N
N

N

HAL

open science

Multivariate Hadamard self-similarity: testing fractal
connectivity

Herwig Wendt, Gustavo Didier, Sébastien Combrexelle, Patrice Abry

» To cite this version:

Herwig Wendt, Gustavo Didier, Sébastien Combrexelle, Patrice Abry. Multivariate Hadamard self-
similarity: testing fractal connectivity. Physica D: Nonlinear Phenomena, 2017, 356-357, pp.1-36.

10.1016/j.physd.2017.07.001 . hal-02345555

HAL Id: hal-02345555
https://hal.science/hal-02345555

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02345555
https://hal.archives-ouvertes.fr

OATAO

Cipen Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22227

Official URL
DOl : https://doi.org/10.1016/j.physd.2017.07.001

To cite this version: Wendt, Herwig and Didier, Gustavo and
Combrexelle, Sébastien and Abry, Patibdtivariate Hadamard
self-similarity: testing fractal connectivity. (2017) Physica D:
Nonlinear Phenomena, 356-357. 1-36. ISSN 0167-2789

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr




Multivariate Hadamard self-similarity: Testing fractal connectivity

Herwig Wendt **, Gustavo Didier ", Sébastien Combrexelle ?, Patrice Abry

@ IRIT-ENSEEIHT, CNRS (UMR 5505), Université de Toulouse, France
b Mathematics Department, Tulane University, New Orleans, USA
¢ Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France

HIGHLIGHTS

e A new multivariate Gaussian scale-free and fractal connectivity stochastic model.

e Asymptotic performance study of multivariate DWT estimators of scaling exponents.
e Approximate confidence interval construction for scaling exponent estimators.

e Statistical test for the presence of fractal connectivity from a single sample path.

ABSTRACT

Keywords: While scale invariance is commonly observed in each component of real world multivariate signals, it is also often the

Multivariate self-similarity case that the inter-component correlation structure is not fractally connected, i.e., its scaling behavior is not determined

?;‘ii;?igi;‘zlcf;is\;glmty by that 'of the in_dividual cor_nponents. To model this situatior} in a versgtile manner, we introduce a class of

Wavelet analysis multivariate Gaussian stochastic processes called Hadamard fractional Brownian motion (HfBm). Its theoretical study

Confidence intervals sheds light on the issues raised by the joint requirement of entry-wise scaling and departures from fractal connectivity.

Hypothesis testing An asymptotically normal wavelet-based estimator for its scaling parameter, called the Hurst matrix, is proposed, as
well as asymptotically valid confidence intervals. The latter are accompanied by original finite sample procedures for
computing confidence intervals and testing fractal connectivity from one single and finite size observation. Monte Carlo
simulation studies are used to assess the estimation performance as a function of the (finite) sample size, and to quantify
the impact of omitting wavelet cross-correlation terms. The simulation studies are shown to validate the use of
approximate confidence intervals, together with the significance level and power of the fractal connectivity test. The test
performance and properties are further studied as functions of the HfBm parameters.

1. Introduction
1.1. Scale invariance

The relevance of the paradigm of scale invariance is evidenced by its successful use, over the last few decades, in the analysis of
the dynamics in data obtained from a rather diverse spectrum of real world applications. The latter range from natural phenomena -
physics (hydrodynamic turbulence [1], out-of-equilibrium physics), geophysics (rainfalls), biology (body rhythms [2], heart rate [3,4],
neurosciences and genomics [5-8]) - to human activity - Internet traffic [9,10], finance [11], urban growth and art investigation [ 12-14].

In essence, scale invariance - also called scaling, or scale-free dynamics — implies that the phenomenical or phenomenological dynamics
are driven by a large continuum of equally important time scales, rather than by a small number of characteristic scales. The investigation’s
focus is on identifying a relation amongst relevant scales rather than picking out characteristic scales.

Historically, self-similarity was one of the first proposed mathematical frameworks for the modeling of scale invariance (e.g., [15]). A
random system is called self-similar when dilated copies of a single signal X are statistically indistinguishable, namely,

X(Oher = {a"X(t/@)} e, Va > 0, (1.1)
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where & stands for the equality of finite-dimensional distributions. An example of a stochastic process that satisfies the property (1.1)
is fractional Brownian motion (fBm). Indeed, the latter is the only self-similar, Gaussian, stationary increment process, and it is the most
widely used scaling model for real-world signals [16].

Starting from (1.1), the key parameter for quantifying scale-free dynamics is the scaling, or Hurst, exponent 0 < H < 1. The estimation
of H is the central task in scaling analysis, and it has received considerable effort and attention in the last three decades (see [17] for a
review). The present contribution is about wavelet-based estimation [18,19]. It relies on the key scaling property

1
: D Tia, )~ Ca*, o= 2H, (1.2)
t

where Tx(a, t) is the wavelet coefficient of an underlying self-similar stochastic process and T is the number of available coefficients. In
other words, the sample wavelet variance of the stochastic process behaves like a power law with respect to the scale a.

1.2. Multivariate scaling

In many modern fields of application such as Internet traffic and neurology, data is collected in the form of multivariate time series.
Univariate-like analysis in the spirit of (1.2) - i.e., independently on each component - does not account for the information stemming
from correlations across components. The classical fBm parametric family, for example, provides at best a model for component-wise
scaling, and thus cannot be used as the foundation for a multivariate modeling paradigm.

To model self-similarity in a multivariate setting, a natural extension of fBm, called Operator fractional Brownian motion (OfBm), was
recently defined and studied (see [20-22]). An OfBm X satisfies the m-variate self-similarity relation

X(Oher < {aX(t/@))ier, Va >0, (13)

where the scaling exponent is a m x m matrix H, and @ stands for the matrix exponential Zf‘;’o(H log a)*/k!. Likewise, the wavelet
spectrum of each individual component is not a single power law as in (1.2); instead, it behaves like a mixture of distinct univariate power
laws. In its most general form, OfBm remains scarcely used in applications; recent efforts have tackled many difficulties that arise in the
identification of its parameters [23,24].

1.3. Entry-wise multivariate scaling

We call an OfBm entry-wise scaling when the Hurst parameter is simply a diagonal matrix H = diag(Hy, ..., Hy). This instance of
OfBm has been used in many applications (e.g., [6,25]) and its estimation is thoroughly studied in [20]. Since H is diagonal, the relation
(1.3) takes the form B

(), o X = {a"X(t/a), . .., " X(t/Q)} e,  Va > 0, (1.4)

which is reminiscent of the univariate case. This implies that the extension of (1.2) to all auto- and cross-components of m-variate data
can be written as

1
T Zqul(a, t)Tqu(a, t) > Ca™n%2, aqq, =Hq +Hyg,, qi,q2=1,...,m, (1.5)
t
where T is asin (1.2).
1.4. Fractal connectivity

Yet, entry-wise scaling OfBm is a restrictive model since the cross-scaling exponents ag,q,, 1 7 gz, are determined by the auto-scaling
exponents ag,q, and ag,q,, i.e.,

qq, = Hgy + Hg, = (0tqyq, + gyq,)/2. (1.6)

In this situation, called fractal connectivity [6,25,26], no additional scaling information can be extracted from the analysis of cross-
components. However, in real world applications, cross-components are expected to contain information on the dynamics underlying
the data, e.g., cross-correlation functions. As an example, recent investigation of multivariate brain dynamics in [6] produced evidence
of departures from fractal connectivity, notably for subjects carrying out prescribed tasks. Other fields where cross-correlation or non-
fractally connected modeling has been pursued include physics [27-36] and econometrics [37-39]. This means that there is a clear need
for more versatile models than entry-wise scaling OfBm (see also Remark 2.2). The covariance structure of the new model should satisfy
the following two requirements:

1. all auto- and cross-components are (approximately) self-similar;
2. departures from fractal connectivity are allowed, i.e., the exponents of the cross-components are not necessarily determined by the
exponents of the corresponding auto-components.

Hereinafter, a departure from fractal connectivity (1.6) on a given covariance structure entry (q1, g2) will be quantified by means of the

parameter
Agiq; T Ugyq
Sy = =~ 20, gz =1, (1.7)

where nonnegativeness is a consequence of the Cauchy-Schwarz inequality (see (2.10)). It is clear that 65,4, = 0 when q; = q».



Remark 1.1. Note that the precise theoretical definition of fractal connectivity includes the situation where the cross-correlation between
two components q; and g, is identically zero. In this paper, we are mainly interested in situations where this does not occur (see (2.8)).

1.5. Goals, contributions and outline

Our contribution comprises four main components. First, we propose a new class of multivariate Gaussian stochastic processes, called
Hadamard fractional Brownian motion (HfBm), that combines scale-free dynamics and potential departures from fractal connectivity.
Moreover, we provide a precise discussion of the issues entailed by the presence of these two properties (Section 2). Second, we study the
multivariate discrete wavelet transform (DWT) of HfBm, define wavelet-based estimators for the scaling exponents «,4, and the fractal
connectivity parameter 8, 4,, mathematically establish their asymptotic performance (i.e., asymptotic normality and covariance structure),
and computationally quantify finite sample size effects (Section 3). Third, starting from a single sample path, we construct approximate
confidence intervals for the proposed estimators. The procedure is backed up by the mathematical identification of the approximation
orders as a function of the sample path size and the limiting coarse scale. This is further investigated by means of Monte Carlo simulations,
as well as by means of a study of the ubiquitous issue of the impact of (partially) neglecting the correlation amongst wavelet coefficients
(Section 4). Beyond being of interest in multivariate modeling, the study sheds more light on the same issue for the univariate case. Fourth,
we devise an efficient test for the presence of fractal connectivity from a single sample path. In addition, we assess the finite sample
performance of the test in terms of targeted risk by means of Monte Carlo simulations (Section 5). Finally, routines for the synthesis of
HfBm, as well as for estimation, computation of confidence intervals and testing will be made publicly available at time of publication. All
proofs can be found in Appendix.

2. Hadamard fractional Brownian motion
For Hadamard fractional Brownian motion, defined next, the fractal connectivity relation (1.6) does not necessarily hold.

