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h i g h l i g h t s

• A new multivariate Gaussian scale-free and fractal connectivity stochastic model.
• Asymptotic performance study of multivariate DWT estimators of scaling exponents.
• Approximate confidence interval construction for scaling exponent estimators.
• Statistical test for the presence of fractal connectivity from a single sample path.
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a b s t r a c t

While scale invariance is commonly observed in each component of real world multivariate signals, it is also often the 
case that the inter-component correlation structure is not fractally connected, i.e., its scaling behavior is not determined 
by that of the individual components. To model this situation in a versatile manner, we introduce a class of 
multivariate Gaussian stochastic processes called Hadamard fractional Brownian motion (HfBm). Its theoretical study 
sheds light on the issues raised by the joint requirement of entry-wise scaling and departures from fractal connectivity. 
An asymptotically normal wavelet-based estimator for its scaling parameter, called the Hurst matrix, is proposed, as 
well as asymptotically valid confidence intervals. The latter are accompanied by original finite sample procedures for 
computing confidence intervals and testing fractal connectivity from one single and finite size observation. Monte Carlo 
simulation studies are used to assess the estimation performance as a function of the (finite) sample size, and to quantify 
the impact of omitting wavelet cross-correlation terms. The simulation studies are shown to validate the use of 
approximate confidence intervals, together with the significance level and power of the fractal connectivity test. The test 
performance and properties are further studied as functions of the HfBm parameters.

1. Introduction

1.1. Scale invariance

The relevance of the paradigm of scale invariance is evidenced by its successful use, over the last few decades, in the analysis of
the dynamics in data obtained from a rather diverse spectrum of real world applications. The latter range from natural phenomena –
physics (hydrodynamic turbulence [1], out-of-equilibrium physics), geophysics (rainfalls), biology (body rhythms [2], heart rate [3,4],
neurosciences and genomics [5–8]) – to human activity – Internet traffic [9,10], finance [11], urban growth and art investigation [12–14].

In essence, scale invariance – also called scaling, or scale-free dynamics – implies that the phenomenical or phenomenological dynamics
are driven by a large continuumof equally important time scales, rather than by a small number of characteristic scales. The investigation’s
focus is on identifying a relation amongst relevant scales rather than picking out characteristic scales.

Historically, self-similarity was one of the first proposed mathematical frameworks for the modeling of scale invariance (e.g., [15]). A
random system is called self-similar when dilated copies of a single signal X are statistically indistinguishable, namely,

{X(t)}t∈R fdd= {aHX(t/a)}t∈R, ∀a > 0, (1.1)
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where
fdd= stands for the equality of finite-dimensional distributions. An example of a stochastic process that satisfies the property (1.1)

is fractional Brownian motion (fBm). Indeed, the latter is the only self-similar, Gaussian, stationary increment process, and it is the most
widely used scaling model for real-world signals [16].

Starting from (1.1), the key parameter for quantifying scale-free dynamics is the scaling, or Hurst, exponent 0 < H < 1. The estimation
of H is the central task in scaling analysis, and it has received considerable effort and attention in the last three decades (see [17] for a
review). The present contribution is about wavelet-based estimation [18,19]. It relies on the key scaling property

1

T

∑

t

T 2
X (a, t) ≃ Caα, α := 2H, (1.2)

where TX (a, t) is the wavelet coefficient of an underlying self-similar stochastic process and T is the number of available coefficients. In
other words, the sample wavelet variance of the stochastic process behaves like a power law with respect to the scale a.

1.2. Multivariate scaling

In many modern fields of application such as Internet traffic and neurology, data is collected in the form of multivariate time series.
Univariate-like analysis in the spirit of (1.2) – i.e., independently on each component – does not account for the information stemming
from correlations across components. The classical fBm parametric family, for example, provides at best a model for component-wise
scaling, and thus cannot be used as the foundation for a multivariate modeling paradigm.

To model self-similarity in a multivariate setting, a natural extension of fBm, called Operator fractional Brownian motion (OfBm), was
recently defined and studied (see [20–22]). An OfBm X satisfies them-variate self-similarity relation

{X(t)}t∈R fdd= {aHX(t/a)}t∈R, ∀a > 0, (1.3)

where the scaling exponent is a m × m matrix H , and aH stands for the matrix exponential
∑∞

k=0(H log a)k/k!. Likewise, the wavelet

spectrum of each individual component is not a single power law as in (1.2); instead, it behaves like a mixture of distinct univariate power
laws. In its most general form, OfBm remains scarcely used in applications; recent efforts have tackled many difficulties that arise in the
identification of its parameters [23,24].

1.3. Entry-wise multivariate scaling

We call an OfBm entry-wise scaling when the Hurst parameter is simply a diagonal matrix H = diag(H1, . . . ,Hm). This instance of

OfBm has been used in many applications (e.g., [6,25]) and its estimation is thoroughly studied in [20]. Since H is diagonal, the relation

(1.3) takes the form

{X1(t), . . . , Xm(t)}t∈R fdd= {aH1X1(t/a), . . . , a
HmXm(t/a)}t∈R, ∀a > 0, (1.4)

which is reminiscent of the univariate case. This implies that the extension of (1.2) to all auto- and cross-components of m-variate data
can be written as

1

T

∑

t

TXq1 (a, t)TXq2 (a, t) ≃ Caαq1q2 , αq1q2 := Hq1 + Hq2 , q1, q2 = 1, . . . ,m, (1.5)

where T is as in (1.2).

1.4. Fractal connectivity

Yet, entry-wise scaling OfBm is a restrictive model since the cross-scaling exponents αq1q2 , q1 6= q2, are determined by the auto-scaling
exponents αq1q1 and αq2q2 , i.e.,

αq1q2 = Hq1 + Hq2 = (αq1q1 + αq2q2 )/2. (1.6)

In this situation, called fractal connectivity [6,25,26], no additional scaling information can be extracted from the analysis of cross-
components. However, in real world applications, cross-components are expected to contain information on the dynamics underlying
the data, e.g., cross-correlation functions. As an example, recent investigation of multivariate brain dynamics in [6] produced evidence
of departures from fractal connectivity, notably for subjects carrying out prescribed tasks. Other fields where cross-correlation or non-
fractally connected modeling has been pursued include physics [27–36] and econometrics [37–39]. This means that there is a clear need
for more versatile models than entry-wise scaling OfBm (see also Remark 2.2). The covariance structure of the new model should satisfy
the following two requirements:

1. all auto- and cross-components are (approximately) self-similar;
2. departures from fractal connectivity are allowed, i.e., the exponents of the cross-components are not necessarily determined by the

exponents of the corresponding auto-components.

Hereinafter, a departure from fractal connectivity (1.6) on a given covariance structure entry (q1, q2) will be quantified by means of the
parameter

δq1q2 = αq1q1 + αq2q2

2
− αq1q2 ≥ 0, q1, q2 = 1, . . . ,m, (1.7)

where nonnegativeness is a consequence of the Cauchy–Schwarz inequality (see (2.10)). It is clear that δq1q2 = 0 when q1 = q2.



Remark 1.1. Note that the precise theoretical definition of fractal connectivity includes the situationwhere the cross-correlation between
two components q1 and q2 is identically zero. In this paper, we are mainly interested in situations where this does not occur (see (2.8)).

1.5. Goals, contributions and outline

Our contribution comprises four main components. First, we propose a new class of multivariate Gaussian stochastic processes, called
Hadamard fractional Brownian motion (HfBm), that combines scale-free dynamics and potential departures from fractal connectivity.
Moreover, we provide a precise discussion of the issues entailed by the presence of these two properties (Section 2). Second, we study the
multivariate discrete wavelet transform (DWT) of HfBm, define wavelet-based estimators for the scaling exponents αq1q2 and the fractal
connectivity parameter δq1q2 , mathematically establish their asymptotic performance (i.e., asymptotic normality and covariance structure),
and computationally quantify finite sample size effects (Section 3). Third, starting from a single sample path, we construct approximate
confidence intervals for the proposed estimators. The procedure is backed up by the mathematical identification of the approximation
orders as a function of the sample path size and the limiting coarse scale. This is further investigated bymeans of Monte Carlo simulations,
as well as by means of a study of the ubiquitous issue of the impact of (partially) neglecting the correlation amongst wavelet coefficients
(Section 4). Beyond being of interest inmultivariatemodeling, the study shedsmore light on the same issue for the univariate case. Fourth,
we devise an efficient test for the presence of fractal connectivity from a single sample path. In addition, we assess the finite sample
performance of the test in terms of targeted risk by means of Monte Carlo simulations (Section 5). Finally, routines for the synthesis of
HfBm, as well as for estimation, computation of confidence intervals and testing will be made publicly available at time of publication. All
proofs can be found in Appendix.

2. Hadamard fractional Brownian motion

For Hadamard fractional Brownian motion, defined next, the fractal connectivity relation (1.6) does not necessarily hold.

Definition 2.1. A Hadamard fractional Brownian motion BH = {BH (t)}t∈R (HfBm) is a proper, Gaussian (stationary increment) process
whose second moments can be written as

E
[
BH (s)BH (t)

∗] =
∫

R

( eisx − 1

ix

)( e−itx − 1

−ix

)
fH (x)dx, s, t ∈ R. (2.1)

For 0 < hmin ≤ hmax < 1, the matrix exponent H =
(
hq1q2

)
q1,q2=1,...,m

satisfies the conditions

hq1q2 ∈ [hmin, hmax], q1, q2 = 1, . . . ,m. (2.2)

The matrix-valued function f is a spectral density of the form

fH (x)q1q2 =
(
ρq1q2σq1σq2 |x|−2(hq1q2−1/2)

)
gq1q2 (x), q1, q2 = 1, . . . ,m, (2.3)

i.e., the Hadamard scaling parameters are given by

αq1q2 = 2hq1q2 , q1, q2 = 1, . . . ,m, (2.4)

where ρq1q2 ∈ [−1, 1], σq1 , σq2 ∈ R
+. The real-valued functions gq1q2 ∈ C2(R) satisfy

max
l=0,1,2

sup
x∈R

∣∣∣ dl

dxl
gq1q2 (x)

∣∣∣ ≤ C, (2.5)

∣∣∣ dl

dxl
(gq1q2 (x) − 1)

∣∣∣ ≤ C ′|x|̟0−l, x ∈ (−ε0, ε0), l = 0, 1, 2, (2.6)

for constants C, C ′, ε0 > 0, where

2hmax < ̟0 ≤ 2(1 + hmin). (2.7)

In addition, throughout the paper we will assume that

ρq1q2 6= 0, q1, q2 = 1, . . . ,m, q1 6= q2. (2.8)

Example 2.1. AnHfBmwith parameters hq1q2 = (hq1q1+hq2q2 )/2 (i.e., fractally connected), gq1q2 (x) ≡ 1, q1, q2 = 1, . . . ,m, is an entry-wise
scaling OfBm with diagonal Hurst matrix H = diag(h1, . . . , hm) (see [20–22]).

By the known properties of spectral densities, fH (x) = (fH (x)q1q2 )q1,q2=1,...,m ∈ S>0(m,R) (symmetric positive semidefinite matrices)
a.e. and satisfies

|fH (x)q1q2 | ≤
√
fH (x)q1q1

√
fH (x)q2q2 dx-a.e. (2.9)

([40], p. 436). The relation (2.9) further implies that

hq1q2 ≤ hq1q1 + hq2q2

2
, q1, q2 = 1, . . . ,m. (2.10)



Whenever convenient we also write

hqq = hq, αqq = αq, q = 1, . . . ,m.

The name ‘‘Hadamard’’ comes from Hadamard (entry-wise) matrix products. If one rewrites HfBm componentwise as BH (t) =
(BH,1(t), . . . , BH,m(t))

∗, then the conditions (2.1), (2.2) and (2.6) yield the asymptotic equivalence

E
[
BH,q1 (cs)BH,q2 (ct)

]
∼ ς

2
{|cs|2hq1q2 + |ct|2hq1q2 − |c(s − t)|2hq1q2 }, c → ∞,

q1, q2 = 1, . . . ,m, for some ς ∈ R. In other words, over large scales, the covariance between each pair of entries of an HfBm approaches
that of a univariate fBm, up to a change of sign (see also Proposition 3.1(iii)). In this sense, for large c , an HfBm behaves like its ideal
counterpart BH,ideal = {BH,ideal(t)}t∈R, defined as a generally non-existent stochastic process satisfying the also ideal Hadamard (entry-
wise) self-similarity relation

E
[
BH,ideal(cs)BH,ideal(ct)

∗] = c◦H ◦ E
[
BH,ideal(s)BH,ideal(t)

∗] , c > 0, (2.11)

where ◦ denotes theHadamard (entry-wise)matrix product and c◦H :=
(
chq1q2

)
q1,q2=1,...,m

. The process BH,ideal can be viewed as a heuristic

tool for developing intuition on multivariate self-similarity. Mathematically, though, it can only exist in fractally connected instances, the

reason being that distinct (spectral) power laws cross over. Indeed, wemust haveαq1q2 ≤ αq1q1+αq2q2
2

for x close to 0 andαq1q2 ≥ αq1q1+αq2q2
2

for large |x|, whence αq1q2 ≡ αq1q1+αq2q2
2

. This shows that HfBm is a perturbation of its virtual counterpart, where the regularization
functions gq1q2 (x) in (2.3) introduce high-frequency corrections.

Example 2.2. An illustrative subclass of HfBm is obtained by setting gqq(x) ≡ 1 = σq, q = 1, . . . ,m, and gq1q2 (x) = e−x2 , q1 6= q2. Note
that gq1q2 (·) satisfies (2.7) with̟0 = 2. In this case, the expression for the main diagonal spectral entry of an HfBm is identical to that of
an ideal-HfBM, and the difference lies on the off-diagonal entries:

ρ2
q1q2

|x|−2αq1q2 e−x2 ≤ ρq1q1ρq2q2 |x|−(αq1q1+αq2q2 ) dx-a.e. (2.12)

In this case, each individual entry {BH (t)q}t∈R, q = 1, . . . ,m, of HfBm BH is by itself a fBm with Hurst parameter 0 < hq < 1. In particular,

{BH (ct)q}t∈R fdd= {chqBH (t)q}t∈R, c > 0, q = 1, . . . ,m.

However, it is generally not true that

{BH (ct)}t∈R fdd= {diag(ch1 , . . . , chq , . . . , chm )BH (t)}t∈R, c > 0.

Otherwise, BH would necessarily be fractally connected.

Remark 2.1. When simulating HfBm via Circulant Matrix Embedding, one verifies that regularization is rarely necessary for ensuring the
positive definiteness of the covariancematrix for finite sample sizes. In other words, ideal-HfBM is also a useful approximation in practice.

Remark 2.2. Let YH (t) = BH (t) − BH (t − 1), where {BH (t)}t∈R is an HfBm. Then, {YH (t)}t∈Z is a (discrete time) stationary process with
spectral density

fYH (x) = 2(1 − cos(x))

∞∑

k=−∞

fH (x + 2πk)

|x + 2πk|2
, x ∈ (−π, π],

where fH is the HfBm spectral density (2.1). We call {YH (t)}t∈Z Hadamard fractional Gaussian noise (HfGn). Under (2.5)–(2.7), we obtain
the entry-wise limiting behavior

fYH (x)q1q2 (x) ∼ ρq1q2σq1σq2 |x|−2(hq1q2−1/2), x → 0+, q1, q2 = 1, . . . ,m.

In particular, non-fractally connected instances of {YH (t)}t∈Z can only satisfy the usual definitions of multivariate scaling behavior or long
range dependence by setting limiting low frequency constants in the latter to zero [41–44].

3. Wavelet-based analysis of HfBm

In this section, we construct the wavelet analysis and estimation for HfBm. Due to the mathematical convenience of the notion of
Hadamard (approximate) self-similarity, most of the properties of wavelet-based constructs resemble their univariate analogues.

3.1. Multivariate discrete wavelet transform

Throughout the rest of the paper, we will make the following assumptions on the underlying wavelet basis. Such assumptions will be
omitted in the statements.

Assumption (W1): ψ ∈ L1(R) is a wavelet function, namely,
∫

R

ψ2(t)dt = 1,

∫

R

tqψ(t)dt = 0, q = 0, 1, . . . ,Nψ − 1, Nψ ≥ 2. (3.1)



Assumption (W2): the functions ϕ (a bounded scaling function) and ψ correspond to

a MRA of L2(R), and supp(ϕ) and supp(ψ) are compact intervals. (3.2)

Assumption (W3): for some β > 1,

ψ̂ ∈ C2(R)

and

sup
x∈R

|ψ̂(x)|(1 + |x|)β < ∞. (3.3)

Under (3.1)–(3.3), ψ is continuous, ψ̂(x) is everywhere differentiable and

ψ̂ (l)(0) = 0, l = 0, . . . ,Nψ − 1 (3.4)

(see [45], Theorem 6.1 and the proof of Theorem 7.4).

Definition 3.1. Let BH = {BH (t)}t∈R ∈ R
m be an HfBm. For a scale parameter j ∈ N and a shift parameter k ∈ Z, its (L1-normalized) wavelet

transform is defined by

D(2j, k) = 2−j/2

∫

R

2−j/2ψ(2−jt − k)BH (t)dt =:
(
dq(j, k)

)
q=1,...,m

. (3.5)

Under (3.1)–(3.3) and the continuity of the covariance function (2.1), the wavelet transform (3.5) is well-defined in the mean squared
sense and ED(2j, k) = 0, k ∈ Z, j ∈ N (see [46], p. 86).

3.2. Multivariate wavelet spectrum

Fix j1 ≤ j2, j1, j2 ∈ N. Because of the approximate nature of Hadamard self-similarity, analysis and estimation must be considered in
the coarse scale limit, by means of a sequence of dyadic numbers {a(n)}n∈N satisfying

1 ≤ n

a(n)2j2
≤ n

a(n)2j1
≤ n,

a(n)4(hmax−hmin)+1

n
+ n

a(n)1+2̟0
→ 0, n → ∞. (3.6)

Example 3.1. An example of a scaling sequence satisfying (3.6) for large enough n is

a(n) := 2⌊n
η

4(hmax−hmin)+1 ⌋, 4(hmax − hmin) + 1

1 + 2̟0

< η < 1.

In other words, a wide parameter range [hmin, hmax] or a low regularity parameter value ̟0 implies that a(n) must grow slowly by
comparison to n.

