and acts as a major net sink for 
anthropogenic carbon (Revelle and Suess 1957; Orr et  al. 
2001; Sabine et al. 2004; Landschützer et al. 2016). Since 
pre-industrial times about 25–30% of atmospheric CO2 has 
been absorbed by the oceans. The rising partial pressure of 
CO2 (pCO2) has major consequences as CO2 reacts to car-
bonic acid in solution resulting in the reduction of ocean pH 
termed ocean acidification (OA). There is an increasing 
awareness that climate change is altering the physical and 
biogeochemical status of the surface ocean and with the 

simultaneous increase of hydrogen and bicarbonate ions and 
a decrease in carbonate ions the seawater pH will decline by 
an average 0.3 units by the end of the century (Caldeira and 
Wickett 2003; Cicerone et al. 2004; Feely et al. 2004; Sabine 
et al. 2004; Orr et al. 2005b; Gattuso et al. 2015). This change 
also affects the calcium carbonate saturation state (Ω) in sea-
water which is the discriminant parameter with respect to the 
precipitation and solution of calcium carbonates. Solubility 
increases at higher pressure and lower temperature, which 
means that Ω decreases with increasing water depths and at
higher latitudes. OA has been postulated to be of a major 
concern for various calcifying organisms as they depend on 
the surrounding seawater to build their shells or in the case of 
cold-water corals (CWCs), their skeletons (Orr et al. 2005a, 
b; Kleypas et al. 2006). Over the last decade research on the 
effects of OA on marine organisms has intensified and new 
priorities for future research identified. OA impacts have 
highlighted the urgent need to study keystone species, eco-
system engineers and those ecosystems considered most vul-
nerable or most resilient to global climate change (Riebesell 
and Gattuso 2015). Like their tropical counterparts, sclerac-
tinian CWCs grow an aragonitic 3-D matrix like exoskele-
ton, and as such are susceptible to changes in the seawater 
carbonate chemistry. The surface ocean is currently super-
saturated in aragonite and calcite, the two forms of carbonate 
that marine calcifiers use to form their shells or skeletons. 
The ongoing absorption of atmospheric CO2 by the oceans 
results in a shallowing of the aragonite saturation horizon 
(ASH), the critical depth between precipitation and dissolu-
tion of aragonitic calcium carbonate. Work by Feely et  al. 
(2012) showed that the offset in the ASH in the South Pacific 
between the 1990s and the 2000s had shifted by 10 m. In the 
New Zealand region estimates suggest that the ASH may 
have already shoaled by an order of 50 to 100 m (Bostock 
et al. 2013, 2015; Law et al. 2016). This places the deep-sea 
aragonitic scleractinian CWCs, being confined to the deep 
waters and to colder regions at great risk with 70% of the 
CWC habitats becoming exposed to undersaturated condi-
tions (Guinotte et  al. 2006; Mikaloff-Fletcher et  al. 2006; 
Bostock et  al. 2015). Scleractinian CWC ecosystems are 
thought to be one of the most vulnerable groups that will be 
impacted by global climate change. This factor and addi-
tional anthropogenic stressors such as deep-sea trawling, 
mineral exploration, mining, and marine pollution (Turley 
et al. 2007; Roberts et al. 2016), add to the vulnerability of 
CWCs in a high CO2 world.