Definition 2.1. A Hadamard fractional Brownian motion By = {By(t)};cr (HfBm) is a proper, Gaussian (stationary increment) process
whose second moments can be written as

E[By(s)Bu(t)] = /R (em,_ 1)(@“.— 1)fH(x)dx, steR. 2.1)

X —IX

For 0 < hpin < hmax < 1, the matrix exponent H = (hqlqz) satisfies the conditions
q1.q2=1,....m
hgqp € [Mmins hmax], g1, 2 = 1,...,m. (2.2)
The matrix-valued function f is a spectral density of the form

fH(X)q1q2 = (pQ1quQ1 qu |X|_2(hq1q2_1/2))gthqz(x)v Q1v QZ = 1; DR m» (23)

i.e., the Hadamard scaling parameters are given by

Agq, = 2Ng,q,, G1,G2=1,....m, (2.4)
where pg,q, € [—1, 1], 0q,, 0q, € RT. The real-valued functions gg,q, € C*(R) satisfy
dt
s 08 gggontd] =€ @9
d!
| 25800 = D] < CR™ L xe(—eoe0) 1=0.1,2, (26)

for constants C, C’, &g > 0, where

2hmax < @o < 2(1 4 hiin). (2.7)

In addition, throughout the paper we will assume that
Poig, 70, qi,2=1,....,m, 1 # qa. (2.8)

Example 2.1. An HfBm with parameters hg,q, = (hq,q, +hq,q,)/2 (i, fractally connected), g4,4,(x) = 1,41, 2 = 1, ..., m, is an entry-wise
scaling OfBm with diagonal Hurst matrix H = diag(hy, .. ., hy) (see [20-22]).

m € S-o(m, R) (symmetric positive semidefinite matrices)

By the known properties of spectral densities, fi(X) = (fi(X)g,q; )g1.92=1
a.e. and satisfies

|fH(X)thq2 | = \/fH(X)qlql fH(X)quZ dx-a.e. (29)
([40], p. 436). The relation (2.9) further implies that
thQl + h‘h‘h

hogy = B2 ggp =1 (2.10)



Whenever convenient we also write
hg =hq, ag=0 q=1,...,m

The name “Hadamard” comes from Hadamard (entry-wise) matrix products. If one rewrites HfBm componentwise as By(t) =
(By.1(t), ..., By.m(t))*, then the conditions (2.1), (2.2) and (2.6) yield the asymptotic equivalence

E[By.q,(¢$)Br,q, ()] ~ §{|c5|2’1qm + |ctPhanz — |c(s — £)P e}, ¢ — oo,

q1,q2 = 1, ..., m, for some ¢ € R. In other words, over large scales, the covariance between each pair of entries of an HfBm approaches
that of a univariate fBm, up to a change of sign (see also Proposition 3.1(iii)). In this sense, for large ¢, an HfBm behaves like its ideal
counterpart By jgeal = {Bn.ideal(t)}tcr, defined as a generally non-existent stochastic process satisfying the also ideal Hadamard (entry-
wise) self-similarity relation

IE[BH,icleal(CS)BH,ideal(Ct)*] =cMo IE[BH,ideal(S)BH.ideal(t)*] , >0, (211)

where o denotes the Hadamard (entry-wise) matrix product and c°" := ("% .The process By ideal an be viewed as a heuristic

q1.q2=1,....m
tool for developing intuition on multivariate self-similarity. Mathematically, thoﬁgfl, it can only exist in fractally connected instances, the

. P [ +o o, +a
reason being that distinct (spectral) power laws cross over. Indeed, we must have ag,4, < —11-—2% for x close to 0 and a, 4, > —11-—2%2
%4191

for large [x|, whence agq,q, = # This shows that HfBm is a perturbation of its virtual counterpart, where the regularization
functions gy, 4, (x) in (2.3) introduce high-frequency corrections.

Example 2.2. An illustrative subclass of HfBm is obtained by setting goq(X) = 1 = 0¢,q = 1,...,m, and gg,4,(X) = e"‘z, q1 # (2. Note
that gg,q,(+) satisfies (2.7) with @y = 2. In this case, the expression for the main diagonal spectral entry of an HfBm is identical to that of
an ideal-HfBM, and the difference lies on the off-diagonal entries:

'051612 x| 2 e = L4141 Paza x| Cnn+enn) dx-ae. (2.12)
In this case, each individual entry {By(t)q}ter, ¢ = 1, ..., m, of HfBm By is by itself a fBm with Hurst parameter 0 < hy < 1. In particular,
fdd
{Bu(ct)ghren = {c"Bu(t)ghrer, € >0, g=1,...,m.

However, it is generally not true that
(Bu(ct)hrer = (diag(c™, ... c", ... c")By(t)}ex. > 0.

Otherwise, By would necessarily be fractally connected.

Remark 2.1. When simulating HfBm via Circulant Matrix Embedding, one verifies that regularization is rarely necessary for ensuring the
positive definiteness of the covariance matrix for finite sample sizes. In other words, ideal-HfBM is also a useful approximation in practice.

Remark 2.2. Let Yy(t) = By(t) — By(t — 1), where {By(t)}¢cr is an HfBm. Then, {Yy(t)}:cz is a (discrete time) stationary process with
spectral density

o0

Fry () = 2(1 = cos(x)) )

k=—o00

where fy is the HfBm spectral density (2.1). We call {Yy(t)};cz Hadamard fractional Gaussian noise (HfGn). Under (2.5)-(2.7), we obtain
the entry-wise limiting behavior

fu(x 4+ 27k)

) [S -7, 7T],
X + 27 k|? (

—2(hg,q,—1/2
Fri(%)q105(X) ~ Pg1q,009, 04, 1X] oy =1/2) % 0%, qi,q2=1,...,m.

In particular, non-fractally connected instances of {Yy(t)};cz can only satisfy the usual definitions of multivariate scaling behavior or long
range dependence by setting limiting low frequency constants in the latter to zero [41-44].

3. Wavelet-based analysis of HFBm

In this section, we construct the wavelet analysis and estimation for HfBm. Due to the mathematical convenience of the notion of
Hadamard (approximate) self-similarity, most of the properties of wavelet-based constructs resemble their univariate analogues.

3.1. Multivariate discrete wavelet transform
Throughout the rest of the paper, we will make the following assumptions on the underlying wavelet basis. Such assumptions will be
omitted in the statements.

AsSUMPTION (W 1): v € L(R) is a wavelet function, namely,

/wz(t)dt=1, fr‘hp(t)dr:O, q=0,1,...,N, —1, Ny >2. (3.1)
R R



AssumPTION (W?2): the functions ¢ (a bounded scaling function) and  correspond to

a MRA of [%(R), and supp(¢) and supp(i) are compact intervals. (3.2)
AssumPpTION (W 3): for some 8 > 1,

v € C(R)
and

SUpl()I(1 + ) < oo. (33)

Under (3.1)-(3.3), v is continuous, fp\(x) is everywhere differentiable and

yP0)=0, [=0,...,N, —1 (3.4)
(see [45], Theorem 6.1 and the proof of Theorem 7.4).

Definition 3.1. Let By = {By(t)};ecr € R™ be an HfBm. For a scale parameterj € N and a shift parameter k € Z, its (L'-normalized) wavelet
transform is defined by

D2, k) = 2—1/2/

R

27929, (27t — k)By(t)dt =: (dq(j, k)) . (35)

q=1,..m

Under (3.1)-(3.3) and the continuity of the covariance function (2.1), the wavelet transform (3.5) is well-defined in the mean squared
sense and ED(2, k) = 0,k € Z, j € N (see [46], p. 86).

3.2. Multivariate wavelet spectrum

Fix j1 < jo,j1,j2 € N. Because of the approximate nature of Hadamard self-similarity, analysis and estimation must be considered in
the coarse scale limit, by means of a sequence of dyadic numbers {a(n)},cy satisfying
n n - a(n)4(hmax*hmin)+] n

1< — < - n, — 0, n— oo. 3.6
~ a(n)22 T a(n)2i — n * a(n)+2mo (3.6)

Example 3.1. An example of a scaling sequence satisfying (3.6) for large enough n is

a(n) = 2|_n4(hmax*nhmin)+1j’ M <n< 1.
1+ 2wy
In other words, a wide parameter range [hmin, hmax] OF @ low regularity parameter value @y implies that a(n) must grow slowly by
comparison to n.

Remark 3.1. For a fixed octave range {ji, . .., j»} associated with an initial scaling factor value a(ng) = 1 and sample size ny, define the
scale range {21 . 2°2M} = {a(n)2/1, ..., a(n)22} for a general sample size n (where a(n) is assumed dyadic). Then, under (3.6), for
every n the range of useful octaves is constant and given by j,(n) — j1(n) = j» — j1, where the new octaves are ji(n) = log,a(n) +j; € N,
I=1,2.

Definition 3.2. Let By = {By(t)};cr be an HfBm. Let {D(a(n)2, k)}kzlw,,j, j=j1,...j, De its wavelet coefficients, where
— n
T a(n)2

is the number of wavelet coefficients D(a(n)Zf ,-)atscale a(n)2, of a total of n (wavelet) data points. The wavelet variance and the sample
wavelet variance, respectively, at scale a(n)2’ are defined by

_ R 2,k 2, k)"
Bfsian2)], Siama) = Y AR IANZIT -y (3.7)
k=1 @
Let
0! (a(n)2’) = E[dg, (a(n)2/, 0)dg,(a(n)2/, 0)]. (3.8)

The standardized counterparts of (3.7) are

EW(a2)], Walam2) = olatm2y "oy XX AN KT (39)
k=1 @
j=j1, ..., jo, where o(a(n)2) = (Q(‘“‘“)(a(n)Zf)) .Entry-wise, for 1 < q1,q, <m,
q1.q2=1,....m
ngj : ; (9142) j
S},‘“‘m(a(n)zj) _ Z dq,(a(n)2, k)dg,(a(n)2, k)’ W,s‘“f“)(a(n)zf) _ SH192)( ()i (3.10)

—1 Mg j Q(qmz)(a(n)zj)'



Proposition 3.1, stated next, provides basic results on the moments and asymptotic distribution, in the coarse scale limit a(n)2/ — oo,
of the wavelet transform (3.5) and variance (3.9). In particular, in regard to the limits in distribution, the vector of random matrices
{Sp(a(n)2 MWj=i1...j, can be intuitively interpreted as an asymptotically unbiased and Gaussian estimator of its population counterpart
{E[Sn(a(n)zj, k)]}j=j1.»-»»j2' The celebrated decorrelation property of the wavelet transform (e.g., [47], Proposition II.2) lies behind the
Gaussian limits in the proposition, as well as of the fact that the random matrices S,(a(n)2’) have weak inter-component, intra-scale
and inter-scale correlations. Also, each entry Sﬁ,q1q2)(a(n)21), q1,q2 = 1, ..., m,displays asymptotic power law scaling. In Section 3.3, these
properties are used to define estimators of the scaling exponents and to analytically establish their asymptotic performance.

In the statement of Proposition 3.1, we make use of the operator

VeCsS = (11,8125 -+ S1m3 S22 -+ -+ S2m3 + -+ 3 Sm—1,m—1> Sm—1,m> Sm,m )’ - (3.11)

In other words, vecs - vectorizes the upper triangular entries of the symmetric matrix S.