Remark 3.1. For a fixed octave range {j1, . . . , j2} associated with an initial scaling factor value a(n0) = 1 and sample size n0, define the
scale range {2j1(n), . . . , 2j2(n)} = {a(n)2j1 , . . . , a(n)2j2} for a general sample size n (where a(n) is assumed dyadic). Then, under (3.6), for
every n the range of useful octaves is constant and given by j2(n) − j1(n) = j2 − j1, where the new octaves are jl(n) = log2a(n) + jl ∈ N,
l = 1, 2.

Definition 3.2. Let BH = {BH (t)}t∈R be an HfBm. Let {D(a(n)2j, k)}k=1,...,nj, j=j1,...,j2 be its wavelet coefficients, where

na,j = n

a(n)2j

is the number of wavelet coefficients D(a(n)2j, ·) at scale a(n)2j, of a total of n (wavelet) data points. The wavelet variance and the sample
wavelet variance, respectively, at scale a(n)2j are defined by

E
[
Sn(a(n)2

j)
]
, Sn(a(n)2

j) =
na,j∑

k=1

D(a(n)2j, k)D(a(n)2j, k)∗

na,j

, j = j1, . . . , j2. (3.7)

Let

̺(q1q2)(a(n)2j) = E
[
dq1 (a(n)2

j, 0)dq2 (a(n)2
j, 0)

]
. (3.8)

The standardized counterparts of (3.7) are

E
[
Wn(a(n)2

j)
]
, Wn(a(n)2

j) = ̺(a(n)2j)◦−1 ◦
na,j∑

k=1

D(a(n)2j, k)D(a(n)2j, k)∗

na,j

, (3.9)

j = j1, . . . , j2, where ̺(a(n)2j) =
(
̺(q1q2)(a(n)2j)

)
q1,q2=1,...,m

. Entry-wise, for 1 ≤ q1, q2 ≤ m,

S(q1q2)n (a(n)2j) =
na,j∑

k=1

dq1 (a(n)2
j, k)dq2 (a(n)2

j, k)

na,j

, W (q1q2)
n (a(n)2j) = S

(q1q2)
n (a(n)2j)

̺(q1q2)(a(n)2j)
. (3.10)



Proposition 3.1, stated next, provides basic results on the moments and asymptotic distribution, in the coarse scale limit a(n)2j → ∞,
of the wavelet transform (3.5) and variance (3.9). In particular, in regard to the limits in distribution, the vector of random matrices
{Sn(a(n)2j)}j=j1,...,j2 can be intuitively interpreted as an asymptotically unbiased and Gaussian estimator of its population counterpart

{E
[
Sn(a(n)2

j, k)
]
}j=j1,...,j2 . The celebrated decorrelation property of the wavelet transform (e.g., [47], Proposition II.2) lies behind the

Gaussian limits in the proposition, as well as of the fact that the random matrices Sn(a(n)2
j) have weak inter-component, intra-scale

and inter-scale correlations. Also, each entry S
(q1q2)
n (a(n)2j), q1, q2 = 1, . . . ,m, displays asymptotic power law scaling. In Section 3.3, these

properties are used to define estimators of the scaling exponents and to analytically establish their asymptotic performance.
In the statement of Proposition 3.1, we make use of the operator

vecSS = (s11, s12, . . . , s1m; s22, . . . , s2m; . . . ; sm−1,m−1, sm−1,m; sm,m)∗. (3.11)

In other words, vecS · vectorizes the upper triangular entries of the symmetric matrix S.

Proposition 3.1. Let BH = {BH (t)}t∈R be an HfBm. Consider j, j′ ∈ N and k, k′ ∈ Z. Then,

(i) for fixed j, j′, k, k′, we can write

E

[
D(a(n)2j, k)D(a(n)2j′ , k′)∗

]
=

(
Ξ jj′,a

q1q2
(a(n)(2jk − 2j′k′))

)
q1,q2=1,...,m

(3.12)

for some matrix-valued function Ξ jj′,a(·) that depends on a(n). In particular, for fixed scales j, j′, {D(a(n)2j, k)}k∈Z is a stationary
stochastic process;

(ii) for q1, q2 = 1, . . . ,m,

̺(q1q2)(a(n)2j) = Ξ jj,a
q1q2

(0) 6= 0, j ∈ N, (3.13)

i.e., (3.9) is well-defined;
(iii) forΞ jj′,a(·) as in (3.12), q1, q2 = 1, . . . ,m, and z ∈ Z, as n → ∞,

Ξ
jj′,a
q1q2 (a(n)z)

a(n)2hq1q2
→ Φ jj′

q1q2
(z) = ρq1q2σq1σq2

∫

R

eizx|x|−(2hq1q2+1)ψ̂(2jx)ψ̂(2j′x)dx. (3.14)

In particular, the wavelet spectrum ESn(a(n)2
j) (see (3.7)) can be approximated by that of an ideal-HfBm (see (2.11)) in the sense

that

a(n)◦ −2H ◦ E
[
Sn(a(n)2

j)
]

→ E
[
Sideal(2

j)
]

=
(
Φ jj

q1q2
(0)

)
q1,q2=1,...,m

; (3.15)

(iv) forΞ jj′ as in (3.12) and q1, q2 = 1, . . . ,m, as n → ∞,

1
√
na,j

1
√
na,j′

na,j∑

k=1

na,j′∑

k′=1

Ξ
jj′,a
q1q2 (a(n)(2

jk − 2j′k′))

a(n)2hq1q2

→ 2− (j+j′)
2 gcd(2j, 2j′ )

∞∑

z=−∞
Φ jj′

q1q2
(zgcd(2j, 2j′ )); (3.16)

whereΦ
jj′
q1q2 (·) is given by (3.14);

(v) for 1 ≤ q1 ≤ q2 ≤ m, 1 ≤ q3 ≤ q4 ≤ m, as n → ∞,
√
na,j

a(n)δq1q2

√
na,j′

a(n)δq3q4
Cov

[
W (q1q2)

n (a(n)2j),W
(q3q4)
n (a(n)2j′ )

]
→ Gjj′ (q1, q2, q3, q4), (3.17)

for δ·· as in (1.7), where

Φ
jj
q1q2 (0)Φ

j′j′
q3q4 (0)

2− (j+j′)
2

Gjj′ (q1, q2, q3, q4)

=





φjj′ (q1, q3, q2, q4), if δq1q3 = 0 = δq2q4
and (δq1q4 > 0 or δq2q3 > 0);

φjj′ (q1, q4, q2, q3), if (δq1q3 > 0 or δq2q4 > 0)
and δq1q4 = 0 = δq2q3;

φjj′ (q1, q3, q2, q4) + φjj′ (q1, q4, q2, q3), if δq1q3 = δq2q4 = δq1q4 = δq2q3 = 0;
0, otherwise,

and

φjj′ (q1, q2, q3, q4) := gcd(2j, 2j′ )

∞∑

z=−∞
Φ jj′

q1q2
(zgcd(2j, 2j′ ))Φ jj′

q3q4
(zgcd(2j, 2j′ )); (3.18)

(vi) as n → ∞,
(
vecS

[( √
na,j

a(n)δq1q2

)
q1,q2=1,...,m

◦ (Wn(a(n)2
j) − 1)

])
j=j1,...,j2

d→ Nm(m+1)
2

×J
(0,G), (3.19)



where

J = j2 − j1 + 1, (3.20)

and 1 is a vector of ones. Each entry of the asymptotic covariance matrix G in (3.19) is given by the terms Gjj′ (q1, q2, q3, q4) in (3.17)
for appropriate values of j, j′, q1, q2, q3 and q4.

Remark 3.2. Note that, up to a change of sign, each entryΦ
jj′
q1q2 (z) on the right-hand side of (3.14) corresponds to the covariance between

the wavelet coefficients at octaves j and j′ of a fBm with parameter hq1q2 .

Remark 3.3. In Proposition 3.1, (v), the asymptotic covariance between same-entry wavelet variance terms is always nontrivial,
irrespective of the values of fractal connectivity parameters. For example, when (1, 2) =: (q1, q2) = (q3, q4), it is given by

Gjj′ (1, 2, 1, 2) = 2− (j+j′)
2

Φ
jj
12(0)Φ

j′j′
12 (0)

·
{

φjj′ (1, 1, 2, 2), δ12 > 0;
φjj′ (1, 1, 2, 2) + φjj′ (1, 2, 2, 1), δ12 = 0.

This is not true for terms associated with different pairs of indices. For example, if (q1, q2) = (1, 1) 6= (q3, q4) = (2, 2), then

Gjj′ (1, 1, 2, 2) = 2− (j+j′)
2

Φ
jj
11(0)Φ

j′j′
22 (0)

·
{
2φjj′ (1, 2, 1, 2), δ12 = 0;

0, δ12 > 0.

In other words, the phenomenon of the asymptotic decorrelation of wavelet variance terms is only observed for instances involving
departures from fractal connectivity.

3.3. Estimation of the scaling exponents

3.3.1. Definition of the estimators
As in the univariate case, the fact that the wavelet variance (3.7) satisfies the Hadamard scaling relation in the coarse scale limit (see

(3.15)) points to the development of a log-regression regression method based on the sample wavelet variance across scales.
Estimators can be defined in a standard way by means of the log-regression relations

α̂q =
j2∑

j=j1

wj log2 S
(qq)
n (a(n)2j), 1 ≤ q ≤ m,

α̂q1q2 =
j2∑

j=j1

wjlog2 |S(q1q2)n (a(n)2j)| , 1 ≤ q1 < q2 ≤ m, (3.21)

which are well-defined with probability 1, wherewj, j = j1, . . . , j2, are linear regression weights satisfying

j2∑

j=j1

wj = 0,

j2∑

j=j1

jwj = 1 (3.22)

(e.g., [48,49]). The derived estimator

δ̂q1q2 = α̂q1q1 + α̂q2q2

2
− α̂q1q2 , q1 6= q2, (3.23)

for the parameter (1.7) will be used in Section 5 in the construction of a hypothesis test for fractal connectivity (see also [18–20]). With the
standardGaussian asymptotics for the samplewavelet variances {Sn(a(n)2j)}j=j1,...,j2 established in Proposition 3.1, the systemof Eqs. (3.21)
and (3.23) is expected to yield efficient estimators. In fact, this is proved in the next section.

3.3.2. Asymptotic distribution
In the next result, Theorem 3.1, we draw upon Proposition 3.1 to show that the vector (̂αq1q2 )q1,q2=1,...,m is an asymptotically unbiased

and Gaussian estimator of the scaling exponents (αq1q2 )q1,q2=1,...,m (whence an analogous statement holds for the estimator (3.23)). As in
the aforementioned proposition, the decorrelation property of the wavelet transform contributes to the Gaussianity of the asymptotic
distribution.

Theorem 3.1. Let wj1 , . . . , wj2 be the weight terms in (3.21) and let G be as in (3.19). Then, as n → ∞,

vecS

[( √
n

a(n)δq1q2+1/2
(̂αq1q2 − αq1q2 )

)
q1,q2=1,...,m

]
d→ Nm(m+1)

2
(0,MGM∗). (3.24)

Remark 3.4. Condition (2.8) is needed to ensure the consistency of the estimator. Furthermore, it is clear that ρqq > 0 for q = 1, . . . ,m,
since otherwise the process is not proper or its spectral density is not positive semidefinite a.e.

Remark 3.5. The convergence rate in (3.24) depends on the unknown fractal connectivity parameters δ··. In practice, the latter can be
replaced by their estimates or, in some cases, ignored, since they exponentiate the slow growth term a(n).



3.3.3. Numerical simulation setting

We conducted Monte Carlo experiments over 1000 independent realizations of bivariate HfBm. Though several parameter settings

were tested, results are reported only for two representative cases: fractally connected ideal-HfBm (α11, α22, ρ12) = (0.4, 0.8, 0.6); and

non-fractally connected HfBm (see Example 2.2) with (α11, α22, δ12, ρ12) = (0.4, 0.8, 0.2, 0.6). HfBm copies were synthesized using the

multivariate process synthesis toolbox described in [50,51] and available at www.hermir.org. For the wavelet analysis, least asymmetric

Daubechies wavelet with NΨ = 2 vanishing moments were used [45]. Estimation by means of weighted linear regression was performed

on the octave range (j1, j2) = (3, log2 n−NΨ ). This choice of regression range (with fine scale j1 fixed and j2 ∼ log2n) is made here in order

to, first, obtain results that are consistent and comparable with those reported in the literature for the estimation of univariate scaling

exponents, cf., e.g., [48] and references therein, and, second, avoid the issue of fixing hmin, hmax and̟0 in (3.6).

Monte Carlo parameter estimates (̂α11, α̂22, α̂12, δ̂12) are reported in Figs. 1 and 2 in terms of bias, standard deviation, skewness and

kurtosis, as functions of (the log2 of) sample sizes n = {210, 212, 214, 216, 218, 220}.

3.3.4. Finite sample performance

Figs. 1 and 2 show that for all four estimates (̂α11, α̂22, α̂12, δ̂12), the bias becomes negligible as the sample size grows. It can also be

seen that the bias is slightly larger for non-fractally connected data, notably for the parameter δ12.

The figures further show that standard deviations for all estimates decrease as n−1/2 (the latter trend being plotted as superimposed

dashed lines), with no significant difference between fractally and non-fractally connected instances. For (̂α11, α̂22, α̂12), there is no

detectable dependence of the outcomes on the actual values of the parameters themselves (in accordance with theoretical calculations

reported in Table 3). Accordingly, one observes that the variances for α̂11 and α̂22 are identical and depend on the sample size, but not on

any parameter of the stochastic process. For α̂12, the variance does not depend on α12, but results not shown demonstrate that it does vary

with ρ12, as confirmed by approximate calculations (see (4.9)). For δ̂, further simulations not displayed indicate that Var δ̂ depends on δ

roughly proportionally to 1+δ. Departures from fractal connectivity tend to imply a decrease in the variance of δ̂; this is a counterintuitive

phenomenon that has yet to be fully explained.

In regard to convergence in distribution, Figs. 1 and 2 show that theMonte Carlo skewness and kurtosis estimates for (α11, α22) are very

close to 0 even at very small sample sizes, both with and without fractal connectivity. This characterizes a fast convergence to limiting

normal distributions, and lies in agreement with the asymptotics presented in Theorem 3.1. However, the weak convergence is observed

to be much slower in practice for the cross-exponents (α12, δ12), yet with no noticeable difference between fractally and non-fractally

connected instances, i.e., different values of the parameter δ12.

4. Confidence intervals

To complement the asymptotic and finite sample results in Sections 3.3.2 and 3.3.4, we now construct confidence intervals for the

estimators (3.21) and (3.23). In particular, we investigate the effect of omitting the covariance among sample wavelet variance terms, as

well as the dependence of the asymptotic variance in (3.24) and confidence intervals on the unknown parameter values. This will allow

us to efficiently compute approximate confidence intervals in practice based on a single sample path.

4.1. Asymptotic covariance

In Theorem 4.1, we provide a finite sample approximation for the covariance between the logarithms of sample wavelet variances,

coupled with the convergence rate of the covariance approximation to its asymptotic expression in terms of ideal-HfBm covariances

(3.14). As in Theorem 3.1, in part due to the decorrelation property of the wavelet transform, the estimators’ second order properties are

comparable to those observed in the i.i.d. case (e.g., [52], p. 430). In particular, the finite sums provided in Theorem 4.1 mathematically

justify heuristic expressions obtained from Taylor expansions (c.f. (4.5)), and the theorem also accurately quantifies the approximation

error as a function of the sample size and scale.

In the theorem,we use indicator functions to regularize log2 |S(q1q2)n (a(n)2j)| around the origin. The truncation converges fast to zero and

is of no impact in practice. Indeed, one can redefine the estimator (3.21) with the indicators and obtain the same asymptotic distribution

(3.24).

Theorem 4.1. Let q1, q2, q3, q4 = 1, . . . ,m be generic indices, and suppose condition (2.8) holds. Consider Sn(a(n)2
j) = {S(q1q2)n (a(n)2j)},

Wn(a(n)2
j) = {W (q1q2)

n (a(n)2j)} as in (3.10) andΦ
jj′
q1q2 (·) as in (3.14). For notational simplicity, denote

n∗ = n

a(n)2j+j′ (4.1)

and also recall the definition of ̟0 in (2.7). Consider a sequence {rn}n∈N ⊆ (0, 1/2) satisfying

1

rn
= O

(
exp

{
C
( n∗
a(n)4hmax−4hmin

)1−ξ}(a(n)4hmax−4hmin

n∗

)1/2)
(4.2)

for any C > 0 and any 0 < ξ < 1. Then,

Cov
[
log2 |S(q1q2)n (a(n)2j)|1{|W (q1q2)

n (a(n)2j)|>rn}, log2 |S(q3q4)n (a(n)2j′ )|1{|W (q3q4)
n (a(n)2j

′
)|>rn}

]

= (log2 e)
2 2−(j+j′)

Φ
jj
q1q2 (0)Φ

j′j′
q3q4 (0){1 + O(a(n)−̟0 )}2



Fig. 1. Estimation performance and asymptotic normality. Study based on 1000 Monte Carlo realizations of (fractally connected) ideal-HfBm with parameters

(α11, α22, δ12, ρ12) = (0.4, 0.8, 0, 0.6).

{a(n)2(hq1q3+hq2q4 )−2(hq1q2+hq3q4 )

n∗

[ 1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ jj′
q1q3

(2jk − 2j′k′)Φ jj′
q2q4

(2jk − 2j′k′)
]

+ a(n)2(hq1q4+hq2q3 )−2(hq1q2+hq3q4 )

n∗

[ 1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ jj′
q1q4

(2jk − 2j′k′)Φ jj′
q2q3

(2jk − 2j′k′)
]

+ o
(a2max{hq1q3+hq2q4 ,hq1q4+hq2q3 }−2(hq1q2+hq3q4 )

n∗

)}
+ O

((a(n)4hmax−4hmin

n∗

)2)
. (4.3)

Remark 4.1. Note that the finite summations on the right-hand side of (4.3) converge as n → ∞. For example,

1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ jj′
q1q3

(2jk − 2j′k′)Φ jj′
q2q4

(2jk − 2j′k′) → φjj′ (q1, q2, q3, q4),

where φjj′ (·) is defined by (3.18) (this can be shown by the same argument for establishing (A.16) and (A.25) in the proof of Proposi-

tion 3.1(iv)).