44.1.4	� Cold-Water Corals

While the biology of shallow-water tropical corals and their 
response to global change (warming and OA) has been 
studied for many decades, research on the biology and physi-
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ology of deep-sea CWCs such as the abundant scleractinian 
coral group is still in its infancy (but see Reynaud and 
Ferrier-Pagès, this volume and references therein). Until a 
decade ago knowledge was based on few studies providing 
some insights on skeletal extension (Bell and Smith 1999; 
Mortensen 2001), food capture (Mortensen 2001), potential 
food sources (Kiriakoulakis et  al. 2005; Duineveld et  al. 
2007), the respiratory response to temperature change or 
hypoxia (Dodds et  al. 2007) and reproductive ecology 
(Waller and Tyler 2005; Waller et  al. 2005). However, the 
knowledge on the abundance and distribution of CWCs has 
advanced rapidly since the 1990s due to several factors such 
as an increase in deep-sea biodiversity surveys (e.g. 
Zibrowius and Gili 1990; Rogers 1999; Roberts et al. 2009; 
Buhl-Mortensen et  al. 2010; Mastrototaro et  al. 2010; 
Tittensor et al. 2010; Gori et al. 2013; Smith and Williams 
2015); access to more sophisticated deep-sea technology 
facilitating surveys in deeper water over larger areas (e.g. 
Hovland et al. 2002; Sumida et al. 2004; Taviani et al. 2005; 
Wheeler et al. 2007; Freiwald et al. 2009; Orejas et al. 2009; 
De Mol et  al. 2011; Gori et  al. 2013; Savini et  al. 2014; 
Clippele et al. 2016; see also Angeletti et al., this volume; Lo 
Iacono et al., this volume), and in several regions, primarily 
due to fishing activity and fisheries research surveys where 
the bycatch of deep-sea corals has occurred (e.g. Fosså et al. 
2002; Gass and Willison 2005; Hourigan 2009; Tracey et al. 
2011; Clark et  al. 2015). This growing knowledge of the 
presence and spatial distribution of CWCs allowed to model 
and identify the most important parameters supporting or 
limiting CWC distribution and habitat suitability (Davies 
et al. 2008; Davies and Guinotte 2011; Tracey et al. 2011; 
Rowden et al. 2013; Anderson et al. 2016). Among a multi-
tude of environmental and geographic variables taken into 
consideration depth, temperature, salinity and aragonite sat-
uration state (Ωa) appear to be some of the most important
factors controlling the abundance and distribution of CWCs. 
Additionally, the knowledge on the physiology and growth 
of CWCs has rapidly advanced during the last decade 
(Lartaud et al., this volume; Reynaud and Ferrier-Pagès, this 
volume) owing to an increased effort in sampling live CWCs 
and in establishing aquarium facilities that allow to maintain 
CWCs for an extended time in the laboratory (see Orejas 
et al., this volume and references therein).

44.1.5	� Climate Change in the Mediterranean 
Region

The Mediterranean region has been identified as one among 
the most important climate change Hot-Spots world-wide as 
it has become warmer and drier throughout the twenty-first 
century (Giorgi 2006). The variability in warming during 

summer is twice the global standard deviation (Hansen and 
Sato 2016). With this large increase in variability and a 
decrease in mean precipitation during the dry, warm seasons 
the Mediterranean constitutes one of the most responsive and 
affected regions with respect to global change (Giorgi et al. 
2001; Giorgi and Lionello 2008; Mariotti et  al. 2008; 
Alessandri et al. 2014).

The Mediterranean Sea is nearly land-locked, connected 
to the Atlantic by the shallow (300  m) Strait of Gibraltar. 
Evaporation greatly exceeds precipitation which drives the 
thermohaline circulation with deep and intermediate dense 
water convection in several basins and a unique open upper 
thermohaline cell that acts in a similar way as the global con-
veyer belt while it is characterised by a much shorter resi-
dence time of ca. 100 years (Malanotte-Rizzoli et al. 2014; 
Hayes et  al., this volume). Therefore, the waters respond 
faster and are more sensitive to environmental change and 
thus can be regarded as a miniature model ocean (Bethoux 
et al. 1990, 1998; Bethoux and Gentili 1996; Turley 1999). 
Over the last decades, the trends of long-term warming and 
saltening have been evidenced throughout the Mediterranean 
Sea (Bethoux et al. 1990; Rixen et al. 2005; Nykjaer 2009; 
Vargas-Yáñez et al. 2009). Based on model simulations, an 
increase in sea surface temperature and sea surface salinity 
(SST and SSS) by 2 to 3 °C and 0.48 to 0.89 are predicted for 
2070–2099. This is in comparison to ~30 years of SST and 
SSS data measured between 1961–1990 (Adloff et al. 2015). 
The trend has also increased at depth, where a temperature 
and salinity increase of 0.93–1.35 °C and 0.28 to 0.52 respec-
tively has occurred throughout the water column. At the 
depths that scleractinian CWCs occur in the Mediterranean 
(below 200 m), the predicted temperature rise may increase 
by up to 2  °C and the salinity by ~0.5. Accordingly, 
Mediterranean CWCs might be exposed to a temperature 
between 15.5 to 16 °C and a salinity of 39.5 to 40 by the end 
of the century.