Proposition 3.1. Let By = {By(t)};cr be an HfBm. Considerj,j € Nand k, k' € Z. Then,

(i) for fixedj,j, k, k', we can write

E[Dla(m?, kb2’ K)'| = (4 a2k - 2'K)) (3.12)
q1.q2=1,...m
for some matrix-valued function Eff/’“(-) that depends on a(n). In particular, for fixed scales j, j/, {D(a(n)2’, k)}iez is a stationary
stochastic process;
(ii) forqi, gz =1,...,m,
Q" (a(n)2) = 5J¢,(0) £0. jeN, (3.13)
e, (3. 9) is well-defined;
(iii) for ol f4()asin(3.12),q1,.q2 = 1,...,m,and z € Z,as n — 00,

Lé(a(mz) i i2X| | = (2ha10, +1) (2 Yo (27 x)
Cl(n)thqu qmz(z) = Pq19,94: %, o e x| 142 W(Z X)llf(z X)dX. (314)
In particular, the wavelet spectrum ES,(a(n)2/) (see (3.7)) can be approximated by that of an ideal-HfBm (see (2.11)) in the sense
that
a(n)® " o E[Sy(a(n)2’)] — E[Sigea(?)] = (Cbgl"z(o))ql.q2=1 ..... x (3.15)

(iv) for 87 asin(3.12)and g1, g2 = 1,...,m,asn — oo,
aj Maj i il
11 S 5 a2k — 2K))
Viaj Ve 1505 a(n)*nes

S 2 %ecq2, 2 Z ol (zged(2,2)); (3.16)

Z=—00
where dbgl/qz(-) is given by (3.14);
(v) for1<qi <qz<m,1<q3<qqs<m,asn— oo,
MNaj R /Tl
a(n)’ne a(n)5q3q4

for §.. asin(1.7), where

Cov[ Wi (a(n)2), Wi (am2')| > & (a1, 42, a3, q4), (3.17)

o (0@, 0)
ucﬂ(m,‘b,‘h,%)

=
(41,43, G2, qa), if 8g,g; = 0 = dg,q,
and (8¢,q, > 001 §g,q, > 0);
— ¢U (qls g4, q2, Q3), if (5111113 > 0or 5‘12‘14 > O)

» » and 8q,q, = 0 = 8g,q5;
&' (a1, g3, G2, 94) + &7 (01, 44, G2, q3), if 84,95 = 8q04 = 8qyq4 = Ogy05 = 0;

0, otherwise,
and
¢ (q1. 42, 43, qa) = ged(2/, 2) Z ol (zged(2), 2@l (zged(2, 2)); (3.18)
Z=—00
(vi) asn — oo,
Ngi .

(vecs[( Voo ) o(wn(a(n)zl)—l)]) 5 Natmeny (0, G), (3.19)

a(n) 9192 / q1,q2=1,....m J=isen2 P



where

J=h—h+1 (3.20)
and 1 is a vector of ones. Each entry of the asymptotic covariance matrix G in (3.19) is given by the terms GU’(ql, q2, q3, q4) in (3.17)
for appropriate values of j, j’, q1, g2, g3 and qa.

Remark 3.2. Note that, up to a change of sign, each entry qﬁ{,’; ,(2) on the right-hand side of (3.14) corresponds to the covariance between
the wavelet coefficients at octaves j and j’ of a fBm with parameter hy,,.

Remark 3.3. In Proposition 3.1, (v), the asymptotic covariance between same-entry wavelet variance terms is always nontrivial,
irrespective of the values of fractal connectivity parameters. For example, when (1, 2) =: (q1, q2) = (g3, q4), it is given by

G+ »
GJJ’(1,271’2)=1i2_;W. [ . (])”(1,1,2','/2), 812 iO;
ol 0@ [¢'(1.1.2.2)+¢"(1,2,2,1), 82 =0.
This is not true for terms associated with different pairs of indices. For example, if (q1, g2) = (1, 1) # (g3, q4) = (2, 2), then
27 207(1,2,1,2), 81, =0;
e I I
11 22

In other words, the phenomenon of the asymptotic decorrelation of wavelet variance terms is only observed for instances involving
departures from fractal connectivity.

3.3. Estimation of the scaling exponents

3.3.1. Definition of the estimators

As in the univariate case, the fact that the wavelet variance (3.7) satisfies the Hadamard scaling relation in the coarse scale limit (see
(3.15)) points to the development of a log-regression regression method based on the sample wavelet variance across scales.

Estimators can be defined in a standard way by means of the log-regression relations

J2
@ =Y wlog, S¥an)2), 1<g<m,

J=h
J2
gy = »_wilog, ST (am)2)],  1<qi<q<m, (3.21)
J=n
which are well-defined with probability 1, where wj, j = ji, .. ., j2, are linear regression weights satisfying
12 J2
D wi=0, Y juy=1 (3.22)
J1=n J=n
(e.g., [48,49]). The derived estimator
S, = aq”“zﬂ —Ugqqp D1 7 G2, (3.23)

for the parameter (1.7) will be used in Section 5 in the construction of a hypothesis test for fractal connectivity (see also [18-20]). With the
standard Gaussian asymptotics for the sample wavelet variances {S,(a(n)2’)};—;, ... j, established in Proposition 3.1, the system of Eqs. (3.21)
and (3.23) is expected to yield efficient estimators. In fact, this is proved in the next section.

3.3.2. Asymptotic distribution

In the next result, Theorem 3.1, we draw upon Proposition 3.1 to show that the vector (&q,q, )g,,¢,=1,....m iS an asymptotically unbiased
and Gaussian estimator of the scaling exponents (g, g, )g;.q,=1,...m (Whence an analogous statement holds for the estimator (3.23)). As in
the aforementioned proposition, the decorrelation property of the wavelet transform contributes to the Gaussianity of the asymptotic
distribution.

Theorem 3.1. Let wj,, ..., wj, be the weight terms in (3.21) and let G be as in (3.19). Then, asn — oo,
vn . d *
vecs[(W AP ))quqzzhym] > Nt (0, MGM"). (3.24)
Remark 3.4. Condition (2.8) is needed to ensure the consistency of the estimator. Furthermore, it is clear that pq > Oforqg=1,...,m,

since otherwise the process is not proper or its spectral density is not positive semidefinite a.e.

Remark 3.5. The convergence rate in (3.24) depends on the unknown fractal connectivity parameters é... In practice, the latter can be
replaced by their estimates or, in some cases, ignored, since they exponentiate the slow growth term a(n).



3.3.3. Numerical simulation setting

We conducted Monte Carlo experiments over 1000 independent realizations of bivariate HfBm. Though several parameter settings
were tested, results are reported only for two representative cases: fractally connected ideal-HfBm (o1, o202, p12) = (0.4, 0.8, 0.6); and
non-fractally connected HfBm (see Example 2.2) with (a1, o022, 812, p12) = (0.4, 0.8, 0.2, 0.6). HBm copies were synthesized using the
multivariate process synthesis toolbox described in [50,51] and available at www.hermir. org. For the wavelet analysis, least asymmetric
Daubechies wavelet with Ny = 2 vanishing moments were used [45]. Estimation by means of weighted linear regression was performed
on the octave range (j1, j») = (3, log, n — Ny ). This choice of regression range (with fine scale j; fixed and j, ~ log,n) is made here in order
to, first, obtain results that are consistent and comparable with those reported in the literature for the estimation of univariate scaling
exponents, cf,, e.g., [48] and references therein, and,ﬁecond, avoid the issue of fixing hyin, hmax and @y in (3.6).

Monte Carlo parameter estimates (11, @22, Q12, 812) are reported in Figs. 1 and 2 in terms of bias, standard deviation, skewness and
kurtosis, as functions of (the log, of) sample sizes n = {210,212 214 216 218 2201

3.3.4. Finite sample performance R

Figs. 1 and 2 show that for all four estimates (11, @22, @12, 812), the bias becomes negligible as the sample size grows. It can also be
seen that the bias is slightly larger for non-fractally connected data, notably for the parameter §5.

The figures further show that standard deviations for all estimates decrease as n~'/2 (the latter trend being plotted as superimposed
dashed lines), with no significant difference between fractally and non-fractally connected instances. For (11, a2z, @12), there is no
detectable dependence of the outcomes on the actual values of the parameters themselves (in accordance with theoretical calculations
reported in Table 3). Accordingly, one observes that the variances for @j; and @y, are identical and depend on the sample size, but not on
any parameter of the stochastic process. For @15, the variance does not depend on 7, but results not shown demonstrate thatit does vary
with p12, as confirmed by approximate calculations (see (4.9)). For §, further simulations not displayed indicate that Var § depends on §
roughly proportionally to 1+ §. Departures from fractal connectivity tend to imply a decrease in the variance of §; this is a counterintuitive
phenomenon that has yet to be fully explained.

Inregard to convergence in distribution, Figs. 1 and 2 show that the Monte Carlo skewness and kurtosis estimates for (o1, 23 are very
close to 0 even at very small sample sizes, both with and without fractal connectivity. This characterizes a fast convergence to limiting
normal distributions, and lies in agreement with the asymptotics presented in Theorem 3.1. However, the weak convergence is observed
to be much slower in practice for the cross-exponents (3, 612), yet with no noticeable difference between fractally and non-fractally
connected instances, i.e., different values of the parameter 1.

4. Confidence intervals

To complement the asymptotic and finite sample results in Sections 3.3.2 and 3.3.4, we now construct confidence intervals for the
estimators (3.21) and (3.23). In particular, we investigate the effect of omitting the covariance among sample wavelet variance terms, as
well as the dependence of the asymptotic variance in (3.24) and confidence intervals on the unknown parameter values. This will allow
us to efficiently compute approximate confidence intervals in practice based on a single sample path.

4.1. Asymptotic covariance

In Theorem 4.1, we provide a finite sample approximation for the covariance between the logarithms of sample wavelet variances,
coupled with the convergence rate of the covariance approximation to its asymptotic expression in terms of ideal-HfBm covariances
(3.14). As in Theorem 3.1, in part due to the decorrelation property of the wavelet transform, the estimators’ second order properties are
comparable to those observed in the i.i.d. case (e.g., [52], p. 430). In particular, the finite sums provided in Theorem 4.1 mathematically
justify heuristic expressions obtained from Taylor expansions (c.f. (4.5)), and the theorem also accurately quantifies the approximation
error as a function of the sample size and scale.

In the theorem, we use indicator functions to regularize log, |S,(,q‘QZ)(a(n)2f )| around the origin. The truncation converges fast to zero and
is of no impact in practice. Indeed, one can redefine the estimator (3.21) with the indicators and obtain the same asymptotic distribution
(3.24).

Theorem 4.1. Let q1,¢2,q3,q4 = 1,...,m be ggneric indices, and suppose condition (2.8) holds. Consider S,(a(n)2/) = {S,(qq‘qZ)(a(n)Zj)},
Wa(a(n)2) = (W% (q(n)2)} as in (3.10) and @4 4, () as in (3.14). For notational simplicity, denote

n
a(n)2it
and also recall the definition of wy in (2.7). Consider a sequence {ry}neny < (0, 1/2) satisfying
1 N, 1-¢ a(n)4hmax*4hmin 1/2
7y = O(exefe( ) I )) 42
'n P a(n)4hmax —4hmin Ny ( )

forany C > 0and any 0 < & < 1. Then,
Cov [log, S (@M1, 0102 log, [5:*(a(n)2")1
(log, e)? 270+
@Y 4, (0)P}4,(0){1 + O(a(n)=0))2

(am2)>r}’ {\W,ﬁq3q4)(a<n>2i/)|>rn}]
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Fig. 1. Estimation performance and asymptotic normality. Study based on 1000 Monte Carlo realizations of (fractally connected) ideal-HfBm with parameters

(e11, @22, 812, p12) = (0.4,0.8, 0, 0.6).
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Remark 4.1. Note that the finite summations on the right-hand side of (4.3) converge as n — oo. For example,

2j/n* 2jn*
YD Pl @k =KL 2k —2'K) — ¢7(q1, 42, 03, Ga),
* k=1 k=1

1

where qb’j/(-) is defined by (3.18) (this can be shown by the same argument for establishing (A.16) and (A.25) in the proof of Proposi-
tion 3.1(iv)).