Remark 4.2. In (4.3), the main residual term satisfies

O
((a(n)4hmax−4hmin

n∗

)2)
= o(1) (4.4)



Fig. 2. Estimation performance and asymptotic normality. Study based on 1000 Monte Carlo realizations of (non-fractally connected) HfBm with parameters

(α11, α22, δ12, ρ12) = (0.4, 0.8, 0.2, 0.6).

under condition (3.6). In practice, the modeling of instances involving extreme deviations from fractal connectivity (δ·· close to 1) may
require greater regularity from the functions g·· (see (2.3)) or the wavelet basis. Otherwise, for conservative choices of the regularity
parameters (e.g.,̟0 = 2 and β = 1 + ε for small ε > 0), expression (4.4) may converge slower to zero than the main terms in (4.3).

Remark 4.3. In (3.5), we assume that an HfBm continuous time sample path is available. However, it is well known that, under mild
assumptions, the availability of discrete time observations does not generally alter the nature of the asymptotic distribution for wavelet
estimators (see, for instance, [47], Section III; [49], Section 3.2; [53], Section C). Establishing this for the case of HfBm is a topic for future
work.

Remark 4.4. When q = q1 = q2, for the univariate case the expansion (4.3) appears implicitly in [54], expression (86). Also, when

computing the moments ofW
(qq)
n (a(n)2j), the truncation is unnecessary (see Remark C.5).

4.2. Variances and covariances of α̂q1q2 and δ̂q1q2

4.2.1. Closed-form approximations
Turning back to expression (4.3), by ignoring the scaling factor (a(n) ≡ 1), the truncation and setting all the convergence order terms

to zero we obtain the approximation

Cov
[
log2 |S(q1q2)n (2j)|, log2 |S(q3q4)n (2j′ )|

]

≈ (log2 e)
22−(j+j′)

Φ
jj
q1q2 (0)Φ

j′j′
q3q4 (0)

1

nj

{ 1

nj′

nj∑

k=1

nj′∑

k′=1

Φ jj′
q1q3

(2jk − 2j′k′)Φ jj′
q2q4

(2jk − 2j′k′)

+ 1

nj′

nj∑

k=1

nj′∑

k′=1

Φ jj′
q1q4

(2jk − 2j′k′)Φ jj′
q3q2

(2j′k′ − 2jk)
}
, (4.5)



Table 1

Closed-form expression for Cov
[
α̂q1q1 , α̂q1q2

]
.

Var[̂αqq]
(log2 e)2

2
∑j2

j,j′=j1

wjwj′
njnj′

∑nj,n
′
j

k,k′=1
r2qq(j, k; j′, k′)

Var[̂αq1q2 ]
(log2 e)2

∑j2
j,j′=j1

wjwj′
njnj′

∑nj,n
′
j

k,k′=1

rq1q2
(j,k;j′,k′)rq1q2 (j

′,k′;j,k)+rq1q1
(j,k;j′,k′)rq2q2 (j,k;j

′,k′)
rq1q2

(j,k;j,k)rq1q2 (j′,k′;j′,k′)

Cov[̂αq1q1 ,̂αq2q2 ]
(log2 e)2

2
∑j2

j,j′=j1

wjwj′
njnj′

∑nj,n
′
j

k,k′=1

r2q1q2
(j,k;j′,k′)

rq1q1
(j,k;j,k)rq2q2 (j′,k′;j′,k′)

Cov[̂αq1q1 ,̂αq1q2 ]
(log2 e)2

2
∑j2

j,j′=j1

wjwj′
njnj′

∑nj,n
′
j

k,k′=1

rq1q1
(j,k;j′,k′)rq1q2 (j,k;j

′,k′)
rq1q1

(j,k;j,k)rq1q2 (j′,k′;j′,k′)

where

nj := n

2j
.

Note that the approximation (4.5) is a finite sample one, and ignores the potential asymptotic decorrelation effect stemming from the
shifting scaling factor a(n) (see Proposition 3.1, (v), and (4.3)). Consider the normalization

rq1q2 (j, k; j′, k′) := Φ
jj′
q1q2 (2

jk − 2j′k′)√
Φ

jj
q1q1 (0)Φ

j′j′
q2q2 (0)

∈ [−1, 1]. (4.6)

Expressions (3.21), (4.5) and (4.6) yield the covariance approximation

Cov
[
α̂q1q2 , α̂q3q4

]
≈ (log2 e)

2

j2∑

j,j′=j1

wjwj′

njnj′

nj−1∑

k=0

nj′−1∑

k′=0

rq1q3 (j, k; j′, k′)rq2q4 (j, k; j′, k′)

rq1q2 (j, k; j, k)rq3q4 (j′, k′; j′, k′)

+ rq1q4 (j, k; j′, k′)rq2q3 (j, k; j′, k′)

rq1q2 (j, k; j, k)rq3q4 (j′, k′; j′, k′)
. (4.7)

In particular, (4.7) further allows us to compute

Var
[̂
δq1q2

]
= 1

4

(
Var

[
α̂q1q1

]
+ Var

[
α̂q2q2

])
+ Var

[
α̂q1q2

]

+ 1

2
Cov

[
α̂q1q1 , α̂q2q2

]
− Cov

[
α̂q1q1 , α̂q1q2

]
− Cov

[
α̂q2q2 , α̂q1q2

]
. (4.8)

The variances (4.8) will be used in Section 5 in the construction of a test for fractal connectivity, i.e., for the hypothesis H0 : δq1q2 ≡ 0.

Table 1 summarizes the closed-form approximations for Var
[
α̂q1q2

]
, Var

[
α̂q1q1

]
, Cov

[
α̂q1q1 , α̂q1q2

]
and Cov

[
α̂q1q1 , α̂q2q2

]
established in

(4.7).

4.2.2. Impact of inter- and intra-scale correlations
The expression of Cov

[
α̂q1q2 , α̂q3q4

]
can further be split into three terms, namely,

Cov
[
α̂q1q2 , α̂q3q4

]
≈ (log2 e)

2

j2∑

j=j1

[
w2

j

nj

(
1 + 1

rq1q2 (j, 0; j, 0)rq3q4 (j, 0; j, 0)

)

+
w2

j

n2
j

∑

k

∑

k′ 6=k

rq1q3 (j, k; j, k′)rq2q4 (j, k; j, k′) + rq1q4 (j, k; j, k′)rq2q3 (j, k; j, k′)

rq1q2 (j, k; j, k)rq3q4 (j, k′; j, k′)

+
∑

j′ 6=j

wjwj′

njnj′

∑

k

∑

k′

rq1q3 (j, k; j′, k′)rq2q4 (j, k; j′, k′) + rq1q4 (j, k; j′, k′)rq2q3 (j, k; j′, k′)

rq1q2 (j, k; j, k)rq3q4 (j′, k′; j′, k′)

]
, (4.9)

where the first term in the sum over j reflects the variance only of wavelet coefficients, the second term the covariance of wavelet
coefficients at a given scale, and the third term, the covariance of wavelet coefficients at different scales. In other words, if wavelet
coefficients were independent, the second and third terms would equal zero.

The relative contributions of the three terms to the final variances are quantified by means of Monte Carlo simulations conducted
following the sameprotocol and settings as those described in Section 3.3.3. Table 2, reporting the relative contributions of each of the three
terms for various sample sizes under fractal connectivity (i.e., δq1q2 ≡ 0), clearly shows that the second and third terms (intra- and inter-
scale covariances) cannot be neglected, namely, one cannot use only the first term (variance) in the construction of confidence intervals
for fBm, as proposed in [9]. Identical conclusions, not shown here, are drawn under departures from fractal connectivity (i.e., δq1q2 > 0).

4.2.3. First order approximations for the variances and covariances of α̂q1q2

It is of interest to further examine the leading order approximations for the variances and covariances of α̂q1q2 and δq1q2 , corresponding
to neglecting all intra- and inter-scale correlations amongst wavelet coefficients. The first order approximations neglecting all inter- and
intra- scale correlations amongst wavelet coefficients of Cov

[
α̂q1q2 , α̂q3q4

]
and of Var

[̂
δq1q2

]
are summarized in Table 3.

The results show that Var
[
α̂q1q1

]
and Var

[
α̂q1q2

]
, q1 6= q2, do not depend on the actual values of the scaling exponents (αq1q1 , αq2q2 ,

αq1q2 ), which corroborates the numerical performance reported in Section 3.3.4.



Table 2

Relative contributions of the three terms in (4.9) to Var
[
α̂(·)

]
, Cov

[
α̂q1q2 , α̂q3q4

]
and Var

[̂
δ(·)

]
for various sample sizes. ((α11, α22, δ12, ρ) = (0.2, 0.6, 0, 0.9), j1 = 2 and

j2 = {5, 7, 9, 11}, n = {210, 212, 214, 216}).
n 210 212 214 216 210 212 214 216 210 212 214 216 210 212 214 216

Var [̂α11] Var [̂α22] Var [̂α12] Var
[̂
δ12

]

var×103 65.33 9.51 1.87 0.42 69.27 10.05 1.97 0.44 18.76 2.73 0.54 0.12 12.42 1.81 0.35 0.08

term 1 0.74 0.68 0.66 0.66 0.69 0.65 0.63 0.62 0.72 0.67 0.65 0.64 0.71 0.66 0.65 0.64

term 2 0.15 0.14 0.14 0.14 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.16 0.18 0.17 0.16 0.16

term 3 0.11 0.17 0.20 0.20 0.11 0.17 0.19 0.19 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.2

co ×103 Cov [̂α11, α̂22] Cov [̂α11, α̂12] Cov [̂α22, α̂12]

54.47 7.92 1.55 0.35 33.12 4.82 0.95 0.21 34.1 4.95 0.97 0.22

term 1 0.72 0.66 0.65 0.64 0.73 0.67 0.66 0.65 0.71 0.66 0.64 0.63

term 2 0.18 0.17 0.16 0.16 0.16 0.15 0.15 0.15 0.19 0.18 0.17 0.17

term 3 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.2

Table 3

First-order approximations in (4.7) for the variances and covariances of α̂q1q2 and δq1q2 neglecting all inter- and intra-

scale correlations amongst wavelet coefficients.

Var[̂αqq]
(log2 e)2

2
∑j2

j=j1

w2
j

nj

Var[̂αq1q2 ]
(log2 e)2

∑j2
j=j1

w2
j

nj
(1 + 1

r2q1q2
(j,0;j,0) )

Cov[̂αq1q1 ,̂αq2q2 ]
(log2 e)2

2
∑j2

j=j1

w2
j

nj
r2q1q2

(j, 0; j, 0)
Cov[̂αq1q1 ,̂αq1q2 ]

(log2 e)2
2
∑j2

j=j1

w2
j

nj

Var[̂δq1q2 ]
(log2 e)2

∑j2
j=j1

w2
j

nj

(
(r2q1q2 (j, 0; j, 0) + 1

r2q1q2
(j,0;j,0) ) − 2

)

Note that for an ideal-HfBm with fractal connectivity, it is straightforward to show that rqq(j, 0; j, 0) ≡ 1 and rq1q2 (j, 0; j, 0) ≡ ρq1q2
when q1 6= q2. While Var

[
α̂q1q1

]
does not depend on correlations ρq1q2 , as expected, Var

[
α̂q1q2

]
, q1 6= q2 does vary with ρq1q2 according to

1/ρ2
q1q2

, showing that Var
[
α̂q1q2

]
→ +∞ when ρq1q2 → 0. This can be interpreted as the fact that when ρq1q2 → 0, the scaling exponent

αq1q2 , q1 6= q2, loses its meaning. Furthermore, Cov
[
α̂q1q1 , α̂q2q2

]
depends on ρ as ρ2

q1q2
, not surprisingly indicating that when ρq1q2 → 0

(no correlation amongst components), Cov
[
α̂q1q1 , α̂q2q2

]
→ 0 (no correlation amongst estimates).

Moreover, the first order approximation of Var
[̂
δq1q2

]
is observed not to depend on the actual value of δq1q2 , while Var

[̂
δq1q2

]
clearly

depends on δq1q2 based on the numerical simulations reported in Section 3.3.4. This can be interpreted as the fact that, for δ̂q1q2 , the first

order approximation (neglecting all intra- and inter-scale correlations amongst wavelet coefficients) is not sufficient to approximate well

Var
[̂
δq1q2

]
, as opposed to what is observed for Var

[
α̂q1q1

]
and Var

[
α̂q1q2

]
, q1 6= q2.

To finish with, Var
[̂
δq1q2

]
varies with ρq1q2 as ρ2

q1q2
+ 1/ρ2

q1q2
− 2. This shows again that when ρq1q2 → 0, parameter δq1q2 becomes

irrelevant. Moreover, it also shows that when ρq1q2 → ±1, Var
[
δq1q2

]
→ 0. This can be understood as the fact that when ρq1q2 → ±1, a

departure from fractal connectivity is no longer permitted, as indicated by (2.12). Thus, ρq1q2 → ±1 implies δq1q2 → 0, which is then no

longer a random variable.

4.3. Practical computation of the variances and covariances of α̂q1q2 and δ̂q1q2

4.3.1. Computation of E
[
dq1

]
(j, k)dq2 (j

′, k′) and rq1q2 (j, k; j′, k′)
Evaluation of (4.7) requires knowledge of the covariance betweenwavelet coefficients (4.6), whichwill be developed here explicitly for

the discrete and the dyadicwavelet transforms. Let h(k) and g(k), k = 1, . . . , L, be the coefficients of the high pass and lowpass filters of the

discretewavelet transform, respectively, and let↑2[·] and↓2[·] be the dyadic upsampling and decimation operators. For any q = 1, . . . ,m,

the wavelet transform of the discrete time process component BH (k)q yields, at each scale j = 1, . . . , J , sequences of approximation
coefficients aq(j, k) and detail coefficients dq(j, k), q = 1, . . . ,m. The corresponding dyadic coefficients are given by ãq(j, k) = aq(j, 2

jk)

and d̃q(j, k) = dq(j, 2
jk), respectively. Pick the initialization aq(0, k) = BH (k)q (see [55] for a discussion of the initialization of the discrete

wavelet transform). At scale j = 1, aq(1, ·) = h∗aq(0, ·) and dq(1, ·) = g∗aq(0, ·), at scale j = 2, aq(2, ·) = ↑2[h]∗aq(1, ·) = ↑2[h]∗h∗aq(0, ·)
and dq(2, ·) = ↑2[g] ∗ aq(1, ·) = ↑2[g] ∗ h ∗ aq(0, ·). By iteration, we obtain the sequences of detail coefficients at each scale j = j′, i.e.,

dq(j
′, k) =

(
gj′ ∗ aq(0, ·)

)
(k), dq(j

′, k) = dq(j
′, 2j′k), (4.10)

where

gj′ = ↑
2j

′−1 [g] ∗
(j′−2∗
j=0

↑
2j

′ [h]
)
.

Now let γhq1q2 (s, t), 1 ≤ q1 ≤ q2 ≤ m, be (univariate) fBm covariance functions with indices hq1q2 = αq1q2/2, i.e.,

γq1q2 (s, t) = ρq1q2σq1σq2{|s|αq1q2 + |t|αq1q2 − |s − t|αq1q2 }. (4.11)



Then (cf. [18]; note that a change in time scale would only result in a multiplicative constant, which we assume to be absorbed in ρq1q2
and which cancels out in the final expression for rq1q2 )

E[dq1 (j, k)dq2 (j′, k + τ )]/(σq1σq2 )
=

∑

p

∑

q

gj(p)gj′ (q)E[aq1 (0, k − p)aq2 (0, k + τ − q)]

= −ρq1q2
∑

p

∑

q

gj(p)gj′ (q)|−τ + q − p|αq1q2

+ ρq1q2

∑

p

gj(p)
∑

q

gj′ (q)|k − p|αq1q2 + ρq1q2

∑

q

gj′ (q)
∑

p

gj(p)|k + τ − q|αq1q2

= −ρq1q2
∑

p

∑

q

gj(p)gj′ (q)|τ − q + p|αq1q2 (p′ = p − q)

= −ρq1q2
∑

p′

∑

q

gj(p
′ + q)gj′ (q)|τ − p′|αq1q2 = −ρq1q2

∑

p′

∑

q

gj(p
′ − q)ǧj′ (q)|τ − p′|αq1q2

= −ρq1q2
∑

p

(gj ∗ ǧj′ )(p)|τ − p|αq1q2 = −ρq1q2 ((gj ∗ ǧj′ ) ∗ ηq1q2 )(τ ),

where

ǧj(k) = gj(L − k), k = 1, . . . , L,

ηq1q2 (τ ) = |τ |αq1q2 .
Consequently,

rq1q2 (j, k; j′, k′) = ρq1q2
((gj ∗ ǧj′ ) ∗ ηq1q2 )(k′ − k)√

((gj ∗ ǧj) ∗ ηii)(0) ((gj′ ∗ ǧj′ ) ∗ ηll)(0)
(4.12)

and, for the dyadic wavelet transform,

r̃q1q2 (j, k; j′, k′) = rq1q2 (j, 2
jk; j′, 2j′k′). (4.13)

For given values of αq1q2 and ρq1q2 , these expressions can be easily evaluated numerically.

4.3.2. Practical estimation of (co)variances of α̂q1q2 and of δ̂q1q2
Evaluating (4.7) and (4.8) for HfBm in practice requires the unknown parameter values αq1q2 and ρq1q2 in (4.11), and hence we replace

them by their estimates α̂q1q2 and ρ̂q1q2 . The former are defined in (3.21), and estimates ρ̂q1q2 for ρq1q2 for q1 6= q2 can be readily obtained
as the cross-correlation coefficients of the first difference processes YH (t)q1 and YH (t)q2 (HfGn; see Remark 2.2). However, note that the
expressions for the (co)variances of α̂q1q2 in the previous sections are derived assuming knowledge of the true parameter values and can
only be expected to be approximations when these are replaced by estimates. This will be studied numerically in the next section.

4.3.3. Assessment of the estimated (co)variances of α̂q1q2 and of δ̂q1q2 by means of Monte Carlo experiments

Monte Carlo studies were conducted following the protocol and settings described in Section 3.3.3, aiming to evaluate the quality of the
estimated approximations (4.7) and (4.8) for the (co)variances of α̂q1q2 and of γ̂q1q2 . The simulations involved 1000 independent realizations
of each of two general instances of HfBm with m = 2 components, one using the true values of the parameters αq1q2 and ρq1q2 , and the

other, their estimates α̂q1q2 and ρ̂q1q2 . Four different sample sizes, n = {210, 212, 214, 216} and three different values ρ12 = {0.3, 0.6, 0.9}
are investigated for the set of exponents [α11, α22, α12] = [0.2, 0.6, 0.4].