The Mediterranean Sea is characterised by a high total 
alkalinity (AT) of ca 2600 μmol kg−1 with a high buffering
capacity absorbing more CO2 than the open ocean (CIESM 
2008). It is a small to medium sink for CO2 absorbing ca. 
0.24 Gt C year−1 (D’Ortenzio et al. 2008) while the reduction 
of ocean pH is relatively fast with −0.14 to −0.05 pH units
year−1 (Touratier and Goyet 2009, 2011). Despite this, the Ω
remains higher in the deep Mediterranean waters compared 
to the deep waters of the North Atlantic (Millero et al. 1979), 
and even at the deepest water depths the seawater is not 
likely to become undersaturated with respect to Ωa (Hassoun
et al. 2015; Goyet et al. 2016). Present day Ωa reported in the
vicinity of Mediterranean CWCs are relatively high ranging 
between 2.3 and 3.0 (Rodolfo-Metalpa et  al. 2015; Maier 
et al. 2016) but will drastically decrease to ca. 1.5 by the end 
of the century (Maier et al. 2016).

44  Mediterranean Scleractinian Cold-Water and Global Climate Change
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44.1.6	� Effect of Climate Change Parameters 
on Cold-Water Corals

To date 24 experimental studies have been published on the 
physiological response of scleractinian CWCs to climate 
change and these studies, from both the Mediterranean and 
elsewhere, are summarised in Table 44.1. Nineteen of these 
studies addressed the effect of OA, eight the effect of tem-
perature, four took into account the combined effect of OA 
and temperature. No studies are available on the effect on 
CWCs to changes in salinity. Interestingly, 40% of the stud-
ies were conducted using CWCs from the Mediterranean Sea 
region. The studies comprise five scleractinian coral species 
(Madrepora oculata, Lophelia pertusa, Desmophyllum dian-
thus, Dendrophyllia cornigera and Caryophyllia smithii), 
while most of the non-Mediterranean CWC studies were 
confined to the species L. pertusa (Table 44.1). The studies 
were distinct with respect to the time allowed for acclima-
tion, replication and the use of single (Fig. 44.1), consecutive 
(Fig.  44.2) or repeated (Fig.  44.3) measure designs. Most 
studies were carried out in the laboratory, some short-term 
experiments were conducted at sea using freshly collected 
specimens and seawater from the actual sampling site (Maier 
et  al. 2009, 2012; Hennige et  al. 2014) and one other 
Mediterranean study included in situ experiments where 
coral fragments were transplanted to the close vicinity of a 
natural CO2 vent site (Rodolfo-Metalpa et al. 2015). To pro-
vide an indication on the statistical robustness of the experi-
mental studies a point system was introduced (“SR”; 
Table 44.1) taking into account criteria such as the number of 
replication, number of repeated measurements and the type 
of controls. Theoretically, a minimum point score of 3 and a 
maximum of 11 was possible, and an average SR of 5.7 
points (±1.4 S.D) was typical for the studies (Table 44.1). 
This point system is not exclusive with respect to other crite-
ria that may be important to evaluate the robustness of a 
study (e.g. handling stress, sampling and analytical proce-
dures, adequacy of maintenance conditions), however, these 
criteria are difficult to judge in a scoring system.