Remark 4.2. In (4.3), the main residual term satisfies

O((a(n)‘mmar‘lhm‘" >2> — o(1)

Ty

(4.4)
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Fig. 2. Estimation performance and asymptotic normality. Study based on 1000 Monte Carlo realizations of (non-fractally connected) HfBm with parameters
(et11, 0022, 812, p12) = (0.4, 0.8,0.2, 0.6).

under condition (3.6). In practice, the modeling of instances involving extreme deviations from fractal connectivity (§.. close to 1) may
require greater regularity from the functions g.. (see (2.3)) or the wavelet basis. Otherwise, for conservative choices of the regularity
parameters (e.g., wo = 2 and 8 = 1 + ¢ for small ¢ > 0), expression (4.4) may converge slower to zero than the main terms in (4.3).

Remark 4.3. In (3.5), we assume that an HfBm continuous time sample path is available. However, it is well known that, under mild
assumptions, the availability of discrete time observations does not generally alter the nature of the asymptotic distribution for wavelet
estimators (see, for instance, [47], Section III; [49], Section 3.2; [53], Section C). Establishing this for the case of HfBm is a topic for future
work.

Remark 44. Whenq = q1 = ¢qa, fo; the univariate case the expansion (4.3) appears implicitly in [54], expression (86). Also, when
computing the moments of W,gqq)(a(n)zf), the truncation is unnecessary (see Remark C.5).

4.2. Variances and covariances of &g,q, and dq,q,

4.2.1. Closed-form approximations
Turning back to expression (4.3), by ignoring the scaling factor (a(n) = 1), the truncation and setting all the convergence order terms
to zero we obtain the approximation

Cov [mg2 159192)(2)|, log, |s§ﬂ3‘“’(2f’)|]

~ oggep2 ¥ l{l i 3 ol (k-2 K)ol (Dk -2 k)
(000350, (0) 1 M iz
13y A L .
+ Yl k= 2Kyl 2K - 2, (45)

Ny
T k=1 k=1



Table 1
Closed-form expression for Cov [&g,q, , @g,q, |-

;
Var[@gq | 2 Wi T 2 e
(log; e)? 22 =i iy Kw=17gqUs K 7' K)
Var[@q,q, ] Z}'z wiwy Y rgya Gk K gy g, 'K 35K +rqy 04 Gokid K Drgy g Gokid K)
(log; e)? jij'=i iy Lk k=1 10145 UKTK)rg g0 KT K
—~ —~ . . . 2 S
Cov[@g g, @05 ] 2y W Z”J' i a0, 0k K
(log; e)? j.J'=i njny k.k'=1 rq, g, G.k:j.K)rgy g, (7. K21 K)
~ -~ . N - i e i e
Cov[@gyq; 8ay0, | ZZJ‘Z’ oy 1.1 'q1q1g-k«,{/~k’)fq1qz.(.lvk-l.’«k')
(log; e)? ji'=i miny e=kk'=1rq,q, GkijK)rgy g, (7K K)

where
_n
Tl] = 5
Note that the approximation (4.5) is a finite sample one, and ignores the potential asymptotic decorrelation effect stemming from the
shifting scaling factor a(n) (see Proposition 3.1, (v), and (4.3)). Consider the normalization

ol (k- 2K
raq, (s ki j LK) = Pk —2K) e[-1,1]. (4.6)

qjglfh (O)(p{é%(o)
Expressions (3.21), (4.5) and (4.6) yield the covariance approximation

nj—1ny—1 i ki Kk i ki K
wjwj rthq?,(ly s )rq2q4(]7 AR <)

0 rq1q2(j» k’.]! k)rQ3q4(j/v k/;j/s k/)

J2
o~ o~ ~ 2
Cov [(X‘h‘h’ a%%] ~ (log, e) Z niny
ji=ir 17 k=0 K=

rq1q4U‘, k7 j’7 k/)quq;;(ja k;j/v k’)

. 4.7
rq1q207 ka]? k)rQ3Q4(j/7 k/;j/v k/) ( )
In particular, (4.7) further allows us to compute
1 . ~ I
Var [54142] = 2 (Var [afhﬂh] + Var [O‘qzqz]) + Var [alhlh]
1 - ~ o ~ " ~
+ ECOV [athth ’ 0‘612612] — Cov [achth ’ aqlqz] — Cov [aqzth ’ aa1a2] . (4'8)

The variances (4.8) will be used in Section 5 in the construction of a test for fractal connectivity, i.e., for the hypothesis Hy : 84,4, = 0.
Table 1 summarizes the closed-form approximations for Var [y, q, |, Var [@g,q, |, Cov [@g,q,, @q,q, | and Cov [y, q, . @g,q, | established in
(4.7).

4.2.2. Impact of inter- and intra-scale correlations
The expression of Cov [y, g, . @g,q, | can further be split into three terms, namely,

B2 [y2 1
o~ N P i
Cov [aq1q2,aq3q4] ~ (log; e) Z |:nj (1 + Fg1q,Us 037, 0)rgsq,Gs 05 0))
10205 037, 0)rgyq,Us 037,

J=i

+

Ui Z Z Fa195Us K3 Js K )rapq4 Ui K5 Jo K') + 1q1q4 Ui K5 i K )rgpq5 Ui ks 5, K)
n a1, (> K J. K)rgq, (i K5, )

bk K#k
_|__ Z wlw]/ Z Z rqlqg(js k;j,s l<,)rQ2Q4U7 ka j,v k/) + rq1q40, k;j,, k,)rqzq3(j’ k7 j/v k/) (4 9)
gy 4 anl KT R K1)

where the first term in the sum over j reflects the variance only of wavelet coefficients, the second term the covariance of wavelet
coefficients at a given scale, and the third term, the covariance of wavelet coefficients at different scales. In other words, if wavelet
coefficients were independent, the second and third terms would equal zero.

The relative contributions of the three terms to the final variances are quantified by means of Monte Carlo simulations conducted
following the same protocol and settings as those described in Section 3.3.3. Table 2, reporting the relative contributions of each of the three
terms for various sample sizes under fractal connectivity (i.e., 84,4, = 0), clearly shows that the second and third terms (intra- and inter-
scale covariances) cannot be neglected, namely, one cannot use only the first term (variance) in the construction of confidence intervals
for fBm, as proposed in [9]. Identical conclusions, not shown here, are drawn under departures from fractal connectivity (i.e., 8,4, > 0).

4.2.3. First order approximations for the variances and covariances of tq,q,

It is of interest to further examine the leading order approximations for the variances and covariances of &g, 4, and 84, 4,, corresponding
to neglecting all intra- and inter-scale correlations amongst wavelet coefficients. The first order approximations neglecting all inter- and
intra- scale correlations amongst wavelet coefficients of Cov [y, g, . @g,q, | and of Var [(S\q]qz] are summarized in Table 3.

The results show that Var [&,q, | and Var [@g,q,]. 41 # g2, do not depend on the actual values of the scaling exponents (ctq,q, . @g,q, -
g4, )» Which corroborates the numerical performance reported in Section 3.3.4.



Table 2
Relative contributions of the three terms in (4.9) to Var [@(,], Cov [, 4, . @gsq, | and Var [&)] for various sample sizes. ((a11, &2z, 812, p) = (0.2, 0.6,0,0.9), j; = 2 and
Jo=15,7,9,11},n = 210,212,214 216}),

. 210 12 14 216 210 12 214 516 210 12 14 216 210 12 14 216

Var [ay1] Var [a; ] Var [@y2] Var [3\12]
varx 103 65.33 9.51 1.87 0.42 69.27 10.05 1.97 0.44 18.76 2.73 0.54 0.12 12.42 1.81 0.35 0.08
term 1 0.74 0.68 0.66 0.66 0.69 0.65 0.63 0.62 0.72 0.67 0.65 0.64 0.71 0.66 0.65 0.64
term 2 0.15 0.14 0.14 0.14 0.20 0.19 0.18 0.18 0.17 0.16 0.16 0.16 0.18 0.17 0.16 0.16
term 3 0.11 0.17 0.20 0.20 0.11 0.17 0.19 0.19 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.2
co x10° Cov [&11, 2] Cov [ay1, @12 ] Cov [y, 12 ]

5447 7.92 1.55 0.35 33.12 4.82 0.95 0.21 341 495 0.97 0.22
term 1 0.72 0.66 0.65 0.64 0.73 0.67 0.66 0.65 0.71 0.66 0.64 0.63
term 2 0.18 0.17 0.16 0.16 0.16 0.15 0.15 0.15 0.19 0.18 0.17 0.17
term 3 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.20 0.11 0.17 0.19 0.2

Table 3

First-order approximations in (4.7) for the variances and covariances of @g,q, and 84,4, neglecting all inter- and intra-
scale correlations amongst wavelet coefficients.

— ) 2
Var[@gq ] zzjz w
(logy e)2 j=i1 nj
~ . 2
Var[dyg,q, ] V2 i( 1
(log; e)? j=i1 nj rglqzuo:j.m
~ ~ 2
Cov[@q, g, .@gyq5 | V2 W2 i
(log; e)? 2 =it Tjrq]qz(Jv 0;j,0)
~ ~ . 2
Co"["“ll‘h ""41(12] 2572 w
(log; e)? Jj=i1 nj
Var[5g,4, | 2 Y (2 (7, 0:],0) + 1 )
c L ((r . _—) —
(logy )2 j=i1 nj q192N° s rglqz(j,o;j,(])

Note that for an ideal-HfBm with fractal connectivity, it is straightforward to show that ry(j, 0; j, 0) = 1 and rq,4,(j, 0; j, 0) = pgq,
when q; # ¢,. While Var [‘/fmm] does not depend on correlations pg,q,, as expected, Var [&qu] . q1 # q does vary with pg, ¢, according to
1/ ,051 q,» Showing that Var [&qu] — +oo when pg,q, — 0. This can be interpreted as the fact that when pq,4, — 0, the scaling exponent
Qqyq,» 41 7# q2, loses its meaning. Furthermore, Cov [aqm . ?iqzqz] depends on p as p;]‘]z' not surprisingly indicating that when pg,q, — 0
(no correlation amongst components), Cov [&qlql , &qzqz] — 0 (no correlation amongst estimates).

Moreover, the first order approximation of Var [:S\qu] is observed not to depend on the actual value of §;,4,, while Var @,1%] clearly
depends on 4,4, based on the numerical simulations reported in Section 3.3.4. This can be interpreted as the fact that, for &, 4,, the first
order approximation (neglecting all intra- and inter-scale correlations amongst wavelet coefficients) is not sufficient to approximate well
Var 84,4, ], as opposed to what is observed for Var [@g,q, ] and Var [@y,q, ] . 41 # Qa-

To finish with, Var [;S\qlqz] varies with pg,q, as pslqz + 1/,051[,2 — 2. This shows again that when pgq,4, — 0, parameter §,4,4, becomes
irrelevant. Moreover, it also shows that when pg,4, — *£1, Var [5q1qz] — 0. This can be understood as the fact that when pg,q, — £1,a
departure from fractal connectivity is no longer permitted, as indicated by (2.12). Thus, pq,q, — 1 implies 8,4, — 0, which is then no
longer a random variable.