Table 4 summarizes the square roots of the ratios of the averages over realizations of (co)variance estimates and of the Monte Carlo
(co)variances. The first four columns, labeled ‘‘theo/MC’’, report results obtained when using theoretical parameter values and yield the
following conclusions. First, even for small sample size n = 210 and weak correlation ρ12 = 0.3, the quality of the approximations (4.7)
and (4.8) is very good for the variances of exponents αq, q = 1, 2, and satisfactory for the cross-exponent α12, the covariance parameters
and the connectivity parameter δ12. Second, when the sample size n and correlation level ρ12 increase, the approximation of variances and
covariances becomes excellent, with maximum errors of the order of 5% for n = 216 and strong correlation ρ12 = 0.9. Finally, the last four
columns of Table 4, labeled ‘‘est/MC’’, report results obtained when using estimates α̂q1q2 and ρ̂12. They indicate that replacing the true
parameter values αq1q2 and ρ12 with estimates has very little impact on the quality of approximations (4.7) and (4.8). Indeed, the average
values of the (co)variance estimates are essentially equal to those obtained when using true parameter values.

5. Statistical test for fractal connectivity

5.1. Procedure

The mathematical and computational results in Sections 3 and 4 enable us to construct component-wise fractal connectivity tests,
i.e., for the hypotheses

H0 : δq1q2 = αq1q1 + αq2q2

2
− αq1q2 = 0, q1 6= q2.



Table 4

Estimation of Var
[
α(·)

]
. Square roots of ratios of mean of (co)variances computed using (4.7) and of Monte Carlo

(co)variances: (4.7) evaluated using theoretical values α11 , α22 , α12 , ρ12 (left columns, labeled ‘‘theo/MC’’) and estimates

α̂11 , α̂22 , α̂12 , ρ̂12 (right columns, labeled ‘‘est/MC’’). ( (α11, α22, δ12, ρ12) = (0.2, 0.6, 0, ρ12), j1 = 2 and j2 = {5, 7, 9, 11},
n = {210, 212, 214, 216}).
n 210 212 214 216 210 212 214 216

ρ12 Ratio of
√−/− theo/MC est/MC

0.3

Var[̂α11] 0.95 0.97 0.95 0.99 0.94 0.97 0.94 0.99

Var[̂α12] 0.82 0.85 0.90 0.93 0.83 0.86 0.90 0.93

Cov[̂α11, α̂22] 1.12 1.07 0.97 1.32 1.09 1.06 0.97 1.31

Var[̂α12] 0.78 0.82 0.88 0.91 0.80 0.82 0.88 0.91

0.6

Var[̂α11] 0.98 0.98 0.96 0.98 0.98 0.97 0.96 0.98

Var[̂α12] 0.94 0.92 1.00 1.00 0.93 0.92 1.00 1.00

Cov[̂α11, α̂22] 1.00 0.93 0.97 1.05 0.99 0.92 0.97 1.05

Var[̂δ12] 0.88 0.87 0.98 0.97 0.88 0.87 0.98 0.97

0.9

Var[̂α11] 0.97 0.95 0.98 0.98 0.96 0.95 0.98 0.98

Var[̂α12] 1.00 0.98 1.00 1.01 0.99 0.98 1.00 1.01

Cov[̂α11, α̂22] 1.01 0.99 1.01 1.02 1.00 0.98 1.01 1.01

Var[̂δ12] 0.93 0.92 0.95 0.97 0.95 0.93 0.96 0.99

Recall that we assume throughout that ρq1q2 6= 0 for q1 6= q2 (see (2.8)). As a consequence of Theorem 3.1, the distribution of δ̂q1q2 under
H0 can be approximated over finite samples by

δ̂q1q2 ∼ N
(
0,Var

[̂
δq1q2

])
under H0,

where, in turn, Var
[̂
δq1q2

]
can be approximated by (4.8). Therefore, a simple two-sided test with significance level s = P(reject H0|H0 true)

is given by

ds =
{
1, if |̂δq1q2 | >

√
Var

[̂
δq1q2

]
φ−1(1 − s/2);

0, otherwise,
(5.1)

whereφ−1(·) is the inverse cumulative distribution function of the standardNormal distribution. In addition, the p-value of the test statistic
(i.e., the probability of observing an absolute value at least as large as |̂δq1q2 | for the test statistic under H0) is given by

p(|̂δq1q2 |) := 2φ
(
−|̂δq1q2 |

/√
Var

[̂
δq1q2

])
. (5.2)

This test can be performed by evaluating (5.1) with an estimate for Var
[̂
δq1q2

]
obtained from the procedure detailed in Section 4.1.

5.2. Monte Carlo assessment of the test performance

We assess the performance of the test by applying it to 1000 independent realizations of HfBm with exponent values [α11, α22] =
[0.2, 0.6] and exponent values α12 detailed below for sample sizes n = {210, 212, 214, 216} and correlation levels ρ12 = {0.5, 0.7, 0.9}. For
simplicity of illustration and without loss of generality, we consider again HfBm with m = 2 components. For each realization, the test
decision (5.1) and the p-value (5.2) are evaluated using (4.8) with approximations (4.7) to obtain an estimate of the Var

[̂
δ12

]
. Estimates

of the expected values of the test decisions and p-values, denoted by d̂s and p̂, are then obtained as the averages over realizations of test
decisions and p-values (5.1) and (5.2).

We now compare the performance of the proposed test, denoted hereinafter HFBM (not to be confused with the stochastic process
HfBm), to that of the test put forward in [26] (cf., [56] for preliminary comparative results). The latter relies on the intuition that the
wavelet coherence function of two components of a multivariate Gaussian scale invariant random process approximately behaves as

Γq1q2 (j) = S(q1q2)nj
(j)/

√
S
(q1q1)
nj (j)S

(q2q2)
nj (j) ≃ ρq1q22

j(αq1q2−αq1q1−αq2q2 ).

The test itself, denoted WCF (for wavelet coherence function), is formulated without the rigorous statistical framework developed above.
Rather, it is built on the observation that Γq1q2 (j) is the Pearson product-moment correlation coefficient of the time series dq1 (j, ·) and
dq2 (j, ·), and hence that the Fisher’s z statistics of Γq1q2 (j), j = j1, . . . , j2, are approximately Gaussian, with known variances and, in the
case of fractal connectivity, with equal means across scales. The test for fractal connectivity is then formulated as the UMPI test for the
equality of means of Gaussian random variables, cf. [26] for details.

5.2.1. Performance under H0

We first consider the case thatH0 is true, i.e., (α11 +α22)/2 = α12 = 0.4. The significance level is set to s = 0.1, and results are reported
in Table 5 for the proposed test (top) and for the test in [26] (bottom). Note that, under H0, averages of test decisions d̂s should equal the
preset significance level s, and averages of p-values p̂ should equal 1

2
. HFBM rejects H0 with slightly larger probability than the prescribed

value s = 0.1, yet the differences between empirical significance levels d̂s and s never exceed 5%; similarly, average p-values are slightly
below 0.5. For large sample size and large ρ12, average test decisions and p-values are very close to the theoretical values s = 0.1 and
p = 1

2
. These remarks are consistent with the results reported in Table 4, where a small but systematic underestimation of Var

[̂
δ12

]
for

small sample sizes and ρ12 is observed.
In contrast, the empirical significances d̂s of WCF strongly differ from the preset value s by values of up to 16%, and this difference is

especially pronounced for large sample sizes for which one would expect the test to perform better. One reason for this poor performance



Table 5
Test significance. Mean test decisions and p-values for different values

10
of n

12
and

14
ρ12

16
under H0 : δ12 = (α11 + α22)/2 − 

α12 = 0 ([α11, α22] = [0.2, 0.6], j1 = 2 and j2 = {5, 7, 9, 11}, n = {2 , 2 , 2 , 2 }) for the proposed test (top) and
for the test in [26] (bottom).

HFBM – H0 : δ12 ≡ 0, s = 0.1

ρ12 = 0.5 ρ12 = 0.7 ρ12 = 0.9

100̂ds p̂ 100̂ds p̂ 100̂ds p̂

n = 210 13.2 0.45 14.0 0.48 14.5 0.45

n = 212 13.8 0.45 10.9 0.47 11.1 0.45

n = 214 13.8 0.45 11.2 0.46 11.0 0.46

n = 216 12.3 0.46 10.9 0.48 11.0 0.47

WCF – H0 : δ12 ≡ 0, s = 0.1

ρ12 = 0.5 ρ12 = 0.7 ρ12 = 0.9

100̂ds p̂ 100̂ds p̂ 100̂ds p̂

n = 210 14.7 0.44 15.3 0.46 16.0 0.44

n = 212 20.7 0.42 16.0 0.43 17.2 0.42

n = 214 20.9 0.40 18.6 0.41 22.0 0.39

n = 216 26.1 0.36 22.5 0.36 22.1 0.38

Table 6

Test power for adjusted significance d̂s = 0.1. Mean test decisions and p-values for different values of n, ρ12 and α12/alternative hypotheses H1 : δ12 = (α11+α22)/2−α12 6=
0 ([α11, α22] = [0.2, 0.6], j1 = 2 and j2 = {5, 7, 9, 11}, n = {210, 212, 214, 216}) for the proposed test (top) and for the test in [26] (bottom).

HFBM – H1 : δ12 6= 0, d̂s = 0.1

δ12 ρ12 = 0.5 ρ12 = 0.7 ρ12 = 0.9

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

n = 210 16.5 29.9 40.6 50.0 25.4 43.5 66.1 84.5 74.8 98.6 100.0 99.9

n = 212 28.8 60.8 81.9 93.3 63.6 96.8 99.8 100.0 100.0 100.0 100.0 100.0

n = 214 67.1 97.9 99.9 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0

n = 216 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WCF – H1 : δ12 6= 0, d̂s = 0.1

δ12 ρ12 = 0.5 ρ12 = 0.7 ρ12 = 0.9

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

n = 210 10.5 15.4 16.6 22.3 14.1 21.7 36.9 52.9 43.7 81.0 94.2 99.2

n = 212 17.8 35.9 52.5 69.4 34.7 78.9 95.8 99.4 98.2 100.0 100.0 100.0

n = 214 43.4 86.2 99.0 100.0 89.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0

n = 216 93.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

may lie in the fact that the test in [26] was designed for fGn, rather than fBm. Note that the asymptotic calculations developed above can
be adapted to the easier case of fGn (and, in principle, any other Gaussian process with stationary increments) without difficulty by simply
changing the covariance function γq1q2 (s, t) in the calculations leading to the expressions (4.12) and (4.13).

5.2.2. Test power
We assess the power of the test under the alternative hypothesesH1 : δ12 = (α11+α22)/2−α12 6= 0with δ12 = {0.05, 0.1, 0.15, 0.2}.

Yet, a direct power comparison of HFBM and WCF is only meaningful for identical rejection probabilities under H0, since a test for which
d̂s > s under H0 is expected to display an artificially large power. In view of the distinct performances of HFBM and WCF, as discussed
above (cf. Table 5), for each sample size and correlation level we adjusted the prescribed significance to the value s̃ for which the average
rejection rate under H0 equals d̂s̃ = s = 0.1. Using this adjusted level of significance s̃, the power of the test is then estimated as the
average of the test decisions ds̃ when H1 is true. Results are reported in Table 6 and yield the following conclusions. First, the power of
each test systematically increases with the magnitudes of the deviation from δ12 = 0, of the correlation level ρ12 and of the sample size
n, as expected. Second, HFBM is systematically and significantly more powerful. Indeed, it enables us to detect a non-zero value for δ12 up
to two times as often as WCF. For instance, for the small sample size of n = 210 and the low correlation level of ρ12 = 0.5, it permits the
detection of a deviation of 0.2 from the null value δ12 = 0 with probability 0.5, as compared to a probability of 0.22 for the test in [26].

Overall, these results confirm that the proposedmethods can be relevantly applied in the assessment of scaling and fractal connectivity
in multivariate time series.

6. Conclusion

The present contribution introduces a versatile class of multivariate stochastic processes called Hadamard fractional Brownian motion
(HfBm). HfBm provides a stochastic framework for scale invariance modeling within which cross-component scaling laws are not directly
controlled by the scaling laws along the main diagonal. In other words, HfBm is not necessarily fractally connected.

Interestingly, the theoretical study of HfBm reveals that exact entry-wise scaling on both auto- and cross-components and departures
from fractal connectivity are mathematically incompatible. In other words, there is a dichotomy in multivariate scaling modeling: either
there is exact entry-wise scaling in every component combined with fractal connectivity, or departures from fractal connectivity are
allowed at the price of approximate (i.e., asymptotic) scaling on the cross-components.



Our main mathematical results consist of an asymptotically normal, wavelet-based linear regression estimator for the scaling
exponents, as well as asymptotically valid confidence intervals with convenient mathematical expressions. Furthermore, the Taylor
expansions used in the development of the asymptotic confidence intervals lead to the construction of practical procedures for the
numerical calculation of the variance of the estimates. These approximate calculations enable the study of the ubiquitous issue of the
impact of neglecting intra- or inter-scale correlations amongst wavelet coefficients in the computations of variances and covariances for
the estimates. We also devised an asymptotically normal hypothesis test for fractal connectivity. Again, a major feature of the designed
test procedure is the fact that it can be applied to a single observed HfBm data path.

For both fractally and non-fractally connected instances, simulations demonstrate the satisfactory performance of the estimators of the
scaling and fractal connectivity parameters, even for small sample size data. The estimation bias is shown to be negligible, and the variance
decreases according to the inverse of the sample size. In addition, the practical computations of approximated variances and covariances
of the estimates are shown to be of excellent quality, irrespective of sample size, and the Monte Carlo significance levels and powers are
very close to their theoretical counterparts.

The tools developed in the present contribution pave the way for novel analysis and modeling perspectives on multivariate scaling in
real-world data, in the spirit of [6]. Routines for the synthesis of HfBm, as well as for estimation, computation of confidence intervals and
fractal connectivity testing will be made publicly available at the time of publication.
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Appendix. Proofs

This appendix comprises three parts, Appendix A, Appendix B and Appendix C, which contain the proofs for Sections 3.2, 3.3 and 4.1,
respectively. In Appendix B and Appendix C, we assume throughout that the assumptions of Theorems 3.1 and 4.1, respectively, hold.

In the proofs, whenever convenient we will use the shorthand

a = a(n). (.1)

For notational simplicity, we will assume throughout that σq = 1, q = 1, . . . ,m. Since the main diagonal entries of an HfBm behave like a
perturbed (univariate) fBm, throughout the appendix we only provide proofs for cross-components, i.e., when the indices ql are pairwise
distinct, l = 1, 2, 3, 4. Whenever convenient we will use l = 1, 2, 3, 4 in place of ql, respectively, and also write

hqlql = hl, hqlqp = hlp.

In addition, without loss of generality it will be assumed that

̺(12)(a2j) > 0, n ∈ N, j ∈ N (.2)

(see (3.8)), since otherwise we can consider −̺(12)(a2j) instead (see also (3.13) and Remark C.1). We will also write log instead of log2, for
visual clarity. In the proofs, C represents a generic constant whose value may change from one line to the next.

Appendix A. Section 3.2

Proof of Proposition 3.1. For simplicity, we will writeΞ jj′ (·) instead ofΞ jj′,a(·) throughout the proof.
To show (i), the change of variable s = 2−jt − k in (3.5) and the harmonizable representation of HfBm yield

Ξ jj′ (a(2jk − 2j′k′)) =
∫

R

eia(2
jk−2j

′
k′)xf (x)ψ̂(a2jx)ψ̂(a2j′x)dx, (A.1)

where f (x) :=
(
|x|−2(hq1q2+1/2)gq1q2 (x)

)
q1,q2=1,...,m

. Statement (ii) is a consequence of the formula (A.1) with

k = k′ = 0, j = j′. (A.2)

Statement (iii) follows from Lemma C.1(ii), below under condition (3.6).
Turning to (iv), establishing (3.16) is equivalent to showing that

2−(j+j′)/2

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

(Ξ jj′
12(a(2

jk − 2j′k′))

a2h12
−Φ

jj′
12(2

jk − 2j′k′)
)

+ 2−(j+j′)/2

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ
jj′
12(2

jk − 2j′k′) → 2−(j+j′)/2gcd(2j, 2j′ )

∞∑

z=−∞
Φ

jj′
12(zgcd(2

j, 2j′ )), (A.3)

n → ∞.
Consider the entry q1 = 1, q2 = 2 of the matrix-valued function Ξ jj′ as in (A.1). Based on a change of variable y = ax, recast the first

term of the sum on the left-hand side of (A.3) as
∫

R

eiyz |y|−(2h12+1)ρ12

{
g12

(y

a

)
− 1

}
ψ̂(2jy)ψ̂(2j′y)dy =:

∫

R

eiyzha(y)dy. (A.4)



Fix A > 0 and denote ψ̂ (l)(x) = dl

dxl
(ℜψ̂(x) + iℑψ̂(x)), l ≥ 0. By (3.1) and (3.4) and a Taylor expansion with Lagrange residual of the real

and imaginary parts of ψ̂ , there exist functions λ1, λ2 on [−A, A] such that

ψ̂(x) =
( dNψ

dxNψ
ℜψ̂(x)

∣∣∣
λ1(x)

+ i
dNψ

dxNψ
ℑψ̂(x)

∣∣∣
λ2(x)

) xNψ

Nψ ! .