�44.2	 Ocean Acidification Studies

The pCO2 used in most of the OA experimental studies ranged 
between ambient (ca. 400 μatm) and 800–1000 μatm, corre-
sponding to current and future conditions in 2100 using a 
business-as-usual CO2 emission scenario. The exception was 
for two short-term experiments where pCO2 levels in which 
pCO2 values outside this range were used: 280 μatm to repre-
sent pre-industrial times (Maier et al. 2012) and 1725 μatm
(Maier et al. 2016). The first studies of the effect of OA were 
performed on Lophelia pertusa. They revealed a negative 
response of calcification to increasing pCO2 during short-

term exposure (Maier et al. 2009; Form and Riebesell 2012) 
while no effect was detected when exposed for several months 
to elevated pCO2 (Form and Riebesell 2012). These two stud-
ies show that L. pertusa is able to maintain positive calcifica-
tion rates despite being exposed to undersaturated Ωa (Maier
et  al. 2009; Form and Riebesell 2012). Subsequent studies 
have demonstrated that calcification remains constant for 
pCO2 levels corresponding to those between present-day 
(~400 μatm) and those projected until the end of the century
(~800–1000 μatm) (Figs.  44.1, 44.2, and 44.3). This was
found for both short- and long-term exposure and for most 
CWC species studied, suggesting that no long-term acclima-
tion occurs (Maier et al. 2012, 2013b, 2016; Carreiro-Silva 
et  al. 2014; Hennige et  al. 2014; Movilla et  al. 2014a, b; 
Rodolfo-Metalpa et al. 2015). However, some recent litera-
ture states that CWCs may exhibit a long-term acclimation 
response in calcification to OA (Hennige et al. 2015; Roberts 
et al. 2016). Evidently, calcification is negatively affected in 
short-term experiments when Ωa is below a certain threshold
level (Figs. 44.1a, c and 44.2b, c; Maier et al. 2009; Lunden 
et al. 2014; Georgian et al. 2016b, Maier et al. 2016) but the 
same is true in long-term experiments (Fig. 44.3d, Hennige 
et al. 2015). Furthermore, using a repeated measures experi-
mental design, Movilla et al. (2014b) showed a decline in cal-
cification for the Mediterranean coral Desmophyllum dianthus 
after 314  days of exposure to elevated pCO2 (800 μatm),
while no effect at shorter exposure times was observed 
(Fig.  44.3c; Movilla et  al. 2014b). This response might be 
species-specific, as none of the other three species (L. per-
tusa, Madrepora oculata and Dendrophyllia cornigera) stud-
ied in parallel revealed any significant effect between control 
and elevated pCO2 treatments, neither during short- nor long-
term exposure (Movilla et al. 2014a,b). It would have been 
interesting to see, if calcification of D. dianthus remains at the 
lower level it revealed after 314 days, restores calcification to 
normal rates or in the worst case scenario, further reduces 
calcification with increasing exposure time. A result such as 
this could be indicative of an eventual break down in calcifi-
cation as a consequence of extended and continuous exposure 
to elevated pCO2. For D. dianthus it has been shown that 
genes involved in stress response, metabolism or calcification 
were upregulated under elevated pCO2 levels after a 8-month 
exposure while the rates of calcification and respiration 
remained stable (Carreiro-Silva et al. 2014). No time-series 
on gene expression experiments exist for these species to 
date, and so it is not known whether an up- or down regula-
tion of genes is dependent on the duration of exposure. While 
calcification rates are relatively constant over a large range of 
pCO2 and only decrease after a certain threshold has been 
reached, faster skeletal linear extension under high pCO2 has 
been reported for North Atlantic studies on L. pertusa 
(Hennige et al. 2015). This coincides with thinner and longer 
corallites and an altered mineral organisation that may impact 
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the stability and breaking strength of the skeleton and the sta-
bility of the CWC framework. Despite this, changes in the 
micro-density and porosity were not reported under similar 
conditions, neither for North Atlantic L. pertusa (Wall et al. 
2015) nor Mediterranean CWC species (Movilla et al. 2014a). 
In a study on a related species Solenosmilia variabilis colo-
nies were grown under ambient pH (7.88, Ωa 0.93) and lower 
pH (7.65, Ωa 0.78) for two years (Gammon et  al. 2018). 
Respiration and growth rate were not altered under low pH, 
although there was a decrease in skeletal colouration attrib-
uted to a loss of coenochyme, the tissue connecting neigh-