4.3. Practical computation of the variances and covariances of &g, q, and :S:mz
4.3.1. Computation of E[dg, | (. k)dg,(j’, k') and rq,q,Gi, k; j/, k')

Evaluation of (4.7) requires knowledge of the covariance between wavelet coefficients (4.6), which will be developed here explicitly for
the discrete and the dyadic wavelet transforms. Let h(k) and g(k),k = 1, ..., L, be the coefficients of the high pass and low pass filters of the

discrete wavelet transform, respectively, and let 1,[-] and |,[-] be the dyadic upsampling and decimation operators. Foranyq = 1, ..., m,
the wavelet transform of the discrete time process component By(k), yields, at each scale j = 1,...,], sequences of approximation
coefficients ay(j, k) and detail coefficients dy(j, k), ¢ = 1, ..., m. The corresponding dyadic coefficients are given by a4(j, k) = aq(j, 2k)

and aq(i, k) = dq(, 2/k), respectively. Pick the initialization aq(0, k) = By (k), (see [55] for a discussion of the initialization of the discrete
wavelet transform). Atscalej = 1,a4(1, -) = hxaq(0, -)and dy(1, -) = g*aq(0, -),atscalej = 2,aq4(2, -) = Py[hl*xaq(1, -) = 1, [h]xh*ay(0, -)
and dy(2, -) = 1,[g] * ag(1, -) = 1,[g] = h % a4(0, -). By iteration, we obtain the sequences of detail coefficients at each scale j = j, i.e.,

i’ k) = (g7 % g0, ) (k),  dg(f, k) = do(i, 2 ), (4.10)

where
j-2
g = 1yrlglx (x 1y lh)).
Now let Yheya (s,t),1 < q1 < q, < m,be (univariate) fBm covariance functions with indices hq,q, = ctg,q,/2, i.€.,

ylhlh(ss t) = pq1q20q10q2{|5|aq]q2 + |t|aq1q2 - |S - t|aq1q2}. (411)



Then (cf. [18]; note that a change in time scale would only result in a multiplicative constant, which we assume to be absorbed in pg, g,
and which cancels out in the final expression for ry,g,)

Eldy, (. k), (', k + 7)1/(04,04,)
=YD &0 (QElaq, (0, k — p)ag, (0, k+ 7 — )]

p q

= —Pga, D Y &(P)gr(q)l—T + g — p|“ne2
p q

+ Pgray D &(P) Y g(@)lk —pln%2 + pgq, > g1(q) Y gi(p)lk+ T — gl“n®
p q

q p
= —pua ) Y &P)g (@)t — g+ plae M =p—q)

p q
= —Pga, D &P + (@It —pI"% = —pgq, > g0 — D (q)lr — p/|"1
Poq Poq

= —Parz P& *GIPNT = PI*N = —pqiq, (g % &) * Mgy, X,
p

where
gk) =g(L—k), k=1,...,L
Ng1q,(T) = |T]*1%2.
Consequently,

((g) * &) * 1g,0, )K" — k)

Fq1q {y, l<§j/» k,) = Pqiq = = (4.12)
" (g * &) * mi)X0) (g7 * &) * nu)(0)
and, for the dyadic wavelet transform,
Faas ki ', K) = rq,0,G, 2K; 1, 2K, (4.13)

For given values of «g, ¢, and pg, 4, these expressions can be easily evaluated numerically.

4.3.2. Practical estimation of (co)variances of &y, q, and ofgqlq2

Evaluating (4.7) and (4.8) for HfBm in practice requires the unknown parameter values «g,q, and pq,q, in (4.11), and hence we replace
them by their estimates @, 4, and pg,q,. The former are defined in (3.21), and estimates py, 4, for pg,q, for g1 # g, can be readily obtained
as the cross-correlation coefficients of the first difference processes Yy(t),, and Yy(t),, (HfGn; see Remark 2.2). However, note that the
expressions for the (co)variances of &, 4, in the previous sections are derived assuming knowledge of the true parameter values and can
only be expected to be approximations when these are replaced by estimates. This will be studied numerically in the next section.

4.3.3. Assessment of the estimated (co)variances of &g, q, and of:S\q]q2 by means of Monte Carlo experiments

Monte Carlo studies were conducted following the protocol and settings described in Section 3.3.3, aiming to evaluate the quality of the
estimated approximations (4.7) and (4.8) for the (co)variances of &y, 4, and of 74, 4,. The simulations involved 1000 independent realizations
of each of two general instances of HfBm with m = 2 components, one using the true values of the parameters «g,4, and pq,q,, and the
other, their estimates @, 4, and pg,q,. Four different sample sizes, n = {2'°, 212,214, 21} and three different values p;, = {0.3, 0.6, 0.9}
are investigated for the set of exponents [«11, a22, @12] = [0.2, 0.6, 0.4].

Table 4 summarizes the square roots of the ratios of the averages over realizations of (co)variance estimates and of the Monte Carlo
(co)variances. The first four columns, labeled “theo/MC”, report results obtained when using theoretical parameter values and yield the
following conclusions. First, even for small sample size n = 2'° and weak correlation p;; = 0.3, the quality of the approximations (4.7)
and (4.8) is very good for the variances of exponents «g, ¢ = 1, 2, and satisfactory for the cross-exponent «1;, the covariance parameters
and the connectivity parameter §;,. Second, when the sample size n and correlation level p;, increase, the approximation of variances and
covariances becomes excellent, with maximum errors of the order of 5% for n = 26 and strong correlation p1, = 0.9. Finally, the last four
columns of Table 4, labeled “est/MC”, report results obtained when using estimates &g,q, and pi,. They indicate that replacing the true
parameter values ag,q, and p1, with estimates has very little impact on the quality of approximations (4.7) and (4.8). Indeed, the average
values of the (co)variance estimates are essentially equal to those obtained when using true parameter values.

5. Statistical test for fractal connectivity
5.1. Procedure

The mathematical and computational results in Sections 3 and 4 enable us to construct component-wise fractal connectivity tests,
i.e., for the hypotheses

Qgiq; T Ugyq,

Ho : 84,9, = 2

— Qqqp = 0, q1 7& qz-



Table 4

Estimation of Var [a(.)]. Square roots of ratios of mean of (co)variances computed using (4.7) and of Monte Carlo
(co)variances: (4.7) evaluated using theoretical values 11, a2z, @12, p12 (left columns, labeled “theo/MC”) and estimates
@11, a2, A1z, P12 (right columns, labeled “est/MC”). ( (a1, a22, 812, p12) = (0.2, 0.6, 0, p12),j1 = 2andj, = {5,7,9, 11},
n= {210’ 212’ 214’ 216}).

n 210 212 214 216 210 212 214 216
P12 Ratio of \/—/— theo/MC est/MC

Var[ay] 0.95 0.97 0.95 0.99 0.94 0.97 0.94 0.99
03 Var[@i] 0.82 0.85 0.90 0.93 0.83 0.86 0.90 0.93
: COV[O{]], @l 1.12 1.07 0.97 1.32 1.09 1.06 0.97 131
Var[ay;] 0.78 0.82 0.88 0.91 0.80 0.82 0.88 091
Var[ay] 0.98 0.98 0.96 0.98 0.98 0.97 0.96 0.98
06 Var[ay;] 0.94 0.92 1.00 1.00 0.93 0.92 1.00 1.00
’ Cov[gn, o] 1.00 0.93 0.97 1.05 0.99 0.92 0.97 1.05
Var[é12 0.88 0.87 0.98 0.97 0.88 0.87 0.98 0.97
Var[ay] 0.97 0.95 0.98 0.98 0.96 0.95 0.98 0.98
0.9 Var[@i,] 1.00 0.98 1.00 1.01 0.99 0.98 1.00 1.01
: Cov[@r1, @] 1.01 0.99 1.01 1.02 1.00 0.98 1.01 1.01
Var([§12] 0.93 0.92 0.95 0.97 0.95 0.93 0.96 0.99

Recall that we assume throughout that pg,4, # 0 for q; # q» (see (2.8)). As a consequence of Theorem 3.1, the distribution ofgq]q2 under
Hjy can be approximated over finite samples by

/gfm}z ’\'/\/(O, Var [:S\qlqz]) under Hy,

where, in turn, Var [:S\‘)qu] can be approximated by (4.8). Therefore, a simple two-sided test with significance level s = P(reject Hy|Hy true)
is given by

d, = [1, if [8q,, | > 1/ Var [8,0, J0~1(1 — s/2); (5.1)

0, otherwise,

where ¢~!(-) is the inverse cumulative distribution function of the standard Normal distribution. In addition, the p-value of the test statistic
(i.e., the probability of observing an absolute value at least as large as |8q1q2 | for the test statistic under Hy) is given by

p(rgthth |) = 2¢ <_|’gﬂhqz |/\/ Var [gﬂhﬂh])' (5-2)

This test can be performed by evaluating (5.1) with an estimate for Var Eqmz] obtained from the procedure detailed in Section 4.1.
5.2. Monte Carlo assessment of the test performance

We assess the performance of the test by applying it to 1000 independent realizations of HfBm with exponent values [«11, a22] =
[0.2, 0.6] and exponent values o1, detailed below for sample sizes n = {210, 212, 214 216} and correlation levels p;, = {0.5, 0.7, 0.9}. For
simplicity of illustration and without loss of generality, we consider again HfBm with m = 2 components. For each realization, the test
decision (5.1) and the p-value (5.2) are evaluated using (4.8) with approx1mat10ns (4.7) to obtain an estimate of the Var [Alz Estimates
of the expected values of the test decisions and p-values, denoted by d and P, are then obtained as the averages over realizations of test
decisions and p-values (5.1) and (5.2).

We now compare the performance of the proposed test, denoted hereinafter HFBM (not to be confused with the stochastic process
HfBm), to that of the test put forward in [26] (cf,, [56] for preliminary comparative results). The latter relies on the intuition that the
wavelet coherence function of two components of a multivariate Gaussian scale invariant random process approximately behaves as

QWZ(-]) -5 q1q2)(])/ /s ﬂhﬂh)(l)s(quh () ~ )Oq]qzzj(oquq2 —tg1q; —Cgp0,)

The test itself, denoted WCF (for wavelet coherence function), is formulated without the rigorous statistical framework developed above.
Rather, it is built on the observation that I,4,(j) is the Pearson product-moment correlation coefficient of the time series dg, (j, -) and
dg,(j, -), and hence that the Fisher’s z statistics of I7,4,(j),j = Jj1, ..., j2, are approximately Gaussian, with known variances and, in the
case of fractal connectivity, with equal means across scales. The test for fractal connectivity is then formulated as the UMPI test for the
equality of means of Gaussian random variables, cf. [26] for details.

5.2.1. Performance under Hy

We first consider the case that Hy is true, i.e., (o171 +0a22)/2 = a2 = 0.4. The significance level is set to s = 0.1, and results are reported
in Table 5 for the proposed test (top) and for the test in [26] (bottom). Note that, under Hy, averages of test decisions ds should equal the
preset significance level s, and averages of p-values p should equal 5 1 HFBM rejects Hy with slightly larger probability than the prescribed
value s = 0.1, yet the differences between empirical significance levels d and s never exceed 5%; similarly, average p-values are slightly
below 0.5. For large sample size and large p1,, average test decisions and p-values are very close to the theoretical values s = 0.1 and
p= 1 . These remarks are consistent with the results reported in Table 4, where a small but systematic underestimation of Var [512] for
small sample sizes and p1, is observed.