Therefore, and extending this reasoning to ψ̂ ′(x), ψ̂ ′′(x),

|ψ̂ (l)(x)| = O(|x|Nψ−l), x → 0, l = 0, 1, 2. (A.5)

For ha as in (A.4), we now show that

ha, h
′
a, h

′′
a are differentiable and ha(0) = h′

a(0) = h′′
a (0) = 0. (A.6)

We will only develop expressions for y > 0, since analogous developments hold for y < 0. For mathematical convenience, rewrite ha as
in (A.4) as

ha(y) = y−(2h12+1)ρ12 ϑa(y). (A.7)

Hence,

h′
a(y) = ρ12{−(2h12 + 1)y−(2h12+2)ϑa(y) + y−(2h12+1)ϑ ′

a(y)}, (A.8)

h′′
a (y) = ρ12{(2h12 + 1)(2h12 + 2)y−(2h12+3)ϑa(y) − 2(2h12 + 1)y−(2h12+2)ϑ ′

a(y) + y−(2h12+1)ϑ ′′
a (y)}. (A.9)

Note that, by conditions (3.1) and (2.7),

2Nψ +̟0 − (2h12 + 1 + l) − 1 ≥ 2 +̟0 − 2hmax − l > 0, l = 0, 1, 2. (A.10)

Then, ha is also smooth around zero and ha(0) = 0. Moreover, by (A.5) and (A.10) with l = 0, for fixed n and |y| ≤ aε0,

|ha(y)|
y

≤ C

y
y−(2h12+1)

(y

a

)̟0

y2Nψ = C

a̟0
y2Nψ+̟0−(2h12+2) → 0, (A.11)

as y → 0+, where the constant C > 0 does not depend on n. Similarly, by (2.6), (A.5) and (A.10) with l = 1,

|h′
a(y)|
y

≤ C ′

y

{
y−(2h12+2)

(y

a

)̟0

y2Nψ + y−(2h12+1)
[(y

a

)̟0−1 1

a
y2Nψ +

(y

a

)̟0

y2Nψ−1
]}

≤ C ′ y
2Nψ−(2h12+2)+̟0−1

a̟0
→ 0. (A.12)

This proves (A.6), as desired. Next, note that

∂

∂x
eitxψ(t) = iteitxψ(t),

∂2

∂x2
eitxψ(t) = −t2eitxψ(t)

and itψ(t), t2ψ(t) ∈ L1(R) by the continuity of ψ and condition (3.2). Therefore, by the dominated convergence theorem, ψ̂ ′(x) =
C

∫
R
eitxitψ(t)dt , ψ̂ ′′(x) = C ′ ∫

R
eitx(−t2)ψ(t)dt for appropriate constants C, C ′ ∈ R. Consequently, by (3.2),

max
l=0,1,2

sup
x∈R

|ψ̂ (l)(x)| ≤ C

∫

R

|t|l|ψ(t)|dt < ∞. (A.13)

So, fix z 6= 0. By (2.5) and (A.13),

lim
|y|→∞

∣∣∣ha(y)

∣∣∣ = 0 = lim
|y|→∞

∣∣∣h′
a(y)

∣∣∣. (A.14)

Thus, in view of (A.4), (A.6), (A.8), (A.9), (A.10) (with l = 2) and (A.14), by integrating by parts twice we obtain

∣∣∣Ξ
jj′
12(az)

a2h12
−Φ

jj′
12(z)

∣∣∣ =
∣∣∣ 1
z2

∫

R

eizyh′′
a (y)dy

∣∣∣

≤ C

z2

∫

R

{|y|−(2h12+3)|ϑa(y)| + |y|−(2h12+2)|ϑ ′
a(y)| + |y|−(2h12+1)|ϑ ′′

a (y)|}dy ≤ C ′

z2
, (A.15)

where the last inequality is a consequence of (2.5), (A.5) and (A.13).
Now consider the first summation term in (A.3). We proceed as in the proof of proposition 3.3, (i), in [53] to establish that

1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

(Ξ jj′
12(a(2

jk − 2j′k′))

a2h12
−Φ

jj′
12(2

jk − 2j′k′)
)

→ 0, n → ∞. (A.16)

We outline the main steps for the reader’s convenience. By Theorem 1.8 in Jones and Jones [57], p. 10, the set of values r ∈ Z to the
equation a2jk − a2j′k′ = r , k, k′ ∈ Z, is given by gcd(a2j, a2j′ )Z =: R. Therefore, a pair (k, k′) ∈ Z

2 is a solution to

a2jk − a2j′k′ = gcd(a2j, a2j′ )w (A.17)



for some w ∈ Z if and only if it is a solution to

2jk − 2j′k′ = gcd(2j, 2j′ )w (A.18)

for the samew. Therefore, we can replace nwith n∗ in Lemmas B.2 and B.3, [53], and reexpress the first summation term on the left-hand

side of (A.16) as

∑

r∈R∩Bjj′ (n∗)

ξr (n∗)

n∗

(Ξ jj′
12(ar) −Φ

jj′
12(ar)

a2h12

)
. (A.19)

In (A.19), Bjj′ (n∗) is the range for r such that the pairs (k, k′) satisfying (A.18) lie in the region

1 ≤ k ≤ 2j′n∗, 1 ≤ k′ ≤ 2jn∗, (A.20)

and ξr (n∗) is the number of such solution pairs (k, k′) given some r . Moreover, for any sufficiently large n, let k0 ∈ {1, . . . , 2j′n∗} be the

smallest number such that (k0, k
′(k0)) ∈ N

2 solves (A.17) (for some w ∈ Z), where

k′(k) := 2j

2j′ k − gcd(2j, 2j′ )w

2j′ . (A.21)

From the proof of Lemma B.2, [53], the set A of such solutions to (A.18) has the form

A =
{
(k, k′) ∈ Z

2 : k = k0 + 2j′

gcd(2j, 2j′ )
Z, k′ is given by (A.21)

}
. (A.22)

In light of (A.22), define the function k(z) = k0 + 2j
′

gcd(2j,2j
′
)
z, z ∈ Z. In particular, (k(0), k′(k(0))) is a solution pair for (A.18). Let

R ∋ x = gcd(2j, 2j′ )(n∗ − k0/2
j′ ). Then, by (A.22), (k(⌊x⌋), k′(k(⌊x⌋))) is the rightmost solution for (A.17) within the first-entry range

k = 1, . . . , 2j′n∗. Moreover, given r , the number of solution pairs in the region (A.20) is ξr (n∗) = ⌊x⌋ + 1, where

⌊x⌋n−1
∗ → gcd(2j, 2j′ ), n → ∞. (A.23)

In addition, by (A.15), and (3.14),

∣∣∣Ξ
jj′
12(ar) −Φ

jj′
12(ar)

a2h12

∣∣∣ ≤ C

r2
, r 6= 0, lim

n→∞

∣∣∣Ξ
jj′
12(ar) −Φ

jj′
12(ar)

a2h12

∣∣∣ = 0, r ∈ Z. (A.24)

By expression (A.19), the dominated convergence theorem and (A.23), the limit (A.16) holds.

Next recall that, up to a change of sign,Φ
jj′
12(z) corresponds to the crossmoment of thewavelet transformof a fBm. Thus, by an analogous

procedure, we also obtain

1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ
jj′
12(2

jk − 2j′k′) → gcd(2j, 2j′ )

∞∑

z=−∞
Φ

jj′
12(zgcd(2

j, 2j′ )), n → ∞. (A.25)

This establishes (A.3).

To show statement (v), first note that

o
(a2max{h13+h24,h14+h23}−2(h12+h34)

n∗

)/a(h1+h2+h3+h4)−2(h12+h34)

n∗
= o(1),

which follows from (3.6) and the fact that

2max{h13 + h24, h14 + h23} ≤ h1 + h2 + h3 + h4. (A.26)

Thus, by expression (C.56) for Cov[W (12)
n (a2j),W

(34)
n (a2j′ )] (established in the proof of Lemma C.5),

√
na,j

aδ12

√
na,j′

aδ34
Cov

[
W (12)

n (a2j),W (34)
n (a2j′ )

]
= 2

j+j′
2 n∗

aδ12+δ34
Cov

[
W (12)

n (a2j),W (34)
n (a2j′ )

]

= 2− (j+j′)
2

[Φ jj
12(0)Φ

j′j′
34 (0)(1 + O(a−̟0 ))2]

·
{ a2(h13+h24)

ah1+h2+h3+h4

1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ
jj′
13(2

jk − 2j′k′)Φ jj′
24(2

jk − 2j′k′)

+ a2(h14+h23)

ah1+h2+h3+h4

1

n∗

2j
′
n∗∑

k=1

2jn∗∑

k′=1

Φ
jj′
14(2

jk − 2j′k′)Φ jj′
23(2

jk − 2j′k′)
}

+ o(1). (A.27)

By (A.26) and (A.27), statement (v) holds.



The argument for showing (vi) is an adaptation of the proof of Theorem 3.1 in [53] (see also [58], pp. 510-513; [47], p. 997; and [59],

Lemma 2). For notational simplicity, we only write the proof for m = 2, where the entries are indexed 1 and 2, and q1, q2 = 1, 2 denote

generic entries. The proof is by means of the Cramér–Wold device. Under (.2), form the vector of wavelet coefficients

Yn :=
(
d1(a2

j1 , 1), d2(a2
j1 , 1), . . . , d1(a2

j1 , na,j1 ), d2(a2
j1 , na,j1 ); . . . ;

d1(a2
j2 , 1), d2(a2

j2 , 1), . . . , d1(a2
j2 , na,j2 ), d2(a2

j2 , na,j2 )
)

∈ R
Υ (n), (A.28)

where

Υ (n) := 2

j2∑

j=j1

na,j. (A.29)

Let

θ = (θj1 , . . . , θj2 ) ∈ R
3J , (A.30)

where J = j2 − j1 + 1 and θj = (θj,1, θj,12, θj,2)
∗ ∈ R

3, j = j1, . . . , j2. Now form the block-diagonal matrix Dn defined by

diag
( 1

na,j1

√
1

2j1
Ωn,j1 , . . . ,

1

na,j1

√
1

2j1
Ωn,j1

︸ ︷︷ ︸
na,j1

; . . . ; 1

na,j2

√
1

2j2
Ωn,j2 , . . . ,

1

na,j2

√
1

2j2
Ωn,j2

︸ ︷︷ ︸
na,j2

)
, (A.31)

where

Ωn,j =




θj,1

E
[
d21(a2

j, 0)
] 1

aδ12

θj,12

2E
[
d1(a2j, 0)d2(a2j, 0)

]
1

aδ12

θj,12

2E
[
d1(a2j, 0)d2(a2j, 0)

] θj,2

E
[
d22(a2

j, 0)
]


 , j = j1, . . . , j2. (A.32)

In (A.32), it can be understood that the slow growth factors for the main diagonal terms are 1

a2δ11
= 1

a2δ22
≡ 1. We would like to establish

the limiting distribution of the statistic

Tn =
j2∑

j=j1

θ∗
j√
2j
vecS

[( 1

aδq1q2

)
q1,q2=1,2

◦ Wn(a2
j)
]

=
j2∑

j=j1

θ∗
j√
2j

1

na,j

( na,j∑

k=1

d21(a2
j, k)

E
[
d21(a2

j, 0)
] , 1

aδ12

na,j∑

k=1

d1(a2
j, k)d2(a2

j, k)

E
[
d1(a2j, 0)d2(a2j, 0)

] ,
na,j∑

k=1

d22(a2
j, k)

E
[
d22(a2

j, 0)
]
)∗

= Y∗
nDnYn,

where it suffices to consider θ in (A.30) such that

θ∗Σ(H)θ > 0 (A.33)

(see [40], pp. 211 and 214). The matrixΣ(H) in (A.33) is obtained from (3.17) and can be written in block form asΣ(H) =: (Gjj′ )j,j′=j1,...,j2 ,

corresponding to block entries of the vector θ = (θj1 , . . . , θj2 )
∗. Let ΓYn = Cov [Yn,Yn], and consider the spectral decomposition

Γ
1/2

Yn
DnΓ

1/2

Yn
= OΛO∗, whereΛ is diagonal with real, and not necessarily positive, eigenvalues

ξi(a2
j), i = 1, . . . ,Υ (n), (A.34)

and O is an orthogonal matrix. Now let Z ∼ N(0, IΥ (n)). Then,

Tn
d= Z∗Γ 1/2

Yn
DnΓ

1/2

Yn
Z = Z∗OΛO∗Z

d= Z∗ΛZ =:
Υ (n)∑

i=1

ξi(a2
j)Z2

i .

Assume for the moment that

max
i=1,...,Υ (n)

|ξi(a2j)| = o
(( a

n

)1/2)
. (A.35)

By (A.33) and (3.17),

n

a
Var [Tn] =

j2∑

j=j1

j2∑

j′=j1

θ∗
j

{√
n

a2j

√
n

a2j′ Cov
[
vecS

[( 1

aδq1q2

)
q1,q2=1,2

◦ Wn(a2
j)
]
,

vecS

[( 1

aδq1q2

)
q1,q2=1,2

◦ Wn(a2
j′ )

] ]}
θj′ →

j2∑

j=j1

j2∑

j′=j1

θ∗
j Gjj′ θj′ > 0.



Therefore, there exists a constant C > 0 such that, for large enough n, n
a
Var [Tn] ≥ C > 0. In view of condition (A.35),

maxi=1,...,Υ (n)|ξi(a2j)|√
Var [Tn]

≤ C ′
(n

a

)1/2

max
i=1,...,Υ (n)

|ξi(a2j)| → 0, n → ∞.

The claim (3.19) is now a consequence of Lemma B.4 in [53].
So, we need to show (A.35). The first step is to establish the bound

sup
u∈SΥ (n)−1

|u∗Γ 1/2

Yn
DnΓ

1/2

Yn
u| ≤ C max

j=j1,...,j2

1

na,j

‖Ωn,j‖ sup
u∈SΥ (n)−1

u∗ΓYnu. (A.36)

Letu ∈ SΥ (n)−1 and let v=Γ 1/2u.We canbreak up the vector v into two-dimensional subvectors v·,· to reexpress v= (vj1,1, . . . , vj1,na,j1
; . . . ;

vj2,1, . . . , vj2,na,j2
)∗. Based on the block-diagonal structure of Dn expressed in (A.31),

|u∗Γ 1/2

Yn
DnΓ

1/2

Yn
u| = |v∗Dnv| =

∣∣∣
j2∑

j=j1

na,j∑

l=1

v∗
j,l

Ωn,j

na,j

√
2j
vj,l

∣∣∣ ≤ C

j2∑

j=j1

na,j∑

l=1

1

na,j

√
2j

‖Ωn,j‖ ‖vj,l‖2

≤ C
(

max
j=j1,...,j2

1

na,j

√
2j

‖Ωn,j‖
) j2∑

j=j1

na,j∑

l=1

‖vj,l‖2 = C
(

max
j=j1,...,j2

1

na,j

√
2j

‖Ωn,j‖
)
u∗ΓYnu, (A.37)

where the constant C comes from a change of matrix norms and only depends on the fixed dimension m = 2. By taking supu∈SΥ (n)−1 on
both sides of (A.37), we arrive at (A.36).

The second step towards showing (A.35) consists of analyzing the asymptotic behavior of the right-hand side of (A.36), as n → ∞. For
this, we will assume the result of Lemma C.1. So, note that

max
j=j1,...,j2

1

na,j

‖Ωn,j‖ ≤ C
a

n

1

a2min{h1,h2,h12}
1

aδ12
, n → ∞. (A.38)

Moreover, by relation (C.14), the maximum eigenvalue of ΓYn is bounded by ‖ΓYn‖ ≤ Ca2max{h1,h2}, where ‖ · ‖ is the matrix Euclidean

norm. Therefore, in view of (A.38) and (C.14), the right-hand side of (A.36) is bounded by C a2(hmax−hmin)+1

n
1

aδ12
. In turn, the latter expression

divided by
√

a
n
is bounded by C

(
a4(hmax−hmin)+1

n

)1/2
1

aδ12
. By condition (3.6), this implies (A.35), and as a result, also (3.19). �

Appendix B. Section 3.3

Proof of Theorem 3.1. Fix q1, q2 = 1, . . . ,m. Based on (3.22), rewrite

1

aδq1q2

√
n

a
(̂αq1q2 − αq1q2 )

=
j2∑

j=j1

wj

aδq1q2

√
n

a
log |W (q1q2)

n (a2j)| +
j2∑

j=j1

wj

aδq1q2

√
n

a

{
log

∣∣∣E
[
S
(q1q2)
n (a2j)

] ∣∣∣
aαq1q2

− log|Φ jj
q1q2

(0)|
}

+ 1

aδq1q2

√
n

a

( j2∑

j=j1

wj log|Φ jj
q1q2

(0)| − αq1q2

)
. (B.1)

By Lemma C.1(ii), and an application of the mean value theorem, for some θ (n) > 0 between

∣∣∣E
[
S
(q1q2)
n (a2j)

] ∣∣∣/aαq1q2 and |Φ jj
q1q2 (0)| the

second term in the sum (B.1) can be bounded in absolute value by

j2∑

j=j1

wj

aδq1q2

√
n

a

{ 1

θ (n)

∣∣∣

∣∣∣E
[
S
(q1q2)
n (a2j)

] ∣∣∣
aαq1q2

− |Φ jj
q1q2

(0)|
∣∣∣
}

=
j2∑

j=j1

wj

aδq1q2

√
n

a

1

|Φ jj
q1q2 (0)| + o(1)

Cj

a̟0
≤ C ′

√
n

a2δq1q2+1+2̟0
→ 0,

as n → ∞, where the limit is a consequence of condition (3.6). Also note that, after a change of variable 2jx = y in the expression for

Φ
jj
q1q2 (0) (see (3.14)),

Φ jj
q1q2

(0) = 2jαq1q2ρq1q2

∫

R

|y|−(αq1q2+1)|ψ̂(y)|2dy =: 2jαq1q2 cq1q2 ∈ R.

Therefore, by (3.22), the third term in the sum (B.1) can be written as

1

aδq1q2

√
n

a

( j2∑

j=j1

wj (jαq1q2 + log|cq1q2 |) − αq1q2

)
= 0.



So, in regard to the first term in the sum (B.1), consider the weight matrixM ∈ M(m(m+1)

2
,

m(m+1)

2
J,R) defined by

(
2j1/2wj1 Im(m+1)

2
; 2(j1+1)/2wj1+1Im(m+1)

2
; . . . ; 2j2/2wj2 Im(m+1)

2

)
,

where Im(m+1)
2

is a m(m+1)

2
× m(m+1)

2
identity matrix and J is given by (3.20). We would like to show that

M
(
vecS

[(√
na,j

aδq1q2

)
q1,q2=1,...,m

◦ log ◦|Wn(a2
j)|

])
j=j1,...,j2

d→ Nm(m+1)
2

(0,MGM∗), (B.2)

where log ◦|A| :=
(
log |Aq1q2 |

)
q1,q2=1,...,m

for any m × m real matrix A, and the term post-multiplying the matrix M in (B.2) is a m(m+1)

2
J-

dimensional random vector.