bouring polyps and covering the outer skeleton, indicating the 
potential reallocation of energy to other physiological pro-
cesses such as growth and respiration. While there has been 
two studies where respiration decreased or increased after 
two weeks during short-term exposure to higher pCO2 
(Figs. 44.1c and 44.3a; Hennige et al. 2014; Georgian et al. 
2016b) no effect on respiration at increased pCO2 levels has 
been detected in other studies (Figs.  44.1e–g, 44.2c, and 
44.3b, c; Maier et al. 2013a, 2016; Carreiro-Silva et al. 2014; 
Movilla et al. 2014a, b; Rodolfo-Metalpa et al. 2015; Hennige 
et al. 2015; Gori et al. 2016; Gammon et al. 2018).

  

5

5S
5C

C

Fig. 44.1  Plot of studies using single-point experimental designs for 
measurements according to aragonite saturation state (Ωa) in seawater 
(y-axis) and acclimation time in days (duration of experiments [d], x 
axes). The response of physiological functions are shown according to 
studies (a–h) and include calcification (G), calcification of different 
genotypes (GGT), respiration (R), gene expression (GE), carbonic anhy-
drase activity (CAA) and nitrate excretion (NO3

2−) for the species 
Lophelia pertusa (LP), Madrepora oculata (MO), Desmophyllum dian-
thus (DE), Dendrophyllia cornigera (DC), and Caryophyllia smithii 
(CS). Numbers in brackets refer to the publications referenced in 

Table 44.1. For studies addressing combined effects of OA and tem-
perature (g) or OA, temperature and feeding (h) coloured symbols were 
used. The temperature and high or low food supply (HF and LF) are 
indicated in the symbol legend. According to the region the ambient Ώa 
varied and is indicated by the green area. The grey area indicates Ώa < 1. 
Numbers in brackets refer to the publications referenced in Table 44.1. 
Size of symbols is indicative of number of replicates (n), vertical arrows 
depict where a significant positive (↑) or negative (↓) response was 
revealed, while n.s. indicates that there was no significant effect 
between treatment levels for the respective variable (© Cornelia Maier)
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7

The apparent high resilience of CWCs to OA in both the 
experimental studies, described here for the Mediterranean 
and elsewhere, and also observed in situ (Thresher et  al. 
2011; Fillinger and Richter 2013; Jantzen et  al. 2013; 
Bostock et al. 2015; Georgian et al. 2016a; Gammon et al. 
2018) has been attributed to pH upregulation of the calico-
blastic pH (McCulloch et  al. 2012; Wall et  al. 2015). The 
upregulation of calicoblastic pH has been thought to require 

a high amount of energy and may consequently require high 
food availability in areas with low Ωa to maintain calcifica-
tion constant (McCulloch et al. 2012; Fillinger and Richter 
2013; Jantzen et al. 2013). However, a study establishing an 
energy budget for major physiological functions of 
Mediterranean M. oculata revealed that the energy required 
for calcification in general and for the upregulation of calico-
blastic pH (or Ωa) in particular only constitutes a minor frac-

 

MO (4) MO-HF (19)
MO-LF (19)

Fig. 44.2  Plot of studies using consecutive experimental designs for 
measurements according to aragonite saturation state (Ωa) in seawater 
(y-axis) and acclimation time in days (duration of experiments [d]; x 
axes). The symbol lines record changes of Ωa during experiments with 
symbols depicting when calcification (G) or respiration (R) of Lophelia 
pertusa (LP) or Madrepora oculata (MO) were assessed during the 
consecutive changes in Ωa. Numbers in brackets refer to the publica-
tions referenced in Table 44.1. Coloured symbols (in h) were used to 

depict the high (HF) and low (LF) food regime. According to the region 
the ambient Ώa varied and is indicated by the green area. The grey area 
indicates Ώa < 1. Numbers in brackets refer to the publications refer-
enced in Table 44.1. Size of symbols is indicative of number of repli-
cates (n), vertical arrows depict where a significant positive (↑) or 
negative (↓) response was revealed, while n.s. indicates that there was 
no significant effect between treatment levels or time steps for the 
respective variable (© Cornelia Maier)