In contrast, the empirical significances d of WCF strongly differ from the preset value s by values of up to 16%, and this difference is
especially pronounced for large sample sizes for which one would expect the test to perform better. One reason for this poor performance



Table 5

Test significance. Mean test decisions and p-values for different values of n and p; under Hp : 813 = (11 + @22)/2 —
a1y = 0 ([a11, an] =[0.2,0.6],j; = 2andj, = {5,7,9, 11}, n = {219, 22, 214 216}) for the proposed test (top) and
for the test in [26] (bottom).

HFBM - Hp : 81, = 0,5 = 0.1

p12 = 0.5 p12 = 0.7 p12 =109

100d, P 100d, P 100d, ?
n =210 132 045 14.0 0.48 145 0.45
n =21 138 045 10.9 0.47 11.1 0.45
n=214 138 045 1.2 0.46 11.0 0.46
n =21 123 0.46 10.9 0.48 11.0 0.47
WCF-Hg: 815 =0,5 = 0.1

p12 =0.5 p12 =07 p12 =09

100d, P 100d, P 100d, P
n=210 147 0.44 15.3 0.46 16.0 0.44
n=21 20.7 0.42 16.0 0.43 17.2 0.42
n=24 20.9 0.40 18.6 0.41 22.0 0.39
n =216 26.1 0.36 225 0.36 22.1 0.38

Table 6
Test power for adjusted significanceas = 0.1. Mean test decisions and p-values for different values of n, p1, and &1, /alternative hypotheses Hy : 812 = (a11+022)/2—a12 #
0 ([a11. o] = [0.2,0.6],j; =2 and j, = {5,7,9, 11}, n = {210, 212,24 216}) for the proposed test (top) and for the test in [26] (bottom).

HFBM - H; : 815 #0,ds = 0.1

d12 p12 =0.5 p12 =0.7 p12 =0.9

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
n=210 16.5 299 40.6 50.0 254 435 66.1 84.5 74.8 98.6 100.0 999
n=212 28.8 60.8 81.9 93.3 63.6 96.8 99.8 100.0 100.0 100.0 100.0 100.0
n=2" 67.1 97.9 99.9 100.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0
n=2 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
WCF-Hy: 612 #£0,ds = 0.1
d12 p12 =05 p12 = 0.7 p12 =0.9

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
n=210 10.5 154 16.6 223 14.1 21.7 36.9 529 43.7 81.0 94.2 99.2
n=2" 17.8 359 52.5 69.4 34.7 78.9 95.8 99.4 98.2 100.0 100.0 100.0
n=2" 43.4 86.2 99.0 100.0 89.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
n=21 93.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

may lie in the fact that the test in [26] was designed for fGn, rather than fBm. Note that the asymptotic calculations developed above can
be adapted to the easier case of fGn (and, in principle, any other Gaussian process with stationary increments) without difficulty by simply
changing the covariance function y;, 4, (s, t) in the calculations leading to the expressions (4.12) and (4.13).

5.2.2. Test power

We assess the power of the test under the alternative hypotheses Hy : 812 = (o117 4+a22)/2—a12 # 0with §15 = {0.05, 0.1, 0.15, 0.2}.
Yet, a direct power comparison of HFBM and WCF is only meaningful for identical rejection probabilities under Hy, since a test for which
ds > s under Hy is expected to display an artificially large power. In view of the distinct performances of HFBM and WCF, as discussed
above (cf. Table 5), for each sample size and correlation level we adjusted the prescribed significance to the value s for which the average
rejection rate under Hy equals d; = s = 0.1. Using this adjusted level of significance s, the power of the test is then estimated as the
average of the test decisions d; when H; is true. Results are reported in Table 6 and yield the following conclusions. First, the power of
each test systematically increases with the magnitudes of the deviation from 81, = 0, of the correlation level p1, and of the sample size
n, as expected. Second, HFBM is systematically and significantly more powerful. Indeed, it enables us to detect a non-zero value for §1, up
to two times as often as WCF. For instance, for the small sample size of n = 2'° and the low correlation level of p;, = 0.5, it permits the
detection of a deviation of 0.2 from the null value §;; = 0 with probability 0.5, as compared to a probability of 0.22 for the test in [26].

Overall, these results confirm that the proposed methods can be relevantly applied in the assessment of scaling and fractal connectivity
in multivariate time series.

6. Conclusion

The present contribution introduces a versatile class of multivariate stochastic processes called Hadamard fractional Brownian motion
(HfBm). HfBm provides a stochastic framework for scale invariance modeling within which cross-component scaling laws are not directly
controlled by the scaling laws along the main diagonal. In other words, HfBm is not necessarily fractally connected.

Interestingly, the theoretical study of HfBm reveals that exact entry-wise scaling on both auto- and cross-components and departures
from fractal connectivity are mathematically incompatible. In other words, there is a dichotomy in multivariate scaling modeling: either
there is exact entry-wise scaling in every component combined with fractal connectivity, or departures from fractal connectivity are
allowed at the price of approximate (i.e., asymptotic) scaling on the cross-components.



Our main mathematical results consist of an asymptotically normal, wavelet-based linear regression estimator for the scaling
exponents, as well as asymptotically valid confidence intervals with convenient mathematical expressions. Furthermore, the Taylor
expansions used in the development of the asymptotic confidence intervals lead to the construction of practical procedures for the
numerical calculation of the variance of the estimates. These approximate calculations enable the study of the ubiquitous issue of the
impact of neglecting intra- or inter-scale correlations amongst wavelet coefficients in the computations of variances and covariances for
the estimates. We also devised an asymptotically normal hypothesis test for fractal connectivity. Again, a major feature of the designed
test procedure is the fact that it can be applied to a single observed HfBm data path.

For both fractally and non-fractally connected instances, simulations demonstrate the satisfactory performance of the estimators of the
scaling and fractal connectivity parameters, even for small sample size data. The estimation bias is shown to be negligible, and the variance
decreases according to the inverse of the sample size. In addition, the practical computations of approximated variances and covariances
of the estimates are shown to be of excellent quality, irrespective of sample size, and the Monte Carlo significance levels and powers are
very close to their theoretical counterparts.

The tools developed in the present contribution pave the way for novel analysis and modeling perspectives on multivariate scaling in
real-world data, in the spirit of [6]. Routines for the synthesis of HfBm, as well as for estimation, computation of confidence intervals and
fractal connectivity testing will be made publicly available at the time of publication.
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Appendix. Proofs

This appendix comprises three parts, Appendix A, Appendix B and Appendix C, which contain the proofs for Sections 3.2, 3.3 and 4.1,
respectively. In Appendix B and Appendix C, we assume throughout that the assumptions of Theorems 3.1 and 4.1, respectively, hold.
In the proofs, whenever convenient we will use the shorthand

a = a(n). (1)

For notational simplicity, we will assume throughout that oy, = 1,q = 1, ..., m. Since the main diagonal entries of an HfBm behave like a
perturbed (univariate) fBm, throughout the appendix we only provide proofs for cross-components, i.e., when the indices q; are pairwise
distinct, [ = 1, 2, 3, 4. Whenever convenient we will use | = 1, 2, 3, 4 in place of q;, respectively, and also write

hgq = M, thQp = hyp.
In addition, without loss of generality it will be assumed that
0"(@2)>0, neN, jeN (2)

(see (3.8)), since otherwise we can consider —o('?)(a2/) instead (see also (3.13) and Remark C.1). We will also write log instead of log,, for
visual clarity. In the proofs, C represents a generic constant whose value may change from one line to the next.

Appendix A. Section 3.2

Proof of Proposition 3.1. For simplicity, we will write Eﬁ/(~) instead of Eﬁlv"(-) throughout the proof.
To show (i), the change of variable s = 277t — k in (3.5) and the harmonizable representation of HfBm yield

5 a2k — P'1)) = / el k=2 K (Y (D) (a2 X)d, (A1)
R
where f(x) := <|x|*2(hq1qz “/Z)ngz(x)) . Statement (ii) is a consequence of the formula (A.1) with
q1.q2=1,....m
k=k =0, j=j. (A2)

Statement (iii) follows from Lemma C.1(ii), below under condition (3.6).
Turning to (iv), establishing (3.16) is equivalent to showing that

A i’ « 2n, i . "
2-0/2 L L 28 (a(2ik — 2K))

]

— ol 2k -2k))

2h
M k=1 k'=1 ae
o~z P Ine o
+— SN ol @k —2'k) » 2709 2ged(2, 2) Y @ (zged (2, 27)), (A3)
* k=1 Kk'=1 Z=—00

n— oo.
Consider the entry g; = 1, g2 = 2 of the matrix-valued function 21" asin (A.1). Based on a change of variable y = ax, recast the first
term of the sum on the left-hand side of (A.3) as

/ eV?|y| @2+ 5 {gu(X) _ ]}@(ij)’w\(zj’y)dy — / e ha(y)dy. (A.4)
R a R



Fix A > 0 and denote a“)(x) = d"—}f,(ﬁt@(x) + iS@(x)), [ > 0.By(3.1) and (3.4) and a Taylor expansion with Lagrange residual of the real

and imaginary parts of $ there exist functions A, A, on [—A, A] such that
N, N

N v Vv
v = (dew mwx)‘h(x) * ldew

Ny

)X
Ap(x) N,/,! ’

SY(x)

Therefore, and extending this reasoning to ¥'(x), ¥ (x),

[0l =o(x™), x>0, =012 ")

For h, as in (A.4), we now show that

hq, h,,, h), are differentiable and h,(0) = h[,(0) = h,(0) = 0. (A.6)

a

We will only develop expressions for y > 0, since analogous developments hold for y < 0. For mathematical convenience, rewrite h, as
in (A.4)as

ha(y) = y~ 270 o 94(y). (A7)
Hence,

ho(y) = pia{—(2hiz + 1)y~ @242y, (y) + y~ 2t/ ()}, (A8)

h(y) = p12{(2hiz + 1)(2h1p + 2)y~ 128309, (y) — 2(2hy, + 1)y~ 22! (y) 4+ y~ M2ty (y)), (A9)

Note that, by conditions (3.1) and (2.7),

2Ny + o — (2hip +1+1)—1>2+@g — 2hpax —1>0, [=0,1,2. (A.10)
Then, h, is also smooth around zero and h,(0) = 0. Moreover, by (A.5) and (A.10) with [ = 0, for fixed n and |y| < as,
lhaW)I' _ Ey—(2h12+1)(31)m°y21v1,, _ Ly2N¢+wo—(2h12+2) o (A11)
y Ty a avo
asy — 07, where the constant C > 0 does not depend on n. Similarly, by (2.6), (A.5) and (A.10) with [ = 1,
/ / . _ 2Ny, —(2h12+2) -1
Ol _ S{yftzhmm(X)”OyzNw + y*(2h12+1)[<X)w0 oy <X>w°y2Nwl]} B A (A12)
y —y a a a a - a®o
This proves (A.6), as desired. Next, note that
9 . . 92 . )
7eitx (t) — iteitxw(t), 7eztx (t) — _tZeltxw(t)
0x 0x2

and ity (t), 24(t) € LY(R) by the continuity of ¥ and condition (3.2). Therefore, by the dominated convergence theorem, @’(x) =
C [, e™ity(t)dt, " (x) = C' [, e™(—t>)y(t)dt for appropriate constants C, C’ € R. Consequently, by (3.2),

max sup|yP(x)| < c/ Ity (6)|dt < oo. (A.13)
1=0,1,2 xecR R
So, fix z # 0. By (2.5) and (A.13),
lim |h(y) =0= lim h;(y)‘. (A.14)
[y|—>o00 |y|— 00
Thus, in view of (A.4), (A.6), (A.8), (A.9), (A.10) (with [ = 2) and (A.14), by integrating by parts twice we obtain
57 (az) ” 1 ‘
12 JJ _ "
C : c
== / (72 e + I~ 20iw)] + ly " Py < =, (A.15)
R

where the last inequality is a consequence of (2.5), (A.5) and (A.13).
Now consider the first summation term in (A.3). We proceed as in the proof of proposition 3.3, (i), in [53] to establish that
12 i &0 a2k — 2'K))
n

i - q)ﬁ’z 2k — Zj/k/)) -0, n— oo. (A.16)