For any 0 < r < 1, fix a pair q1, q2 and an octave j, which specifies one of the entries of the random vector on the left-hand side of (B.2).

Define the set An = {ω : minq1,q2W
(q1q2)
n (a2j) > r}. Under (.2), Proposition 3.1, (vi), implies that P(An) → 1 as n → ∞. Thus, for large

enough n, in the set An the mean value theorem gives the almost sure expression

R ∋ 2j/2wj

√
na,j

aδq1q2
log|W (q1q2)

n (a2j)| = 2j/2wj

√
na,j

aδq1q2

(W
(q1q2)
n (a2j) − 1)

θ+(W
(q1q2)
n (a2j))

(B.3)

for a random variable θ+(W
(q1q2)
n (a2j)) betweenW

(q1q2)
n (a2j) and 1. SinceW

(q1q2)
n (a2j)

P→ 1, then θ+(W
(q1q2)
n (a2j))

P→ 1. By considering (B.3)

for all 1 ≤ q1 ≤ q2 ≤ m and j = j1, . . . , j2, relation (B.2) is now a consequence of Proposition 3.1, (vi), and Slutsky’s theorem. �

Appendix C. Section 4.1

C.1. General results

Fix q1, q2 = 1, . . . ,m. For j = j1, . . . , j2 and n ∈ N, consider the jointly Gaussian vector

Yn =
( dq1 (a2

j1 , 1)√
̺(q1q2)(a2j1 )

, . . . ,
dq1 (a2

j1 , na,j1 )√
̺(q1q2)(a2j1 )

, . . . ,
dq1 (a2

j2 , 1)√
̺(q1q2)(a2j2 )

, . . . ,
dq1 (a2

j2 , na,j2 )√
̺(q1q2)(a2j2 )

,

dq2 (a2
j1 , 1)√

̺(q1q2)(a2j1 )
, . . . ,

dq2 (a2
j1 , na,j1 )√

̺(q1q2)(a2j1 )
, . . . ,

dq2 (a2
j2 , 1)√

̺(q1q2)(a2j2 )
, . . . ,

dq2 (a2
j2 , na,j2 )√

̺(q1q2)(a2j2 )

)
∗ ∈ R

Υ (n) (C.1)

(see (A.29) for the definition of Υ (n)). Let

ΓYn = E
[
YnY

∗
n

]
= OΛYO∗ = O diag(λ1,Y , . . . , λΥ (n),Y ) O∗, O ∈ O(Υ (n)), (C.2)

be the associated covariancematrix and itsmatrix spectral decomposition. The following lemmaprovides the finite-sample and asymptotic
properties of the covariance structure ofwavelet coefficients, both fromΞ jj′ andYn. Note that such covariance structure does not in general

correspond to a multivariate stationary stochastic process when multiple octaves j are considered.

Lemma C.1. For j = j1, . . . , j2, q1, q2 = 1, . . . ,m, and n ∈ N, the following statements hold.

(i) Consider Ξ jj′,a(a(n)(2jk−2j′k′)) = E

[
D(a(n)2j, k)D(a(n)2j′ , k′)∗

]
(see (3.12)). For j = j′ and n ∈ N, there is a continuous spectral density

fψ,n(x)q1q2 such that we can write

Ξ
jj,a
q1q2 (a(n)2

j(k − k′))

(a(n)2j)2hq1q2
=

∫ π

−π
ei(k−k′)xfψ,n(x)q1q2 dx, k, k′ ∈ Z. (C.3)

Moreover,

|fψ,n(x)q1q2 | ≤ C, x ∈ (−π, π], (C.4)

for a constant C > 0 that does not depend on n.
(ii) Let Φ jj′

·· (z) be as in (3.14), z ∈ Z, and fix any 0 < ξ < 1. Then,

∣∣∣
Ξ

jj′,a
q1q2 (za(n))

a(n)2hq1q2
−Φ jj′

q1q2
(z)

∣∣∣ ≤ C

a(n)̟0
, n → ∞, (C.5)

where̟0 and β are defined in expressions (2.6) and (3.3), respectively.

(iii) Let Yn be as in (C.1), and let λi,Y , i = 1, . . . ,Υ (n), be the eigenvalues of the covariance matrix ΓYn (see (A.29) and (C.2)). Then, for some

C > 0,

max
i=1,...,Υ (n)

λi,Y ≤ Ca(n)2(max{hq1 ,hq2 }−hq1q2 ). (C.6)

Proof. We will use the shorthand q1 = 1 and q2 = 2 throughout the proof.



We first show (i). By making the change of variable y = a2jx in (A.1), we obtain (C.3) with

fψ,n(x)12 :=
∞∑

l=−∞

|ψ̂(x + 2π l)|2

|x + 2π l|2h12+1
ρ12g12

(x + 2π l

a2j

)
. (C.7)

Moreover, by (3.1)–(3.3), ψ̂ is continuous, and hence, by (2.5), (3.3), (3.4) and the dominated convergence theorem, the periodic function
fψ,n(x)12 in (C.7) is also continuous on [−π, π], and hence, bounded. This shows (C.3) and (C.4).

We now turn to (ii). It suffices to show that, for any 0 < ξ < 1,

∣∣∣Ξ
jj′,a
12 (za)

a2h12
−Φ

jj′
12(z)

∣∣∣ ≤ C

amin{̟0,(1−ξ )(2h12+2β)} , n → ∞, (C.8)

since for small enough ξ , conditions (2.7) and (3.3) imply that

(1 − ξ )(2h12 + 2β) > 2hmin + 2 ≥ ̟0.

In fact, by (A.1), (3.14) and a change of variable y = ax,

Ξ
jj′,a
12 (za)

a2h12
−Φ

jj′
12(z)

= 1

a2h12

∫

R

eizax|x|−(2h12+1)ρ12{g12(x) − 1}ψ̂(a2jx)ψ̂(a2j′x)dx

=
{∫

|y|≤a1−ξ
+

∫

|y|>a1−ξ

}
eizy|y|−(2h12+1)ρ12

{
g12

(y

a

)
− 1

}
ψ̂(2jy)ψ̂(2j′y)dy (C.9)

for any 0 < ξ < 1. For large enough n, by (2.6), (2.7) and (3.1)–(3.3), the absolute value of the first integral in the sum (C.9) can be bounded
by

C

a̟0

∫

|y|≤a1−ξ
|y|−(2h12+1)+̟0 |ψ̂(2jy)ψ̂(2j′y)|dy ≤ C ′

a̟0
. (C.10)

On the other hand, by (3.2) the absolute value of the second term in the sum (C.9) can be bounded by

C

∫

|y|>a1−ξ
|y|−(2h12+1)−2βdy ≤ C ′

a(1−ξ )(2h12+2β)
. (C.11)

Expressions (C.10) and (C.11) yield (C.5).
We turn to (iii). For notational simplicity, consider only two octaves j, j′, whence J = j2 − j1 + 1 = 2. Then, from (A.29),

Υ (n) = 2(na,j1 + na,j2 ).

Fix v ∈ C
Υ (n). For notational simplicity, divide the summation range k = 1, . . . ,Υ (n) into the subranges

K1 = {1, . . . , na,j}, K2 = {na,j + 1, . . . , na,j + na,j′},
K3 = {na,j + na,j′ + 1, . . . , 2na,j + na,j′}, K4 = {2na,j + na,j′ + 1, . . . , 2(na,j + na,j′ )}.

Define the octave and index functions

j(k) = j1{K1∪K3}(k) + j′1{K2∪K4}(k), q(k) = 1 1{K1∪K2}(k) + 2 1{K3∪K4}(k),

respectively, which reflects the order of appearance of different octave and index values in the vector (C.1). By (A.1),

v∗ΓYnv =
Υ (n)∑

k1=1

Υ (n)∑

k2=1

vk1vk2

(
ΓYn

)
k1,k2

=
∫

R

Υ (n)∑

k1=1

Υ (n)∑

k2=1

vk1vk2e
ia(2j(k1)k1−2j(k2)k2)xψ̂(a2j(k1)x)ψ̂(a2j(k2)x)√

̺(12)(a2j(k1))̺(12)(a2j(k2))
fq(k1)q(k2)(x)dx. (C.12)

By expanding the double summation in (C.12) into each pair in the Cartesian product {K1, K2, K3, K4}2, we end up with 16 double
summation terms under the sign of the integral, i.e., 8 pairs of conjugates. To the cross terms, namely, those involving distinct summation
ranges in the index k, we can apply the elementary inequality |xy+xy| ≤ |x|2 +|y|2. One such pair, associatedwith the summation regions
K2 × K3 and K3 × K2, is

∣∣∣
∫

R

( ∑

k1∈K3

vk1e
ia2jk1xψ̂(a2jx)√
̺(12)(a2j)

∑

k2∈K2

vk2e
−ia2j

′
k2xψ̂(a2j′x)√

̺(12)(a2j′ )

+
∑

k1∈K2

vk1e
ia2j

′
k1xψ̂(a2j′x)√

̺(12)(a2j′ )

∑

k2∈K3

vk2e
−ia2jk2xψ̂(a2jx)√
̺(12)(a2j)

)
f12(x)dx

∣∣∣

≤
∫

R

{∣∣∣
∑

k∈K3

vke
ia2jkxψ̂(a2jx)√
̺(12)(a2j)

∣∣∣
2

+
∣∣∣
∑

k∈K2

vke
−ia2j

′
kxψ̂(a2j′x)√

̺(12)(a2j′ )

∣∣∣
2}

|f12(x)|dx,



since f12(x) = f21(x), and analogous bounds hold for the remaining terms. Therefore, (C.12) is bounded by

∫

R

∣∣∣
∑

k∈K1

vke
ia2jkx

∣∣∣
2 |ψ̂(a2jx)|2

̺(12)(a2j)
(f11(x) + 3|f12(x)|)dx +

∫

R

∣∣∣
∑

k∈K2

vke
ia2j

′
kx
∣∣∣
2 |ψ̂(a2j′x)|2

̺(12)(a2j′ )
(f11(x) + 3|f12(x)|)dx

+
∫

R

∣∣∣
∑

k∈K3

vke
ia2jkx

∣∣∣
2 |ψ̂(a2jx)|2

̺(12)(a2j)
(f22(x) + 3|f12(x)|)dx +

∫

R

∣∣∣
∑

k∈K4

vke
ia2j

′
kx
∣∣∣
2 |ψ̂(a2j′x)|2

̺(12)(a2j′ )
(f22(x) + 3|f12(x)|)dx.

By the change of variable y = a2j(k)x in each integral, breaking them up (in R) into subregions of length 2π and using the periodicity of
Fourier sums, we obtain

∫ π

−π

∣∣∣
∑

k∈K1

vke
iky

∣∣∣
2

∞∑

l=−∞

{
(a2j)2h1 |y + 2π l|−(2h1+1)ρ1g1

(y + 2π l

a2j

)

+ 3(a2j)2h12 |y + 2π l|−(2h12+1)|ρ12|
∣∣∣g12

(y + 2π l

a2j

)∣∣∣
} |ψ̂(y + 2π l)|2

̺(12)(a2j)
dy

+
∫ π

−π

∣∣∣
∑

k∈K2

vke
iky

∣∣∣
2

∞∑

l=−∞

{
(a2j)2h1 |y + 2π l|−(2h1+1)ρ1g1

(y + 2π l

a2j′

)

+ 3(a2j)2h12 |y + 2π l|−(2h12+1)|ρ12|
∣∣∣g12

(y + 2π l

a2j′

)∣∣∣
} |ψ̂(y + 2π l)|2

̺(12)(a2j′ )
dy

+
∫ π

−π

∣∣∣
∑

k∈K3

vke
iky

∣∣∣
2

∞∑

l=−∞

{
(a2j)2h2 |y + 2π l|−(2h2+1)ρ2g2

(y + 2π l

a2j

)

+ 3(a2j)2h12 |y + 2π l|−(2h12+1)|ρ12|
∣∣∣g12

(y + 2π l

a2j

)∣∣∣
} |ψ̂(y + 2π l)|2

̺(12)(a2j)
dy

+
∫ π

−π

∣∣∣
∑

k∈K4

vke
iky

∣∣∣
2

∞∑

l=−∞

{
(a2j)2h2 |y + 2π l|−(2h2+1)ρ2g2

(y + 2π l

a2j′

)

+ 3(a2j)2h12 |y + 2π l|−(2h12+1)|ρ12|
∣∣∣g12

(y + 2π l

a2j′

)∣∣∣
} |ψ̂(y + 2π l)|2

̺(12)(a2j′ )
dy

≤ Ca2(max{h1,h2}−h12)

∫ π

−π

{∣∣∣
∑

k∈K1

vke
iky

∣∣∣
2

+
∣∣∣
∑

k∈K2

vke
iky

∣∣∣
2

+
∣∣∣
∑

k∈K3

vke
iky

∣∣∣
2

+
∣∣∣
∑

k∈K4

vke
iky

∣∣∣
2}

dy

= Ca2(max{h1,h2}−h12)v∗v (C.13)

for some C > 0. The inequality (C.13) is a consequence of (C.3) (from Lemma C.1(i)) and Proposition 3.1(iii), as applied to ̺(12)(a2j(k)). Thus,
the claim (C.6) holds. �

Remark C.1. Fix q1, q2 = 1, . . . ,m, and recall that ρ(q1q2)(a(n)2j) = Ξ
jj,a
q1q2 (0) (see (3.13)). Condition (2.8), the expression for the constant

Φ
jj
q1q2 (0) (see the right-hand side of (3.14)) and Lemma C.1(ii), imply that ρ(q1q2)(a(n)2j) is bounded away from zero for large n.

Remark C.2. For q1 = 1 and q2 = 2, let Yn and Yn be as in (A.28) and (C.1), respectively. Then,

Yn = Pndiag
(√
̺(12)(a2j1 ), . . . ,

√
̺(12)(a2j1 )︸ ︷︷ ︸

na,j1

, . . . ,
√
̺(12)(a2j2 ), . . . ,

√
̺(12)(a2j2 )︸ ︷︷ ︸

na,j2

,

√
̺(12)(a2j1 ), . . . ,

√
̺(12)(a2j1 )︸ ︷︷ ︸

na,j1

, . . . ,
√
̺(12)(a2j2 ), . . . ,

√
̺(12)(a2j2 )︸ ︷︷ ︸

na,j2

)
Yn

=: PnNnYn

for some permutation matrix Pn. Moreover, since ΓYn = PnNnΓYnNnP
∗
n is a real symmetric matrix, by Lemma C.1(ii) and (iii), we obtain

the bound

‖ΓYn‖ = ‖PnNnΓYnNnP
∗
n‖ ≤ Ca(n)2max{h1,h2} (C.14)

for the maximum eigenvalue of ΓYn , where ‖ · ‖ is the matrix Euclidean norm.

For any n ∈ N, consider the Gaussian vector Yn as in (C.1) but with only one octave j. It will be convenient to reexpress the sum

W
(12)
n (a2j) as in (3.10) (with q1 = 1 and q2 = 2) based on a quadratic form. Define the permutation matrix

Πn =
(

0 Ina,j
Ina,j 0

)
∈ O(2na,j). (C.15)



Consider the spectral decomposition (C.2). Then,

W (12)
n (a2j) = 1

2na,j

Y
∗
nΠn Yn (for one octave j)

d= 1

na,j

Z∗ (OΛ
1/2
Y O∗)Πn(OΛ

1/2
Y O∗)

2
Z

d= 1

na,j

Z∗ Λ
1/2
Y O∗ΠnOΛ

1/2
Y

2
Z, (C.16)

where Z ∼ N2na,j (0, I2na,j ). Let

Sn = Λ
1/2
Y O∗ΠnOΛ

1/2
Y

2
, (C.17)

which is a real symmetric matrix. Write out its spectral decomposition

Sn = OSΛSO
∗
S , O ∈ O(2na,j), ΛS = diag(λ1,S, . . . , λ2na,j,S). (C.18)

Expression (C.16) becomes

W (12)
n (a2j) = 1

na,j

Z∗OSΛSO
∗
SZ

d= 1

na,j

Z∗ΛSZ =
∑

i∈i+(n)

λi,S

na,j

Z2
i +

∑

i∈i−(n)

λi,S

na,j

Z2
i =:

∑

i∈i+(n)

ηi,nZ
2
i −

∑

i∈i−(n)

ηi,nZ
2
i , (C.19)

where i+(n) and i−(n) are the indices for which λi,S is nonnegative or negative, respectively. In particular, note that

Var
[
W (12)

n (a(n)2j)
]

= ‖ηn‖2
2,

where

ηn := (η1,n, . . . , η2na,j,n)
∗ (C.20)

and ηi,n, i = 1, . . . , 2na,j, are as in expression (C.19).

Remark C.3. The following bounds on ‖ηn‖2 and ‖ηn‖∞ will be useful throughout this section.

As a consequence of expression (C.56) and the fact that aδ12√
na,j

→ 0 under (3.6),

‖ηn‖2

a(n)δ12
=

√√√√
E

[(W
(12)
n (a(n)2j) − 1

a(n)δ12

)2

]
∼

√
a(n)

n
C, n → ∞, (C.21)

for some C ≥ 0. In particular,

W (12)
n (a2j)

L2(P)−→ 1, n → ∞. (C.22)

Moreover, expression (C.6) in Lemma C.1(iii), implies that

‖ηn‖∞ = ‖ΛS‖
na,j

= 1

na,j

‖Λ1/2
Y O∗ΠnOΛ

1/2
Y ‖ ≤ ‖Λ1/2

Y ‖2

na,j

= max
i=1,...,Υ (n)

λi,Y

na,j

≤ C ′ a(n)
2(max{h1,h2}−h12)+1

n
(C.23)

for some C ′ ∈ R.

