

# Geographical analysis for the integration of a microalgae production and biorefining unit in "Pays de la Loire"

## Master-GAEM, C. Chadenas, E. Chauveau, E. Couallier

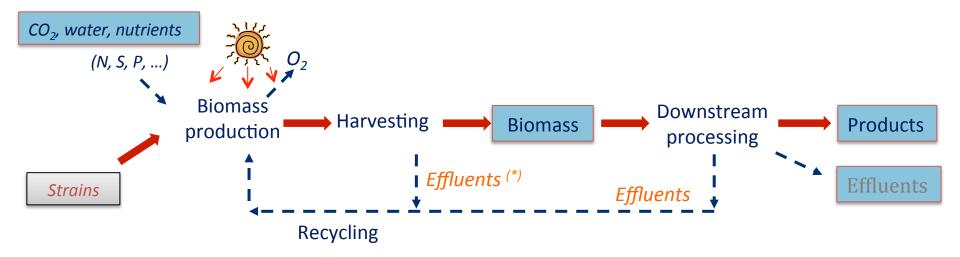








Energy transition challenge 2014-2017




#### Industrial exploitation of microalgae

• Specific biomass: microorganisms... in



Necessity of biological and engineering breakthroughts





....

#### Industrial exploitation of microalgae – the markets

Potential uses in various sectors, and most are emerging...



Proteins & pigments Carbohydrates Lipids Antioxidants



## Culture and harvesting



Biorefining Cells disruption Fractionation Esterification ...

## **Biomolecules / Biofuel**



WHERE are the suitable areas to build microalgae culture and biorefining plants?



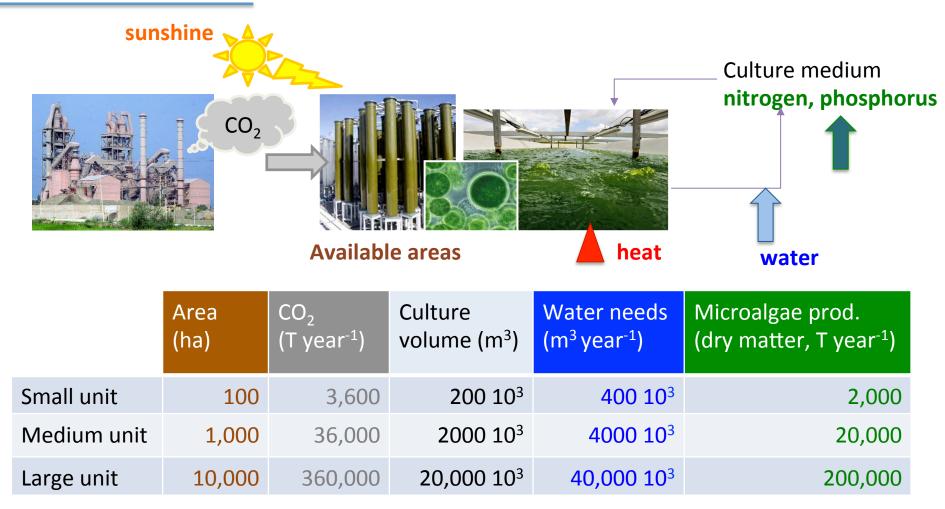


1. Definition of the physico-chemical constraints /needs

## 2. Methodology and main results

- 2.1 Location of the areas allowing the access to the resources
- 2.2 Analyse of the legislative framework : constraints?
- 2.3 Social acceptability characterisation




## 1. Definition of the physico-chemical constraints /needs

## 2. Methodology and main results

- 2.1 Location of the areas allowing the access to the resources
- 2.2 Analyse of the legislative framework : constraints?
- 2.3 Social acceptability characterisation



## 1. Definition of the physico-chemical needs

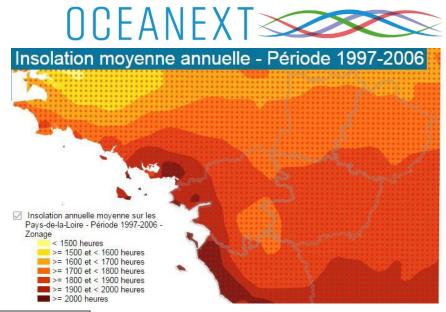


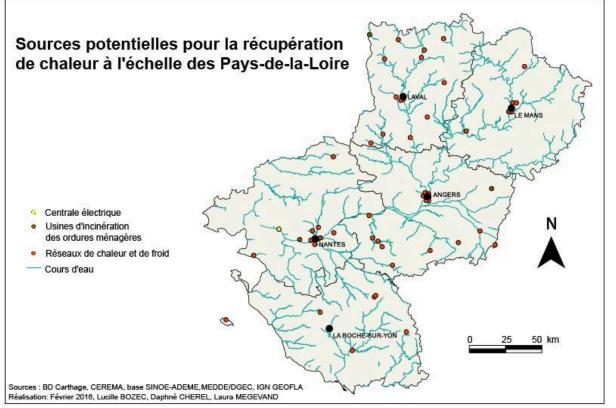
#### Arbitrary condition for the access to fluids: 10 km maximum