* k=1 k'=1

We outline the maj/n steps for the reader’s convenience. B_y Theorem 1.8 in Jones and Jones [57], p. 10, the set of values r € Z to the
equation a2’k — a2’ k' =r, k, k' € Z, is given by gcd(a2/, a2/ )Z =: R. Therefore, a pair (k, k') € Z? is a solution to

a2k — a2’k = ged(a?, a2 yw (A17)



for some w € Z if and only if it is a solution to
Yk — 2K = ged(2, 2w (A.18)

for the same w. Therefore, we can replace n with n, in Lemmas B.2 and B.3, [53], and reexpress the first summation term on the left-hand
side of (A.16) as

Z &(n,) (E{];(ar)—q)’ij;(af)). (A.19)

. a2hiz

reRﬂBjj/(n*)

In (A.19), Bjy(n.) is the range for r such that the pairs (k, k') satisfying (A.18) lie in the region

1<k<2n, 1<K <2n,, (A20)

and &.(n,) is the number of such solution pairs (k, k') given some r. Moreover, for any sufficiently large n, let ko, € {1,..., 2j/n*} be the
smallest number such that (ko, k'(ko)) € N? solves (A.17) (for some w € Z), where

2 ged(Z, 2w

K'(k) = ?k o (A.21)

From the proof of Lemma B.2, [53], the set A of such solutions to (A.18) has the form
j/
A= [ k,k)ez?: k=ky+ —————7, K isgivenby (A.21 ] A22
(k. k') 0+ i 7] given by (A21) (A22)

In light of (A.22), define the function k(z) = ko + Ty/)z z € Z. In particular, (k(0), k'(k(0))) is a solution pair for (A.18). Let
R>x = gcd(ZJ 2 (n, — ko/ZJ ). Then, by (A.22), (k(|x]), kK'(k(|x]))) is the rightmost solution for (A.17) within the first-entry range
k=1,...,2 n,. Moreover, given r, the number of solutlon pairs in the region (A.20) is &:(n,) = |x] + 1, where

xjn; ! — ged(?,2), n— oo. (A23)
In addition, by (A.15), and (3.14),

g7 ar) — o7 (ar) C 27 ar) — o7 (ar)

12 12 . 12 12 _
Tgﬁ, r#0, nlggoT_o’ rez. (A24)

By expression (A.19), the dominated convergence theorem and (A.23), the limit (A.16) holds.
Next recall that, up to a change of sign, q) ,(z) corresponds to the cross moment of the wavelet transform of a fBm. Thus, by an analogous
procedure, we also obtain

o ny 2ny
1
-3 Zcpg’z 2k —2'K) — ged(2, 27) Z oV (zged(2,2)), n— o (A25)
M k=1 k= zZ=—00
This establishes (A.3).

To show statement (v), first note that

=o(1),

a2 max{hyz+hag,hi4+hp3}=2(h12+h34) alh1+ha+h3+hg)—=2(h12+h34)
o )/
Ny n,

which follows from (3.6) and the fact that

2max{hiz + hag, hig + ha3} < hy + hy + hs + hy. (A.26)
Thus, by expression (C.56) for Cov[W,Slz)(aZf), W,§34)(a21/)] (established in the proof of Lemma C.5),

il

WWCOV[W(Q)(GZJ) W(34)(azj )]

asz2 gl COV[ a2, W’SM)(GZJ )]

ad12+934

_ ()
2

" [@,0)0] (0)(1 + O(a0))2]

a?ms+haa)  q 2'n, In, _— .y
| g, 2 Z P2k — 2 1)@ 2k~ 2K
k=1 k'=

aZ(h14+h23) 1 Zj/n* In, P . wy
Lamm e I’ (201, _ 28 1\l (901 _ o' 1
+ G g, > > ol 2k— K)ol (2k -2 k)} +o(1). (A.27)
k=1 k'=1

By (A.26) and (A.27), statement (v) holds.



The argument for showing (vi) is an adaptation of the proof of Theorem 3.1 in [53] (see also [58], pp. 510-513; [47], p. 997; and [59],
Lemma 2). For notational simplicity, we only write the proof for m = 2, where the entries are indexed 1 and 2, and q1, g; = 1, 2 denote
generic entries. The proof is by means of the Cramér-Wold device. Under (.2), form the vector of wavelet coefficients

Yo i= (i@, 1), da(a2", 1), o di(@2 g, ) (@ g )

dl(azjzz 1)3 dz(azjza ])s D) d](azjzs na,jz)s dz(azjzs na.j2 )) € RT(H)v (A'28)
where
=2 Z Naj. (A.29)
j=h
Let
0=0,....0,) cRY, (A.30)

where ] = j, —ji1 + 1and 6; = (6,1, 6,12, 0j2)" € R3,j =j1, . ...jo. Now form the block-diagonal matrix D, defined by

diae( L1 1 /1 R 1 /1 A3
lag(rlaJ1 E Njps+e s na~j1 271 [NIEEREE na’jz 272 Njps -+ ?’]‘2 272 ;112) ( . )
naJ-l ”u,jz
where
01 e 6,12
E[d3(a2, 0)] a2 2E[dy(a2/, 0)dy(a2, 0)] o ,
2= 1 0,12 6. s J=J1s e (A.32)
a’2 2E[d(a2, 0)d (a2, 0)] E[d5(a2), 0)]
In (A.32), it can be understood that the slow growth factors for the main diagonal terms are 25” = 2322 = 1. We would like to establish
the limiting distribution of the statistic
1 .
Z —ve [( ) o Wn(aZJ)]
a®192 / q1.q5=1.2
07 1 ok a2, k) 1 L di(a2, (a2, k) oh d2(a2 k) \*
Z (Z H[dia2. 0] @7 2= E[dh(a2. Oz O] 2= i)
2 Ngj E[d}(a2, 0)]" a®2 £ E[d;(a2, 0)dy(a2, 0)] 4= d2 a2, 0)]
= Y’,;Dnvn,
where it suffices to consider € in (A.30) such that
0" 3X(H)0 >0 (A33)
(see [40], pp. 211 and 214). The matrix X'(H) in (A.33) is obtained from (3.17) and can be written in block form as X (H) =: (G* G g =i1seiar
corresponding to block entries of the vector § = (0;,,...,6;,)". Let Iy, = Cov|[Y,,Y,], and consider the spectral decomposition
1/ 2Dn 1/ 2 — 0AO*, where A is diagonal with real, and not necessarily positive, eigenvalues
g(a2), i=1,...,7(n), (A.34)
and O is an orthogonal matrix. Now let Z ~ N(O, Iy(n)). Then,
T(n)
T, 221y Dy’ Z = 70402 £ 2 AZ = ) (a2)Z?
i=1
Assume for the moment that
. a\1/2
max  |&(a2) = o(<7) ) (A.35)
i=1,...,7(n) n

By (A.33)and (3.17),

7Var[T = i i {\/;\/»Cov[ vecs[<a§:1q2 >q1.q2:l,2 o W,,(azj)]’

j=i i'=i

2 B

1
J ; el /
vees (e g W) o > 200 0y -0

J=i i'=h




Therefore, there exists a constant C > 0 such that, for large enough n, 2Var[T;] > C > 0. In view of condition (A.35),

MaXi-t.... 7 602 < C/<n)1/2 max |*§,(a21)| -0, n— oo.
I

JVar [T,] a
The claim (3.19) is now a consequence of Lemma B.4 in [53].
So, we need to show (A.35). The first step is to establish the bound

1
sup |u*F ) F1/2u| <C max — |2l sup u*ly,u (A.36)
uesT(m—1 J=itsed2 Mg j uesT(m—1
Letu € ST™W~1and letv=I"'/?u. We can break up the vector v into two-dimensional subvectors v. . to reexpress v=(vj, 1, . . ., Vingj, 3 -+
Uiy 15+ -+ Vigung, )*. Based on the block-diagonal structure of D,, expressed in (A.31),
J2 Maj ) Jj2  Naj
1/2 1 2 _neng
" I/2D, 13 2u) = Dy = ]ZZ Uﬂ’ >y —— f 1204l 103l
j=ir =1 j=i =1 Maj
J2 Maj
< c( max 12 ||) vy 1112 _c< max 12 ||) vy u, (A37)
=T 15000 2nf " 1_2“121 2 Jznf " !

where the constant C comes from a change of matrix norms and only depends on the fixed dimension m = 2. By taking sup,csrm-1 on
both sides of (A.37), we arrive at (A.36).

The second step towards showing (A.35) consists of analyzing the asymptotic behavior of the right-hand side of (A.36), as n — oc. For
this, we will assume the result of Lemma C.1. So, note that

1 a 1 1
i 1;1113)(2?””9111” =< nm%, n — o0. (A38)
Moreover, by relation (C.14), the maximum eigenvalue of Iy, is bounded by || Iy, || < Ca?™ma{-h2} where | - |l is the matrix Euclidean

2(hmax*hmm )+1

norm. Therefore, in view of (A.38) and (C.14), the right-hand side of (A.36) is bounded by C*¢
divided by /4 is bounded by C(

5 - In turn, the latter expression

gAhmax —hpjn)+1 12

/
) 512 By condition (3.6), this implies (A.35), and as a result, also (3.19). O

n

Appendix B. Section 3.3

Proof of Theorem 3.1. Fixqy,q, = 1, ..., m. Based on (3.22), rewrite

1 n_.
a8q142 E(“qlqz - Olqlqz)

j ji (0192) ¢ ~j
2 2 E[S (azf)] ‘
=3 wi n (@192)(g) wj E[ H”— }
o — a‘SQ]QZ a lOg |Wn ((12 )| * Z a84142 a log a%aa2 10g|¢fhfh( )|
J=h J=n

1
+ o \/>(Z wj 10g|¢q1q2( )= “q1qz)~ (B.1)

J1=h

By Lemma C.1(ii), and an application of the mean value theorem, for some 6(n) > 0 between |E ’ [S(q“m (a2)) ] ’/aa‘hqz and |<Dq1q2( )| the
second term in the sum (B.1) can be bounded in absolute value by

i w ’E[S(qqu)(azj)] ’
— adne \/7[ ’ a“a q1q2 0)|H

—Z Y L E—
6q1‘12 ¢JJ ( )|+0(1) a®o — a2841qz+]+2w0 ’

q1492

asn — oo, where the limit is a consequence of condition (3.6). Also note that, after a change of variable 2/x = y in the expression for
@l ,(0) (see (3.14)),
. B ~ 5 )
@Y, (0) = 2°n0 pg ) f I ene Vg (y) dy = 200 cq,q, € R,
R

Therefore, by (3.22), the third term in the sum (B.1) can be written as

2
1 n .
ana E(Z wj (jotg,q, + 10glCqiq,1) — athz) =0.
J=h




So, in regard to the first term in the sum (B.1), consider the weight matrix M € M( @ W}, R) defined by
<2j1/2wj11m(mz+1) ; 201+1)/2U)j]+11m(m+1) . 2j2/2wj21m(m+1) ) s

where [mms1) is a w m '"“)
2

identity matrix and J is given by (3.20). We would like to show that

MMa; )
M(vec3[< . ‘”) o log o|w,,(a21)|]) 4 Nmmeny (0, MGM™), (B2)
a’n2 / q1,q2=1,....m J=i1sd2 2
where log o|A| := (log |Ag,q, |) for any m x m real matrix A, and the term post-multiplying the matrix M in (B.2) is a WJ—
1.q2=1,...m

dimensional random vector.