Remark C.4. Note that any moment of
W

(12)
n (a(n)2j)−1

aδ12
is bounded in n, i.e.,

∣∣∣E
[
W

(12)
n (a(n)2j) − 1

a(n)δ12

]κ ∣∣∣ = O(1), κ ∈ N. (C.24)

In fact, for even κ ∈ N, expressions (C.19) and (C.23) imply that the left-hand side of (C.24) is bounded by

∑

i1,...,iκ∈i+(n)∪i−(n)

ηi1,n . . . ηiκ ,n

a(n)κδ12

∣∣∣E
[
(Z2

i1
− 1) . . . (Z2

iκ
− 1)

] ∣∣∣ ≤
C(E

[
(Z2

1 − 1)2
]
)κ/2

a(n)κδ12

∑

i1,...,iκ/2∈i+(n)∪i−(n)

η2i1,n . . . η
2
iκ/2,n

≤
C(E

[
(Z2

1 − 1)2
]
)κ/2

a(n)κδ12
n
κ/2

a,j ‖ηn‖κ∞ ≤ C ′

a(n)κδ12

(n

a

)κ/2(a2(max{h1,h2}−h12)+1

n

)κ
= C ′

a(n)κδ12

(a4(max{h1,h2}−h12)+1

n

)κ/2
= O(1),

where the last equality is a consequence of (3.6) (a similar derivation holds for odd κ). Expression (C.24) will be used in the proof of

Lemma C.4.

The following lemma provides a concentration inequality for centered quadratic forms, and corresponds to Lemma 1 in [60] (see

also [61], Lemma 8, and [62], p. 39). It will be used in the ensuing Lemma C.3 to establish a bound on the rate of convergence to zero

of the probabilities P(W
(12)
n (a2j) ≤ r) and P(W

(12)
n (a(n)2j) ≥ r ′), where r < 1/2 < 3/2 < r ′ (under (.2)).



Lemma C.2 ([60]). Let Z1, . . . , Zn
i.i.d.∼ N (0, 1) and η1, . . . , ηn ≥ 0, not all zero. Let ‖η‖2 and ‖η‖∞ be the Euclidean square and sup norms of

the vector η = (η1, . . . , ηn)
∗. Also, define the random variable X =

∑n
i=1ηi,n(Z

2
i − 1). Then, for every x > 0,

P(X ≥ 2‖η‖2

√
x + 2‖η‖∞ x) ≤ exp(−x), (C.25)

P(X ≤ −2‖η‖2

√
x) ≤ exp(−x). (C.26)

Lemma C.3. Let W
(12)
n (a2j) be as in (C.19), and fix r < 1/2 < 3/2 < r ′. Then, for any 0 < ξ < 1,

P(W (12)
n (a(n)2j) ≤ r) ≤ exp

{
−

( n

a2(h1+h2)−4h12+1

)1−ξ}
, (C.27)

P(W (12)
n (a(n)2j) ≥ r ′) ≤ exp

{
−

( n

a2(h1+h2)−4h12+1

)1−ξ}
, (C.28)

for large enough n.

Proof. Expression (C.19) implies that

P(W (12)
n (a2j) ≤ r) = P

( ∑

i∈i+(n)

ηi,n(Z
2
i − 1) ≤ −1 + r +

∑

i∈i−(n)

ηi,n(Z
2
i − 1)

)
.

For notational simplicity, let Xna,j =
∑

i∈i+(n)ηi,n(Z
2
i − 1) and Yna,j =

∑
i∈i−(n)ηi,n(Z

2
i − 1), which are zero mean random variables. Let

η1,n = (ηi,n)i∈i+(n), η2,n = (ηi,n)i∈i−(n).

By (C.21),

max{‖η1,n‖2
2, ‖η2,n‖2

2
} ≤ ‖ηn‖2

2 ∼ C
a2(h1+h2)−4h12+1

n
,

max{‖η1,n‖∞, ‖η2,n‖∞} ≤ ‖ηn‖∞ ≤ ‖ηn‖2, (C.29)

for a constant C ≥ 0. Moreover, in view of (.2), ‖η1,n‖2 > 0, n ∈ N. Suppose, without loss of generality, that

‖η2,n‖2 > 0, n ∈ N

(otherwise, Yna,j = 0 a.s. for n such that ‖η2,n‖2 = 0). Fix a constant r < ζ < 1. By the independence of Xna,j and Yna,j ,

P(Xna,j ≤ −1 + r + Yna,j ) =
{∫ 1−ζ

−∞
+

∫ ∞

1−ζ

}
P(Xna,j ≤ −1 + r + y)fYna,j (y)dy, (C.30)

where fYna,j is the density function of Yna,j . The first integral in (C.30) is bounded from above by P(Xna,j ≤ −ζ + r)P(Yna,j ≤ 1−ζ ). Moreover,

since −ζ + r < 0, then

P(Xna,j ≤ −ζ + r) = P
( ∑

i∈i+(n)

ηi,n(Z
2
i − 1) ≤ −ζ + r

)

= P
( ∑

i∈i+(n)

ηi,n(Z
2
i − 1) ≤ −2‖η1,n‖2

√
(ζ − r)2

4‖η1,n‖2
2

)
≤ exp

{
− (ζ − 1/2)2

4‖η1,n‖2
2

}

≤ exp
{
−C

n

a2(h1+h2)−4h12+1

}
. (C.31)

In (C.31), C does not depend on r and the last two inequalities are a consequence of (C.26) and (C.29), respectively, where

2max{hq1 + hq2 , 2hq1q2} = 2(hq1 + hq2 ), q1, q2 = 1, . . . ,m, (C.32)

stems from (2.10). On the other hand, for any 0 < ξ < 1 and large enough n the second integral in (C.30) is bounded from above by
∫ ∞

1−ζ
fYna,j (y)dy = P(Yna,j > 1 − ζ ) = P

( ∑

i∈i−(n)

ηi,n(Z
2
i − 1) > 1 − ζ

)
. (C.33)

Note that, by (C.29),

‖η2,n‖2

( n

a2(h1+h2)−4h12+1

) 1−ξ
2 + ‖η2,n‖∞

( n

a2(h1+h2)−4h12+1

)1−ξ
→ 0,

for any 0 < ξ < 1, as n → ∞. Consequently, for large enough n, (C.33) is bounded by

P
( ∑

i∈i−(n)

ηi,n(Z
2
i − 1) > 2‖η2,n‖2

( n

a2(h1+h2)−4h12+1

) 1−ξ
2 + 2‖η2,n‖∞

( n

a2(h1+h2)−4h12+1

)1−ξ)

≤ exp
{
−

( n

a2(h1+h2)−4h12+1

)1−ξ}
, (C.34)



where the last inequality follows from (C.25). From (C.31) and (C.34), since C does not depend on r , we obtain (C.28).

We now turn to (C.28). Fix 1
2
< ζ ′ < 1 < r ′. Then,

P(W (12)
n (a2j) ≥ r ′) = P(Xna,j ≥ r ′ − 1 + Yna,j )

=
{∫ ζ ′−1

−∞
+

∫ ∞

ζ ′−1

}
P(Xna,j ≥ r ′ − 1 + y)fYna,j (y)dy. (C.35)

The first and second integral terms in (C.35) are bounded by, respectively,

∫ ζ ′−1

−∞
fYna,j (y)dy = P(Yna,j ≤ ζ ′ − 1)

and

P(Xna,j ≥ r ′ + ζ ′ − 2),

where ζ ′ − 1 < 0 < r ′ + ζ ′ − 2. Therefore, an argument similar to that for (C.27) can be applied to conclude that (C.28) also holds. �

C.2. Asymptotic covariances

Wewill establish Theorem 4.1 at the end of this section, after proving Lemmas C.4–C.7. The latter establish the asymptotic behavior of

the first four moments of the R-valued random variablesW
(q1q2)
n (a(n)2j),W

(q3q4)
n (a(n)2j). So, consider the function

log |S(q1q2)n (a(n)2j)|1{|W (q1q2)
n (a(n)2j)|>r}, 1 ≤ q1 ≤ q2 ≤ m, 0 < r <

1

2
, (C.36)

where the truncation works as a regularization of the log function around the origin. In the event |W (q1q2)
n (a(n)2j)| ≤ r , we interpret that

log |S(q1q2)n (a(n)2j)|1{|W (q1q2)
n (a(n)2j)|>r} = 0 a.s.

Throughout this section, wewill make use of the Isserlis theorem (e.g., [63]). For a zeromean, Gaussian random vector Z = (Z1, . . . , Zm)
∗ ∈

R
m, the theorem states that

E[Z1 . . . Z2k] =
∑∏

E
[
ZiZj

]
, E[Z1 . . . Z2k+1] = 0, k = 1, . . . , ⌊m/2⌋. (C.37)

The notation
∑∏

stands for adding over all possible k-fold products of pairs E
[
ZiZj

]
, where the indices partition the set 1, . . . , 2k.

The following lemma shows that the high order centered cross moments of W
(12)
n (a(n)2j), W

(34)
n (a(n)2j) are negligible with respect to

their low order counterparts.

Lemma C.4. Let κ1, κ2 ∈ N ∪ {0}, κ1 + κ2 ≥ 3, and fix 0 < r < 1/2. Then, as n → ∞,

E

[(W
(12)
n (a(n)2j) − 1

a(n)δ12

)κ1(W
(34)
n (a(n)2j′ ) − 1

a(n)δ34

)κ2
1{min{|W (12)

n (a(n)2j
′
)|,|W (34)

n (a(n)2j
′
)|}>r}

]
= O

[(a(n)

n

)2]
. (C.38)

Proof. For each case κ1, κ2 ∈ N, κ1 + κ2 ≥ 3, we first show that

E

[(W
(12)
n (a2j) − 1

aδ12

)κ1(W
(34)
n (a2j′ ) − 1

aδ34

)κ2
]

= O
[( a

n

)2]
, (C.39)

i.e., without indicators, and then extend the claim to the full expression (C.38).

Consider the case where κ1 = 1 and κ2 = 2. Then, the left-hand side of (C.39) can be rewritten as

1

aδ12+2δ34

1

na,jn
2
a,j′

E

[ na,j∑

k=1

na,j′∑

k′
1
=1

na,j′∑

k′
2
=1

(d1(a2
j, k)d2(a2

j, k)

̺(12)(a2j)
− 1

)(d3(a2
j′ , k′

1)d4(a2
j′ , k′

1)

̺(34)(a2j′ )
− 1

)(d3(a2
j′ , k′

2)d4(a2
j′ , k′

2)

̺(34)(a2j′ )
− 1

)]
. (C.40)

Starting from assumption (.2), for notational simplicity relabel the generic terms under the summation sign in (C.49) as X1 =
d1(a2

j, k)/
√
̺(12)(a2j), X2 = d2(a2

j, k)/
√
̺(12)(a2j), X3 = d3(a2

j′ , k′
1)/

√
̺(34)(a2j′ ), X4 = d4(a2

j′ , k′
1)/

√
̺(34)(a2j′ ), X5 = d3(a2

j′ , k′
2)/√

̺(34)(a2j′ ), X6 = d4(a2
j′ , k′

2)/
√
̺(34)(a2j′ ). Then,

E[(X1X2 − 1)(X3X4 − 1)(X5X6 − 1)] = E[X1X2X3X4X5X6] − {E[X1X2X3X4] + E[X1X2X5X6] + E[X3X4X5X6]} + 2. (C.41)

By applying the Isserlis relation (C.37) to the six-fold and four-fold products in (C.41), the latter expression becomes

E[X1X3]E[X2X5]E[X4X6] + E[X1X3]E[X2X6]E[X4X5] + E[X1X4]E[X2X5]E[X3X6] + E[X1X4]E[X2X6]E[X3X5]

+E[X1X5]E[X2X3]E[X4X6] + E[X1X5]E[X2X4]E[X3X6] + E[X1X6]E[X2X3]E[X4X5] + E[X1X6]E[X2X4]E[X3X5] . (C.42)



The asymptotic behavior of the summation of each term in the seven-fold sum (C.42) can be established in the sameway, so we only study
the first one. Up to a constant, the latter is asymptotically equivalent to

a(2h13+2h23+2h4)−(2h12+4h34)

aδ12+2δ34 na,j

1

n2
a,j′

na,j∑

k=1

na,j′∑

k′
1
=1

na,j′∑

k′
2
=1

E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

a2h13

E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

a2h23

E

[
d4(a2

j′ , k′
1)d4(a2

j′ , k′
2)

]

a2h4

= a2(h13+h23+h4)

ah1+h2+2(h3+h4) na,j

1

n2
a,j′

na,j′∑

k′
1
=1

na,j′∑

k′
2
=1

E

[
d4(a2

j′ , k′
1)d4(a2

j′ , k′
2)

]

a2h4
·
{ na,j∑

k=1

E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

a2h13

E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

a2h23

}
. (C.43)

However, the summation in k in expression (C.43) is bounded by

∣∣∣
na,j∑

k=1

E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

a2h13

E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

a2h23

∣∣∣

≤
na,j∑

k=1

(∣∣∣
E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

−Φ
jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣ +
∣∣∣Φ

jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣
)

(∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣ +
∣∣∣Φ

jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣
)

≤
na,j∑

k=1

{∣∣∣
E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

−Φ
jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣ ·
∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣

+
∣∣∣Φ

jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣
∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣

+
∣∣∣
E

[
d1(a2

j, k)d3(a2
j′ , k′

1)
]

−Φ
jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣
∣∣∣Φ

jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣

+
∣∣∣Φ

jj′
13(a(2

jk − 2j′k′
1))

a2h13

∣∣∣
∣∣∣Φ

jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣
}

≤ C, (C.44)

where C does not depend on k. To justify the last inequality, we only look at the second term in (C.44), since the remaining terms can be
analyzed in a similar way. It suffices to proceed as in [53], in particular around expression (B.31) in the latter reference. Indeed, starting
from (3.2), suppose without loss of generality that

supp(ψ) = [0, 1].
For 0 < ε < 1/2, decompose

na,j∑

k=1

∣∣∣Φ jj′
13(2

jk − 2j′k′
1)

∣∣∣
∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣

=
na,j∑

k=1

(
1{

max{2j,2j′ }
|2jk−2j

′
k′
1
|
>ε

} + 1{
max{2j,2j′ }
|2jk−2j

′
k′
1
|
≤ε

}
)∣∣∣Φ jj′

13(2
jk − 2j′k′

1)

∣∣∣
∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣. (C.45)

The first sum term in (C.45) only contains a finite number of terms, where such number does not depend on k or k′
1. Moreover,

max
{
|Φ jj′

13(2
jk − 2j′k′

1)|,
∣∣∣
E

[
d2(a2

j, k)d3(a2
j′ , k′

2)
]

−Φ
jj′
23(a(2

jk − 2j′k′
2))

a2h23

∣∣∣
}

≤ C,

where C does not depend k, k′
1 or k

′′
2 . The latter statement follows from the fact thatΦ

jj′
13 is, up to a change of sign, the wavelet variance of a

fBm and from (A.24). Moreover, by Proposition II.2 in [47] and again by (A.24), the second sum term in (C.45) is bounded by C
∑

z∈Z\{0}z
−4.

This shows that (C.45) is bounded by a constant not depending on k, k′
1 or k′

2. Hence, (C.44) holds.
Consequently, up to a constant the absolute value of (C.43) is bounded from above by

C ′ a2(h13+h23+h4)+2

ah1+h2+2(h3+h4) n2

1

na,j′

na,j′∑

k′
1
=1

na,j′∑

k′
2
=1

∣∣∣
E

[
d4(a2

j′ , k′
1)d4(a2

j′ , k′
2)

]

a2h4

∣∣∣ ≤ C ′′
( a

n

)2

, (C.46)

where we used the fact that 1

aδ13+δ23 ≤ 1. This establishes (C.39).



So, rewrite

E

[(W
(12)
n (a2j) − 1

aδ12

)(W
(34)
n (a2j′ ) − 1

aδ34

)2

]
− E

[(W
(12)
n (a2j) − 1

aδ12

)
1{W (12)

n (a2j)>r}

(W
(34)
n (a2j′ ) − 1

aδ34

)2

1{W (34)
n (a2j

′
)>r}

]

= E

[(W
(12)
n (a2j) − 1

aδ12

)(W
(34)
n (a2j′ ) − 1

aδ34

)2{
1{W (12)

n (a2j)≤r}1{W (34)
n (a2j

′
)>r}

+ 1{W (12)
n (a2j)>r}1{W (34)

n (a2j
′
)≤r} + 1{W (12)

n (a2j)≤r}1{W (34)
n (a2j

′
)≤r}

}]
. (C.47)

The asymptotic behavior of every term on the right-hand side of (C.47) can be established in the same way, so we only look at the first
one. For any 0 < ξ < 1, the Cauchy–Schwarz inequality, Lemma C.3 and expression (C.39) yield

∣∣∣E
[(W

(12)
n (a2j) − 1

aδ12

)
1{W (12)

n (a2j)≤r}

(W
(34)
n (a2j′ ) − 1

aδ34

)2

1{W (34)
n (a2j

′
)>r}

] ∣∣∣

≤

√√√√
E

[(W
(12)
n (a2j) − 1

aδ12

)2(W
(34)
n (a2j′ ) − 1

aδ34

)4

]√
P(W

(12)
n (a2j) ≤ r)

≤ C
( a

n

)
exp

{
−1

2

( n

a2(h3+h4)−4h34+1

)1−ξ}
, (C.48)

where C does not depend on r . Moreover, under (3.6),

exp
{
−1

2

( n

a2(h3+h4)−4h34+1

)1−ξ}
= o

( a

n

)
.