LP (11) LP (5, 6)
MO (5, 6)

DE (13)
DC (13)

LP (14)
MO (14)

LP 9°C (16)
LP 12°C (16)

Fig. 44.3  Plot of studies using repeated measurement designs 
showing measurements points according to aragonite saturation 
state (Ωa) in seawater (y-axis) and acclimation time in days (dura-
tion of experiments [d]; x-axis). The symbol lines record Ωa for rep-
licated measurements with symbols depicting when calcification (G) 
or respiration (R) of L. pertusa (LP), M. oculata (MO), D. dianthus 
(DE) or D. cornigera (DC) were assessed during the consecutive 
changes in Ωa. Numbers in brackets refer to the publications refer-
enced in Table 44.1. According to the region the ambient Ώa varied 

and is indicated by the green area. The grey area indicates Ώa < 1. 
Numbers in brackets refer to the publications referenced in 
Table 44.1. Coloured symbols were used for the combined effect of 
OA and temperature (in d) with the temperature indicated in the 
symbol legend. Size of symbols is indicative of number of replicates 
(n), vertical arrows depict where a significant positive (↑) or nega-
tive (↓) response was revealed, while n.s. indicates that there was no 
significant effect between treatment levels or time steps for the 
respective variable (© Cornelia Maier)
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tion of about 1 to 3% of overall metabolic requirements 
(Maier et al. 2016). Despite a four-fold food uptake in the 
high feeding group and the respiratory quotient indicating 
starvation in the low-food group, no mitigating effect on cal-
cification or respiration at increased pCO2 levels due to feed-
ing was reported (Maier et al. 2016). Similarly, in a study on 
North-Atlantic L. pertusa no mitigating effect of feeding has 
been shown despite a tenfold food availability in the high-
food group (Büscher et al. 2017).

However, the need to double the energy allocated to calci-
fication at elevated pCO2 (Maier et al. 2016) might neverthe-
less constitute a burden over an extended time and permanent 
exposure to unfavorable conditions. Specifically in an envi-
ronment where food is permanently scarce, a shift in energy 
allocation might occur in favor of other physiological func-
tions that may explain the observed decline in calcification 
of D. dianthus (Movilla et al. 2014b). The decrease in skel-
etal colouration attributed to a loss of coenochyme seen by 
Tracey et al. may have also reflected a food scarcity response.

44.2.1	� Temperature

Of the eight studies assessing the response of CWCs to 
changes in temperature, two measured the survival of L. per-
tusa from the Gulf of Mexico at a temperature range from 8 
(ambient) to 15, 20 and 25 °C and an exposure time of 1 and 
8 days (Brooke et al. 2013) or by changing temperature in 
consecutive steps from 8, 10, 12, 14 to 16°, with an adjust-
ment period of 1  day per 2  °C increment (Lunden et  al. 
2014). Both studies showed significant mortalities at tem-
peratures ≥15 °C and conclude that the upper temperature 
limit for the survival of L. pertusa would be 15 °C. The pro-
jected rise in temperature in the Mediterranean Sea could be 
as detrimental to the Mediterranean CWCs. However, the 
experimental design used by Brooke et  al. (2013) did not 
allow for longer term acclimation and was in fact designed to 
reflect specific conditions prevailing in the Gulf of Mexico, 
where CWCs can experience occasional flushing by warm-
water currents and a rapid and dramatic increase in seawater 
temperature (Brooke et al. 2013). In the Mediterranean Sea, 
CWCs are not subject to such an abrupt temperature increase, 
but they are subject to the high temperatures at the extreme 
reported for all CWCs. It is for this reason that it has been 
assumed that the Mediterranean CWCs are already at their 
upper tolerance limit (ca. 13 °C) and any further increase in 
temperature might therefore be detrimental. Despite this, 
there is some evidence that Mediterranean CWCs are well 
adapted to a relatively constant high temperature. In two 
experiments without prior acclimation phase, a temperature 
dependent increase or decrease of respiration has been 
reported for L. pertusa from the North Atlantic (Dodds et al. 
2007) and Mediterranean Sea (Maier et al. 2013a, Supplement 