Report ADEME « l'évaluation du gisement potentiel de ressources en algues pour l'énergie et la chimie en France à l'horizon 2030 » (2014)



1. Definition of the physico-chemical constraints /needs


## 2. Methodology and main results


#### 2.1 Location of the areas allowing the access to the resources

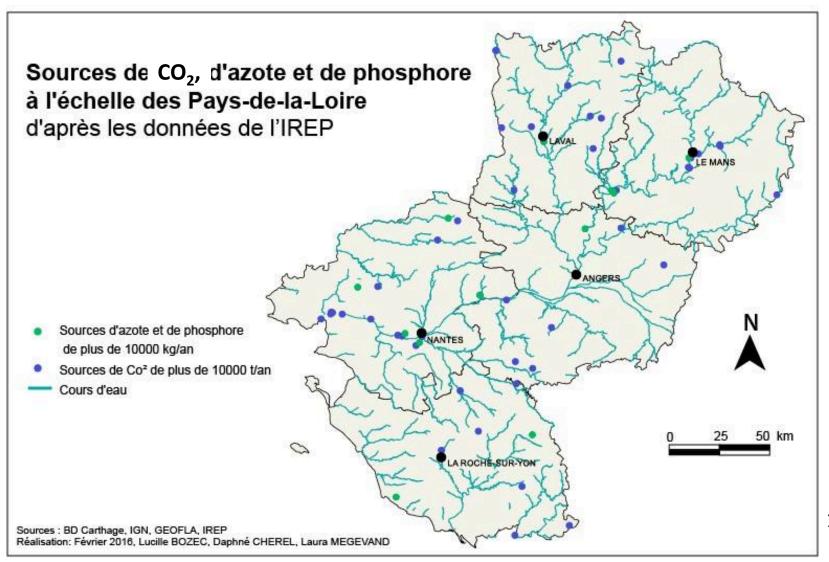
- 2.2 Analyse of the legislative framework : what constraints?
- 2.3 Social acceptability characterisation

#### 2.1. Access to the resources

#### Sunshine (photosynthesis)

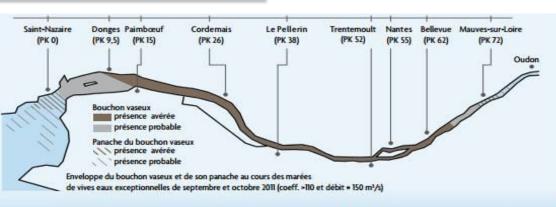





# Heat recovery resources identified by CEREMA :

- Domestic waste
- incineration plants
- Power plants producing more than 20 GWh per year
- Cogeneration units, District heating

#### 2.1. Access to the resources



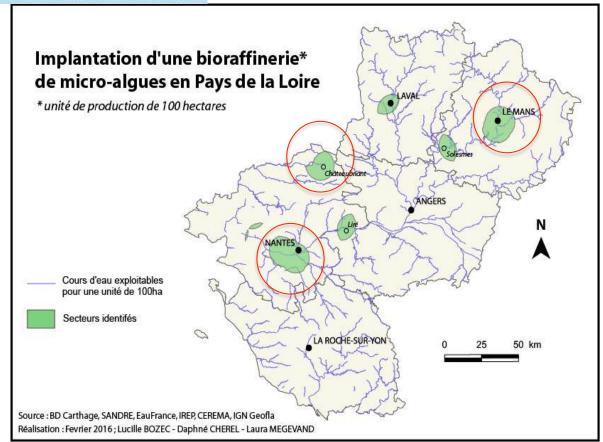

French Pollutant Emission Register, (IREP) : Carbone dioxyde - Nitrogen / phosphorus



10

#### 2.1. Access to the resources




## OCEANEXT

#### Water (quantity / quality)

Sources : ARS 44/Département de Loire-Atlantique/DREAL Pays de la Loire (Banque hydro)/DDTM 44/SHOM/GIP Loire Estuaire

#### Results : ressources analysis

- Small units
- Medium units
- Large units : no place





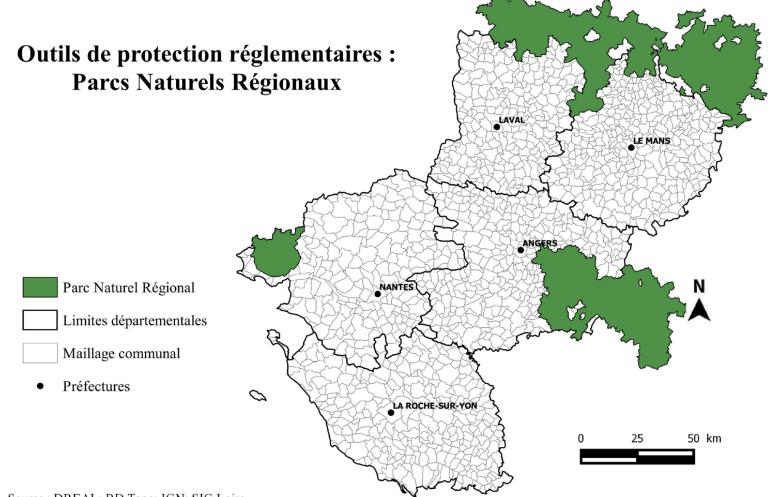
1. Definition of the physico-chemical constraints /needs