Therefore, (C.38) holds. The remaining cases where κ1 + κ2 = 3 can be handled similarly.
Now consider the case where κ1 = 4 and κ2 = 0. Then, the left-hand side of (C.39) can be rewritten as

1

a4δ12

1

n4
a,j

E

[ na,j∑

k1=1

na,j∑

k2=1

na,j∑

k3=1

na,j∑

k4=1

(d1(a2
j, k1)d2(a2

j, k1)

̺(12)(a2j)
− 1

)(d1(a2
j, k′

2)d2(a2
j, k2)

̺(12)(a2j)
− 1

)

(d1(a2
j, k3)d2(a2

j, k3)

̺(12)(a2j)
− 1

)(d1(a2
j, k4)d2(a2

j, k4)

̺(12)(a2j)
− 1

)]
. (C.49)

Starting from the assumption (.2), for notational simplicity relabel the generic terms under the summation sign in (C.49) as X1 =
d1(a2

j, k1)/
√
̺(12)(a2j), X2 = d2(a2

j, k1)/
√
̺(12)(a2j), X3 = d1(a2

j, k2)/
√
̺(12)(a2j), X4 = d2(a2

j, k2)/
√
̺(12)(a2j), X5 = d1(a2

j, k3)/√
̺(12)(a2j), X6 = d2(a2

j, k3)/
√
̺(12)(a2j), X7 = d1(a2

j, k4)/
√
̺(12)(a2j), X8 = d2(a2

j, k4)/
√
̺(12)(a2j). Then,

E[(X1X2 − 1)(X3X4 − 1)(X5X6 − 1)(X7X8 − 1)]

=
{
E[X1X2X3X4X5X6X7X8]

}

−
{
E[X3X4X5X6X7X8] + E[X1X2X5X6X7X8] + E[X1X2X3X4X7X8] + E[X1X2X3X4X5X6]

}

+
{
E[X5X6X7X8] + E[X3X4X7X8] + E[X1X2X7X8]

+E[X1X2X3X4] + E[X1X2X5X6] + E[X3X4X5X6]
}

−
{
E[X1X2] + E[X3X4] + E[X5X6] + E[X7X8] − 1

}
. (C.50)

Namely, we arrive at an expression with four terms between braces. By relabeling them A, B, C and D, respectively, we can write

E[(X1X2 − 1)(X3X4 − 1)(X5X6 − 1)(X7X8 − 1)] = A − B + C − D. (C.51)

We claim that, by an application of the Isserlis theorem, the expression (C.51) can be written as a sum of products of the form

E
[
Xl1Xl2

]
E
[
Xl3Xl4

]
E
[
Xl5Xl6

]
E
[
Xl7Xl8

]
, (C.52)

where l1 < l3 < l5 < l7 and no pair E[X·X·] has consecutive indices (the latter condition implies that no pair is identically 1 with respect
to summation in k1, k2, k3 and k4 in expression (C.49)).

In fact, recall that E[X1X2] = E[X3X4] = E[X5X6] = E[X7X8] = 1. Note that the Isserlis theorem breaks up any term in the original
sum (C.50) into a product of expectations of the form E[X·X·], where each product can only be identically 1 (with respect to summation
in k1, k2, k3 and k4) if each odd index l is paired with l + 1 (e.g., after decomposing A by Isserlis, the only term which is identically 1 is
E[X1X2]E[X3X4]E[X5X6]E[X7X8]). Hence, after applying the Isserlis theorem toA, B and C , each if the 11 terms contained in the sumA−B+C
ends up with exactly one term identically equal to 1. Therefore, we obtain (1−4+6−3)×1 = 0 the right-hand side of (C.51). Hence, the
full expression (C.51) contains no term identically 1, and, in addition, we no longer need to account forD. Next, note that, after applying the
Isserlis theorem to (C.50), no resulting term can be of the formE

[
Xl1Xl2

]
×13, where 1 stands for ‘‘identically 1’’ with respect to summation

in some index k· (and E
[
Xl1Xl2

]
is not identically 1). So, consider terms of the form E

[
Xl1Xl2

]
E
[
Xl3Xl4

]
× 12, where, again, 1 stands for



‘‘identically 1’’ (and E
[
Xl1Xl2

]
and E

[
Xl3Xl4

]
are not identically 1). For the sake of clarity, consider the particular term E[X1X3]E[X2X4]×12.

After applying the Isserlis theorem, the latter ends up appearing (once) in the expansions of A, of E[X1X2X3X4X7X8] andE[X1X2X3X4X5X6] in
B, and of E[X1X2X3X4] in C . Thus, on the right-hand side of (C.51), we obtain (1−2+1)× (E[X1X3]E[X2X4]×12) = 0. Since the same is true
for every other term of the form E

[
Xl1Xl2

]
E
[
Xl3Xl4

]
× 12, the full expression (C.51) contains no such terms and, in addition, we no longer

need to account for C . Now consider terms of the form E
[
Xl1Xl2

]
E
[
Xl3Xl4

]
E
[
Xl5Xl6

]
× 1, where 1 stands for ‘‘identically 1’’ (and E
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are not identically 1). Note that, after applying the Isserlis theorem, B ends up containing the sum of all possible

terms of this form, and each one appears only once. Since they also all appear only once in the expansion of A, the terms stemming from
A and B cancel. Therefore, (C.50) is made up of the sum of terms of the form (C.52), as claimed.

We are now in a position to establish the asymptotic behavior of (C.49). For notational simplicity, we focus on the particular term of
the form E[X1X5]E[X2X6]E[X3X7]E[X4X8]. After taking summations, the resulting expression is asymptotically equivalent to
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2h1 converge to constants as n → ∞. This shows (C.39) for κ1 = 4 and κ2 = 0.

A simple adaptation of the argument for the case κ1 = 1 and κ2 = 2 (see (C.47)) shows that (C.38) also holds when κ1 = 4 and κ2 = 0,
as claimed.

We now turn to the case where κ1 > 2 and κ2 > 2. Let ζ0 > 1/2 be a fixed constant. Then,
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However, by the Cauchy–Schwarz inequality,
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where the last inequality and the equality are consequences of (C.24) and Lemma C.3, respectively. The same bound applies to the first
and third terms in the sum (C.53). Therefore, the latter is bounded by
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In (C.54), the first inequality is a consequence of the Cauchy–Schwarz inequality, and the second inequality follows from (C.38) for κ1 = 4
and κ2 = 0 or κ1 = 0 and κ2 = 4. In addition, by a simple adaptation of the argument for the case κ1 = 1 and κ2 = 2 (see (C.47)), (C.38)
also holds for κ1 > 2 and κ2 > 2.

The cases where κ1 = 1 and κ2 ≥ 4 or κ1 ≥ 4 and κ2 = 1 can be tackled by a similar procedure. �

The following lemma expresses, up to a residual term, the cross-covariance (first cross-moment) between sample wavelet variances in
terms of the functions (3.14).

Lemma C.5. Let Φ jj′
·· (z) and n∗ be as in (3.14) and (4.1) , respectively. For 0 < r < 1/2,
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as n → ∞.

Proof. As in the proof of Lemma C.4, we first drop the indicator functions on the left-hand side of (C.55) and investigate the limit. We will
show that
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In fact, the left-hand side of (C.56) can be written as
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By the Isserlis relation (C.37), the first term in the argument of the sum (C.57) can be reexpressed as
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By Lemma C.1(ii), and (C.58), we can rewrite (C.57) as
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By adding and subtracting the counterparts Φ jj′
·· (2

jk − 2j′k′) for each term, up to the factor 2−(j+j′)/{Φ jj
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expression (C.59) can be written as
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It remains to justify the order of the error term in (C.60). So, by adapting the proof of (A.16), we obtain
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The same bound holds for
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By extending this analysis to the remaining termsof (C.60),weobtain analogous bounds and the error term o
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as claimed.

In viewof (C.59) and (C.60), it suffices to show that the indicator functions on the left-hand side of (C.55) do not affect the approximation

order. In fact,
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For 0 < ξ ′ < 1, by the Cauchy–Schwarz inequality, expression (C.39) (from Lemma C.4) and Lemma C.3, the first term on the right-hand

side of (C.61) is bounded by
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where the constant C does not depend on r and the last equality is a consequence of (3.6). Similar bounds hold for the remaining terms

on the right-hand side of (C.61). Therefore, the expression (C.55) follows. �

The following lemma describes the decay rate of the first individual truncated moment of the wavelet variance.

Lemma C.6. For any 0 < ξ < 1 and 0 < r < 1/2,
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Proof. Notice that
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By expressions (C.64), (C.22) and Lemma C.3, the expression (C.63) follows. �

The following lemma establishes the decay of the covariances between truncated terms (C.36) and indicators involving wavelet

variances, or between indicators only.
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and

Var
[
log W (12)

n (a(n)2j)1{W (12)
n (a(n)2j)>r}

]
≤ log2(r) exp

{
−

( n

a(n)2(h1+h2)−4h12+1

)1−ξ}
+ o(1); (C.67)
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n (a2j)|1{|W (12)
n (a2j)|>r}, 1{|W (34)

n (a2j
′
)|>r}

]

≤
√
log2(r) exp

{
−

( n

a(n)2(h1+h2)−4h12+1

)1−ξ
+ o(1)

}
· exp

{
−1

2

( n

a2(h3+h4)−4h34+1

)1−ξ}
. (C.68)

In (C.66), C > 0 does not depend on r.

Proof. We first show (C.65). By the Cauchy–Schwarz inequality, the left-hand side of (C.65) is bounded from above by
√
Var

[
1{|W (12)

n (a2j)|>r}

]√
Var

[
1{|W (34)

n (a2j
′
)|>r}

]
. (C.69)

Moreover, for 0 < ξ < 1 and the octave j, Lemma C.3 implies that

Var
[
1{|W (12)

n (a2j)|>r}

]
= P(|W (12)

n (a2j)| > r)P(|W (12)
n (a2j)| ≤ r) ≤ exp

{
−

( n

a2(h1+h2)−4h12+1

)1−ξ}
. (C.70)

The same bound holds for the octave j′ in (C.69). Thus, (C.65) holds.

To prove (C.66), note that Var
[
log |W (12)

n (a2j)|1{W (12)
n (a2j)<−r}

]
is bounded by

E

[
log2|W (12)

n (a2j)|1{W (12)
n (a2j)<−r}

]

= E

[
log2|W (12)

n (a2j)|
(
1{W (12)

n (a2j)≤−1/2} + 1{−1/2<W
(12)
n (a2j)<−r}

)]

≤ CE
[
|W (12)

n (a2j)|1{W (12)
n (a2j)≤−1/2}

]
+ log2(r)P(−1/2 < W (12)

n (a2j) < −r)

≤ C

√
E

[
W

(12)
n (a2j)2

]
P(W

(12)
n (a2j) ≤ −1/2) + log2(r)P(−1/2 < W (12)

n (a2j) < −r)

≤ C ′ exp
{
−1

2

( n

a2(h1+h2)−4h12+1

)1−ξ}
+ log2(r) exp

{
−

( n

a2(h1+h2)−4h12+1

)1−ξ}
.

This establishes (C.66).

To prove (C.67), note that Var
[
logW

(12)
n (a2j)1{W (12)

n (a2j)>r}

]
is bounded by

E

[
log2|W (12)

n (a2j)|1{W (12)
n (a2j)>r}

]

= E

[
log2|W (12)

n (a2j)|
(
1{r<W

(12)
n (a2j)<1/2} + 1{W (12)

n (a2j)≥1/2}

)]

≤ log2(r)P(r < W (12)
n (a2j) < 1/2) + E

[
log2|W (12)

n (a2j)|1{W (12)
n (a2j)≥1/2}

]
.

However, for some C > 0,

log2|W (12)
n (a2j)|1{W (12)

n (a2j)≥1/2} ≤ CW (12)
n (a2j)2,

where, by (C.22),W
(12)
n (a2j)

P→ 1 and

E
[
W (12)

n (a2j)2
]

= VarW (12)
n (a2j) + 1 → 1, n → ∞.

Therefore, by the dominated convergence theorem for convergence in probability,

lim
n→∞

E

[
log2|W (12)

n (a2j)|1{W (12)
n (a2j)≥1/2}

]
= 0.

This establishes (C.67).
To show (C.68), again by applying the Cauchy–Schwarz inequality, the left-hand side of (C.68) is bounded from above by

√
Var

[
log |W (12)

n (a2j)|1{|W (12)
n (a2j)|>r}

]√
Var

[
1{|W (34)

n (a2j
′
)|>r}

]
. (C.71)

Hence, the bound follows from (C.65) and (C.67). �

We are now in a position to establish Theorem 4.1.

Proof of Theorem 4.1. Fix 0 < ξ < 1 and recall that n∗ = n

a2j+j′ . Then,

Cov
[
log |S(12)n (a2j)|1{|W (12)

n (a2j)|>rn}, log |S(34)n (a2j′ )|1{|W (34)
n (a2j

′
)|>rn}

]

= Cov
[
log |W (12)

n (a2j)|1{|W (12)
n (a2j)|>rn}, log |W (34)

n (a2j′ )|1{|W (34)
n (a2j

′
)|>rn}

]



+ log
∣∣E

[
d3(a2

j, 0)d4(a2
j′ , 0)

] ∣∣Cov
[
log |W (12)

n (a2j)|1{|W (12)
n (a2j)|>rn}, 1{|W (34)

n (a2j
′
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]

+ log
∣∣E

[
d1(a2

j, 0)d2(a2
j, 0)

] ∣∣Cov
[
1{|W (12)

n (a2j)|>rn}, log |W (34)
n (a2j′ )|1{|W (34)

n (a2j
′
)|>rn}

]

+ log
∣∣E

[
d1(a2

j, 0)d2(a2
j, 0)

] ∣∣ log
∣∣E

[
d3(a2

j′ , 0)d4(a2
j′ , 0)

] ∣∣Cov
[
1{|W (12)

n (a2j)|>rn}, 1{|W (34)
n (a2j

′
)|>rn}

]

= Cov
[
log |W (12)

n (a2j)|1{|W (12)
n (a2j)|>rn}, log |W (34)

n (a(n)2j′ )|1{|W (34)
n (a(n)2j

′
)|>rn}

]

+ o
((a(n)4hmax−4hmin

n∗

)2)
. (C.72)

The last two equalities in (C.72) are a consequence of Lemma C.1, (ii), as applied to E
[
d1(a2

j, 0)d2(a2
j, 0)

]
and E

[
d3(a2

j′ , 0)d4(a2
j′ , 0)

]
, and

of the bound (C.68) (from Lemma C.7(iii)) under the condition (4.2).
Therefore, it suffices to show that the main term on the right-hand side of (C.72) is equal to the main term on the right-hand side of

(4.3). By accounting for absolute values, the covariance term in the former can be broken up into a sum of four terms, namely,

Cov
[
logW (12)

n (a2j)1{W (12)
n (a2j)>rn}, logW

(34)
n (a2j′ )1{W (34)

n (a2j
′
)>rn}

]
(C.73)

plus the remainder

Cov
[
logW (12)

n (a2j) 1{W (12)
n (a2j)>rn}, log |W (34)

n (a2j)|1{W (34)
n (a2j)<−rn}

]

+ Cov
[
log |W (12)

n (a2j)|1{W (12)
n (a2j)<−rn}, logW

(34)
n (a2j) 1{W (34)

n (a2j)>rn}

]

+ Cov
[
log |W (12)

n (a2j)|1{W (12)
n (a2j)<−rn}, log |W (34)

n (a2j)|1{W (34)
n (a2j)<−rn}

]
. (C.74)

By the Cauchy–Schwarz inequality, the bounds (C.66) and (C.67) (from LemmaC.7, (ii)) and condition (4.2), the absolute value of the second
term in the sum (C.74) is bounded by

√
Var

[
log |W (12)

n (a2j)|1{W (12)
n (a2j)<−rn}

]
Var

[
logW

(34)
n (a2j)1{W (34)

n (a2j)>rn}

]
= o

((a(n)4hmax−4hmin

n∗

)2)
.

By a similar argument, the same bound holds for the remaining terms in the sum (C.74). Thus, it suffices to focus on (C.73). In the following

derivations, expressions involving individual sample wavelet variance terms will be expressed in terms of W
(12)
n (a2j), but analogous

expressions hold when substitutingW
(34)
n (a2j′ ) forW

(12)
n (a2j).

Fix 0 < ξ < 1. For any given j, write out the almost sure Taylor expansion

logW (12)
n (a2j) 1{W (12)

n (a2j)>rn} =
{
(W (12)

n (a2j) − 1) − 1

2

(W
(12)
n (a2j) − 1

θ+(W
(12)
n (a2j))

)2}
1{W (12)

n (a2j)>rn}, (C.75)

where θ+(W
(12)
n (a2j)) ∈ [min{W (12)

n (a2j), 1},max{W (12)
n (a2j), 1}]. Then,
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′
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+ 1

4
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. (C.76)

For 0 < rn < 1/2, recast

(W
(12)
n (a2j) − 1

θ̂+(W
(12)
n (a2j))

)2

1{W (12)
n (a2j)>rn}
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)

≤
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(12)
n (a2j)<1/2} +

(W
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1{W (12)
n (a2j)≥1/2}. (C.77)



Therefore, up to a constant, we can bound the fourth term in (C.76) by

E
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]

+ 1
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E

[
(W (12)

n (a2j) − 1)21{rn<W
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(34)
n (a2j′ ) − 1)21{W (34)

n (a2j)≥1/2}

]

+ 1
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E

[
(W (12)

n (a2j) − 1)21{W (12)
n (a2j)≥1/2}(W

(34)
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′
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]
. (C.78)

By Lemma C.4, the fourth term in the sum on the right-hand side of (C.78) is bounded by

O
((a4hmax−4hmin+1

n

)2)
. (C.79)

By the Cauchy–Schwarz inequality, Lemma C.4 and condition (4.2), the first term in the sum (C.78) is bounded by

a2(δ12+δ34)

r4n

√√√√
E

[(W
(12)
n (a2j) − 1

aδ12

)4(W
(34)
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aδ34

)4
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·
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(34)
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]
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O
( a

n

)√
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O
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n

)
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2
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)1−ξ
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a2(h3+h4)−4h34+1

)1−ξ]}

= O
((a4hmax−4hmin+1

n

)2)
, (C.80)

since 2(δ12 + δ34) ≤ 8hmax − 8hmin. The second term in the sum (C.78) is bounded by

Ca2(δ12+δ34)
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√√√√
E
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(12)
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aδ12
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]
·
√
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[
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(34)
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≤ Ca2(δ12+δ34)

r2n
O
( a
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)√
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(12)
n (a2j) ≥ 1/2)P(rn < W

(34)
n (a2j) < 1/2)

≤ Ca2(δ12+δ34)

r2n
O
( a

n

)
exp
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−1

2
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a2(h3+h4)−4h34+1
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. (C.81)

An analogous bound holds for the third term in the sum (C.78). Therefore, by (C.79), (C.80) and (C.81), the fourth term in (C.76) is of the
order

O
((a4hmax−4hmin+1

n

)2)
.

By a similar reasoning, the same conclusion holds for the second and third terms in (C.76). Therefore, by (C.76) and LemmaC.5, we conclude
that (C.72) is equal to the right-hand side of (4.3), as claimed. �

Remark C.5. For q = q1 = q2,W
(qq)
n,− (a2j) = 0 a.s. (see (C.19)). Then, the existence of the moment E

[
logl|W (qq)

n (a2j)|
]
, l ∈ N, can be directly

established by applying relation (96) in [54]. Moreover, the analysis of moments in this section can be extended without the truncation
based on the sequence (4.2).
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