SI_1). At ambient temperature, respiration rates of 
Mediterranean L. pertusa were comparable to those from the 
North Atlantic region despite the 4  °C temperature differ-
ence. The temperature-dependent coefficient of respiration 
(Q10) was lower for Mediterranean L. pertusa than for North-
Atlantic specimen further indicating that Mediterranean L. 
pertusa as being well adapted to the higher temperature and 
potentially less sensitive to a further increase in temperature 
than specimen from colder regions. This is further substanti-
ated by the finding by Naumann et al. (2013a, b) and Hennige 
et al. (2015) who found that no significant changes in respi-
ration were observed when Mediterranean or North Atlantic 
L. pertusa were acclimated for 3–6 months to lower or higher 
than ambient temperatures (Naumann et  al. 2013a, b; 
Hennige et al. 2015). However, in the study by Hennige et al. 
(2015) respiration rates decreased significantly after a total 
of 9 months exposure to 12 °C. This response is difficult to 
explain, and with the good replication (n = 8, 4 tanks / n) it is 
not likely caused by experimental constraints such as tank 
effects. The authors therefore consider “… that normal’ 
energetic strategies are no longer applying, possibly due to 
other processes using energetic reserves. This could be the 
result of processes that maybe occurring of which we have 
poor understanding and/or cannot easily measure” (Hennige 
et  al. 2015). In contrast to L. pertusa, respiration of 
Mediterranean M. oculata significantly decreased when tem-
perature was lowered from 12 to 9 and then down to 6 °C 
after a 3-month acclimation (Naumann et  al. 2013b). This 
result led the authors to speculate that M. oculata acclimates 
at a much slower rate to changes in temperature than L. per-
tusa. The results also provide the variable thermal tolerance 
range for the two species. M. oculata is the dominant species 
in the Mediterranean, while L. pertusa prevails in colder 
regions like the North Atlantic. This preferred distribution 
for both species could indicate that L. pertusa acclimates 
faster to colder temperature than M. oculata and conversely, 
that M. oculata acclimates more easily to increasing tem-
peratures. To date, no longer term study with respect to 
increasing temperature tolerance exists for these two species 
and no final conclusion can be made as to: how these two 
species may acclimate to the ongoing warming in the 
Mediterranean Sea. For calcification responses, the 
Mediterranean D. cornigera revealed a significant increase 
in calcification at 17.5 °C while a slight but non-significant 
reduction to 83% was reported for D. dianthus at 17.5  °C 
(Naumann et al. 2013a). When the temperature was lowered 
from 12 to 9 to 6 °C, calcification of M. oculata and L. per-
tusa was faster at the higher temperature levels in both spe-
cies. While calcification of M. oculata significantly decreased 
at each temperature step, calcification of L. pertusa was only 
significantly lower at 6°, and between 12 to 9  °C only a 
slight, non-significant decrease was observed (Naumann 
et  al. 2013b). For North Atlantic L. pertusa the response 
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differed, showing a slight decrease in calcification to 82 and 
70% after exposure of 3 and 6 months to higher (12 °C) than 
ambient (9 °C) temperature, while calcification increased to 
1.5 times that at ambient temperature after a total of 9 months 
(Hennige et al. 2015, Fig. 44.3d). The study on Mediterranean 
D. dianthus by Gori et al. (2016) reported a significant and 
negative effect on calcification when temperature was 
increased from 12 to 15 °C. When subjected to both elevated 
temperature and pCO2, however, there was no significant cal-
cification effect and the opposite result was found for respi-
ration (Gori et al. 2016). The experimental approach of the 
Gori et  al. (2016) study was interesting and timely as the 
authors tackled the question of single and combined effects 
of temperature and OA impacts with the temperature and 
pCO2 levels representative of projected changes in the 
Mediterranean Sea. However, the statistical robustness of the 
experiment was limited, due to a low number of sample rep-
licates (n = 3) (Table 44.1). The results are useful as they 
provide a first indication as to how Mediterranean D. dian-
thus would respond to long-term increasing temperature; 
however the results require some consolidation.