## 2. Methodology and main results

- 2.1 Location of the areas allowing the access to the resources
- 2.2 Analyse of the legislative framework : what constraints?
- 2.3 Social acceptability characterisation



12


#### 2.2. The legislative constraints: a/ The protection areas

|        | Restrictions                                                               | Low | High | prohibited |
|--------|----------------------------------------------------------------------------|-----|------|------------|
| Europe | RAMSAR Convention<br>(wet lands)                                           | Х   |      |            |
|        | Natura 2000 network                                                        | Х   |      |            |
| France | Coastal law (1986)                                                         |     | Х    |            |
|        | Coastline conservation authority                                           |     |      | Х          |
|        | Regional Nature Park                                                       |     | Х    |            |
|        | Heritage registered site                                                   | Х   |      |            |
|        | AVAP – ZPPAUP<br>(Heritage)                                                | х   |      |            |
|        | Sensitive natural areas                                                    |     | Х    |            |
|        | Wild fauna and hunting territories                                         | Х   |      |            |
|        | Biological reserves                                                        |     | Х    |            |
|        | Prefectoral order for biotope protection                                   |     |      | Х          |
|        | Inventory of natural areas of ecological, faunistic and floristic interest | Х   |      |            |



## 2.2. The legislative constraints: a/ The protection areas

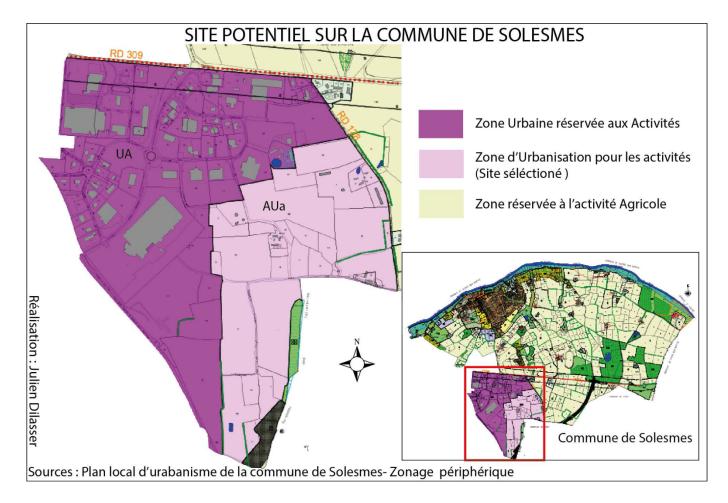
The regional nature parks: example of high restrictions



Source : DREAL; BD Topo; IGN; SIG Loire Réalisation : Février 2016; BIZARD Amandine-CHIQUET Lucien-DILASSER Julien-MOUSSAVOU Joe-Stan-TRUS Mathieu



2.2. The legislative constraints: b/ The local urbanism plan


#### Opportunity to build a biorefining plant vs the Local urbanism area

|                    | Yes | Νο |
|--------------------|-----|----|
| Urbanised          | X   |    |
| To be urbanised    | X   |    |
| Agricultural       |     | X  |
| Natural and forest |     | X  |



## 2.2. The legislative constraints: b/ The local urbanism plan

Townships: the urban areas allow a biorefinering plant building





1. Definition of the physico-chemical constraints /needs

## 2. Methodology and main results

- 2.1 Location of the areas allowing the access to the resources
- 2.2 Analyse of the legislative framework : what constraints?
- 2.3 Social acceptability characterisation



## 2.3. Social acceptability characterisation

A preliminary study : the interest of a cost / benefit analysis

Some societal postures encountered :

- the NIMBY syndrome
- neither here nor elsewhere

Methodological issues :

- Can the acceptability be measured concretely ?
- How to define the majority in this type of project ?
- Which criteria favored ?
- At which scale ?



## 2.3. Social acceptability characterisation

What influences the social acceptability ?

Which steps for the social acceptability of a project?

- analysis of the socio-economic context of the territory
- contact with future local employees
- quickly inform people of the territory envisaged about the project
- Project implementation phase



1. Definition of the physico-chemical constraints /needs

## 2. Methodology and main results

- 2.1 Location of the areas allowing the access to the resources
- 2.2 Analyse of the legislative framework : constraints?
- 2.3 Social acceptability characterisation





....Primary results obtained with students' team

#### Future objective:

To carry on a more detailed study (master training intership, PhD) ...
→ new financial support ?

#### Questions to be deepened:



-ressources: distance criteria and more precise quantification of the ressources; integration into an industrial ecosystem

-lands availability

-social acceptability (local politicians, population, etc) : invsetigations

To be continued ....