This can also be said for the general perception that 
CWCs in the Mediterranean Sea are at their upper tolerance 
limit with respect to temperature. There is evidence that at 
least some of the species may be able to cope with increasing 
temperatures but overall there needs to be some caution 
before drawing this conclusion. It is important to consider in 
the first instance experimental design (duration of experi-
ments, sample sizes, replication, and controls), as well as 
other environmental stressors, before any assumptions can 
be made when assessing the physiological response of these 
corals to changes in temperature.

44.2.2	� Salinity

As a consequence of global change, the salinity in the 
Mediterranean Sea will increase by ~0.5 at the depths of 
CWC occurrence (see Skliris, this volume and references 
herein). Despite this fact, and that the current salinity levels 
are the highest reported for CWC occurrence in any one area, 
no studies are available on the physiological response of 
CWCs to increasing salinity. In addition to this and of sig-
nificance is that climate change models need to take into 
account the ever growing need of freshwater in this region as 
consequence of a growing population and a higher consump-
tion per capita. The construction of desalination plants along 
Mediterranean shorelines has intensified during the last 
decades several times over to generate fresh water. While 
50% of the seawater is converted to drinking water the other 
50% is discharged back into the sea as concentrated brine. 
For the Mediterranean Sea, it has been estimated that the 
salinity due to brine discharge will increase by an additional 

0.81 g / L until 2050 (Bashitialshaaer et al. 2011). This situ-
ation means that together with the salinity increase due to 
climate change, the salinity may rise to above levels of 
around 40, which is comparable to the salinity of the Red 
Sea. The Red Sea is renowned for its thriving tropical coral 
reefs and one may therefore speculate that this increase in 
salinity may not impact Mediterranean CWCs. However, a 
high sensitivity to small changes in salinity has been reported 
for the tropical coral S. pistillata found in the region and that 
appeared to acclimate more easily to a decline than to an 
increase in salinity (Ferrier-Pagès et al. 1999). As with tem-
perature, salinity is the highest reported in the Mediterranean 
region experienced by CWC habitats to date. It will therefore 
be important to study the response of Mediterranean CWCs 
to the added stress of an increase in salinity, particularly in 
light of the additional climate related impacts due to brine 
discharge that will potentially accelerate the increase in 
salinity during the coming decades.

44.3	 �Conclusions

It has been shown in a number of studies that CWCs exhibit 
a high resilience to OA and may be able to maintain calcifi-
cation and respiration rates constant over a large gradient in 
pCO2. There is robust evidence that with the projected Ωa 
remaining above a level of 1, Mediterranean CWC growth 
might not be as impacted by OA despite the projected and 
relatively fast decline in seawater pH.  The studies sum-
marised in this chapter indicate that there is potentially some 
hope for some of Mediterranean CWC study species with 
some groups able to acclimate to an increase in temperature 
and withstand ocean acidification. However, upper tolerance 
limits (thresholds) for single climate change parameters still 
need to be consolidated for each species. This is particularly 
so for Mediterranean CWCs that are being exposed to addi-
tional stressors such as an increase in salinity or pollution. It 
will be pivotal to address the effect of the concomitant 
increase in temperature, pCO2, and salinity to ultimately 
conclude on the potential fate of Mediterranean CWC spe-
cies in the near future as both calcification and respiration 
reveal a strong acclimation response to temperature.

It is acknowledged that further work is required to tease out 
the impacts of multiple stressors on the CWCs. Some species 
may appear to be able to tolerate temperature and OA impacts 
but at what expense of other biological processes. The various 
aspects of human induced salinity changes need to be investi-
gated, particularly as the availability of water to growing pop-
ulations and agriculture will grow in demand. Also important 
will be to quantify the saturation state of aragonite (Ωa) within 
the calcifying fluid of corals as this is critical for understand-
ing their biomineralisation process and sensitivity to environ-
mental changes including ocean acidification.
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