Forany O < r < 1, fix a pair g1, g and an octave j, which specifies one of the entries of the random vector on the left-hand side of (B.2).
Define the set A, = {w : ming, g, W,(lqm)(azf) > r}. Under (.2), Proposition 3.1, (vi), implies that P(A;) — 1asn — oo. Thus, for large
enough n, in the set A, the mean value theorem gives the almost sure expression

(4102) ¢ 1]
. i , , Maj (W, a2)—1
R > 21/2wj\§j 10g|Wr(1qm2)(‘12])| — zj/zwjﬁ( n : ( )) . )
a’ne g (W,"%(a2)))

(B.3)

for arandom variable 6. (W.1%)(a2/)) between W\"'%?)(a2/) and 1. Since W' (a2/) 5 1, then 6, (W."1%)(a2/)) 5 1. By considering (B.3)
forall1 < qy <q <mandj=ji,...,Jjs relation (B.2) is now a consequence of Proposition 3.1, (vi), and Slutsky’s theorem. O

Appendix C. Section 4.1

C.1. General results

Fixq;,q =1,...,m.Forj =ji,...,j» and n € N, consider the jointly Gaussian vector
. :( dg, (a1, ) dg, (a1, najl) dg,(a22, 1) . dg, (a2, najz)
! Q(Chqz (a2i) \/Q 0192)( 2]1) \/Q(‘hqz)( 2]2 \/Q 9192)( 2]2)
dq2(02j1 1) o dlh(azj] ’ naJ1) dlh(azjz 1) ) dQ2(a2j2 naj2)>* RY(™) (C.1)
[o@man)(q2i) /Q(qlqz)(azjl)’ \/Q 092)(a22) \/Q(QIQZ (a2i2)

(see (A.29) for the definition of 7°(n)). Let

Iy, = E[¥2Y;] = 045,0* = 0 diag(A1,y, ..., Aym.y) 0%, 0 € 0(T(n)), (C.2)

be the associated covariance matrix and its matrix spectral decomposition._jhe following lemma provides the finite-sample and asymptotic
properties of the covariance structure of wavelet coefficients, both from &7 and ;.. Note that such covariance structure does not in general
correspond to a multivariate stationary stochastic process when multiple octaves j are considered.

LemmaC.1. Forj =ji,...,j2,q1,q2 = 1,..., m,and n € N, the following statements hold.

(i) Consider Z4-9(a(n)(2k —2'K)) = E[D(a(n)Zj, k)D(a(n)2" k/)*] (see (3.12)). For j = j' and n € N, there is a continuous spectral density
fr.n(X)gyq, Such that we can write

r—v]] a i / b
Egigp(a(m2(k — k7)) i(k—k')x /
(a(m2 P =/ e fon(X)qq dx, Kk K € Z. (C.3)
Moreover,
lfz//,n(x)qlqz| <C, xe(—m,m], (C4)

fora constant C > 0 that does not depend on n.
(ii) Let @V (z)beasin(3.14),z € Z,and fixany 0 < & < 1. Then,

uq]qz(za(n)) i C
a(n)?hn 20| = anymo” T (C5)
where @y and § are defined in expressions (2.6) and (3.3), respectively.
(iii) Let Yy beasin(C.1), and let Aiy,i =1, ..., Y(n), be the eigenvalues of the covariance matrix Iy, (see (A.29) and (C.2)). Then, for some
C >0,
max  A;y < Ca(n)Xmahay-hay1=hayq;), (C.6)
i=1,...,7(n)

Proof. We will use the shorthand q; = 1 and q, = 2 throughout the proof.



We first show (i). By making the change of variable y = a2/x in (A.1), we obtain (C.3) with

o0

2l 2l
fyn(Xh2 = Z [+ 2D /012g12<x+ 7 ) (C.7)

2hyp+1 j
= Ik + 27 a2

Moreover, by (3.1)-(3.3), @ is continuous, and hence, by (2.5), (3.3), (3.4) and the dominated convergence theorem, the periodic function
fy.n(X)12 in (C.7) is also continuous on [—, 7], and hence, bounded. This shows (C.3) and (C.4).
We now turn to (ii). It suffices to show that, forany 0 < & < 1,

H]j a
(S0 (Za) i C
o~ 20| = e aeage T (C8)

since for small enough &, conditions (2.7) and (3.3) imply that
(1= §&)2h12 +2B) > 2hmin + 2 = @y.
In fact, by (A.1), (3.14) and a change of variable y = ax,

H]j a
=/ (Za) il
]azzhu - ijljz(z)
1 ~ ~
= o / e x| 7@MD oo (g1 (x) — 1} (a2'x)yr (a2 x)dx
R
= { / + / }eizy Iyl’(z’”””mz{gu( ) } ¥(2y)dy (C9)
yl<al=¢  Jly|>al=¥
forany 0 < & < 1.Forlarge enough n, by (2.6), (2.7) and (3.1)-(3.3), the absolute value of the first integral in the sum (C.9) can be bounded
by
¢ —Qhi+D+@0 |7 (2 Vi (2 '
— vl W@y (2 yldy < —. (C.10)
awo Jiyi<a=¢ ao
On the other hand, by (3.2) the absolute value of the second term in the sum (C.9) can be bounded by
C/
(2h1p+1)-28
C/MM] . lyl™ W= A oen,- (C.11)

Expressions (C.10) and (C.11) yield (C.5).
We turn to (iii). For notational simplicity, consider only two octaves j, j/, whence ] = j, — j; + 1 = 2. Then, from (A.29),

T (n) = 2(ngj, + Ngj,).
Fix v e CT™, For notational simplicity, divide the summation range k = 1, ..., 7(n) into the subranges
Ki={1,....nq5}, Ky={ngj+1,...,nq;+ngj},
Ky ={ngj+ney+1,...,2005+ a3}, Kg={2ng;+nqy+1,...,2(ng;+ ngy)}.
Define the octave and index functions
J(k) = j 1 uksy () + § Tourgy (), q(k) = 1 T uigy (k) + 2 Tgurgy (k).

respectively, which reflects the order of appearance of different octave and index values in the vector (C.1). By (A.1),
T(n) Y(n

v* I'y, v = Z Z Uk, Uk, <Fy")k o

k1=1ky=1

T(n) n) Ve Ukze,'a(zj(h)klfzj(kz)kz)xl’//\(azj(h)X)a(azj(kz)x)

1
- A Satenatin) (X)dX. (C.12)
ka] et /o) (@212 (q2ika))

By expanding the double summation in (C.12) into each pair in the Cartesian product {K;, K>, K3, K4}?, we end up with 16 double
summation terms under the sign of the integral, i.e., 8 pairs of conjugates. To the cross terms, namely, those involving distinct summation
ranges in the index k, we can apply the elementary inequality |xy +Xy| < |x|? 4 |y|?. One such pair, associated with the summation regions
Kz X K3 and K3 X Kz, is

‘/ vk emszlxw(azjx) Z ikze—iazf "2"1/f(a21"x)
V), e

N Z vkleia2j k]xa(azj/x) Z gkze—iaszzxa(azfx)
keky VYV o19(a2’) l<2e1<3 Ve'(a2)

[
ezaz kx 7> (JZJX e—1a2 5 a2’'x
= /{ Z . / 121// ‘ ‘Z . Vo2(a2') = )l }Ifu(x)ldx,
RY e 012)(a2)) Q( (a2)

keKy

)fatdx|




since f12(x) = fo1(x), and analogous bounds hold for the remaining terms. Therefore, (C.12) is bounded by

] ]
/ §juke’“2]kx\27"/’(ff)f") (o) + 3o+ [ | S we o 1 V(a2 ))(fn(x + 300l
R R

keKq ) keKy
12 [ (a2 " Wi
/ ‘ZU ia2lx |1lfl;1) Xl (Faa (%) + 3|fia(x |)dx+/ ‘ 3 e WE;I X () + 31100
ek (a2)) S 02(a2/)

By the change of variable y = a2/®x in each integral, breaking them up (in R) into subregions of length 27 and using the periodicity of
Fourier sums, we obtain

g 2 A 9]
[ kae'ky‘ Z{((121)2’11|y+2nl|—(2h1+l)p1gl(}’+ .n)

a2
keKq [=—00

y+ an)‘ |1// v+ an)l

+3(a2 Mz |y 4 25|20y | ‘gl ( o (a2)

k4
o
-

P . ) -
> v’felky‘ > {(“21)2'” v+ 2717 D prgy (u)

keky [=—o00 “
. 277l 2l
+3(a2])2h12|y+2nl|*(2h12+1)|p12|‘g1 <y+ t )‘ |¢ y+ ;)ﬂ
a

o0
iky 2y —(2hy+1) y+ 2”1)
[T e 3 fa@y 4 2t (P

T keks I=—00

¥y + 27D)’
012)(a2)

| 27l
3@ Py + 2l gl ()|

(o]
. + 2ml
> {(azf)zhZ v+ 2n1|*(2h2“’ngz(yaT)

T " 2
+ f ’E vge

T keKy I=—00

y+27'[1)‘ W y+ 27Z'l)|

o+ 3(a22ly + 270D o g
)(a2)")

< Caz(max{hl,hz hlz)/ {‘ Vi elky + ‘ vkelky‘ + ‘ Ukelky‘ + ‘ vkelky‘ }
B> Z Z >

keKq keKy
— CgAmaxthyhal=hi2)ypy, (C.13)

for some C > 0. The inequality (C.13)is a consequence of (C.3) (from Lemma C.1(i)) and Proposition 3.1(iii), as applied to o('?)(a2/®). Thus,
the claim (C.6) holds. O

Remark C.1. Fix q1, q; = 1, ..., m, and recall that p(1192)(a(n)2) = :glgz 0) (see (3.13)). Condition (2.8), the expression for the constant
@J ,,(0) (see the right-hand side of (3.14)) and Lemma C.1(ii), imply that p(919%2)(a(n)2') is bounded away from zero for large n.

Remark C.2. Forq; = 1and q; = 2,letY, and Y, be asin (A.28) and (C.1), respectively. Then,

Y, = Pydiag(yo D@2, ... Vo), ..., Vo(a2h), . ... /o P(aR),

Hajl “ajz
Vo(a2h), ..., /oD (a2), ..., /o (a22), ..., /012 a212)>

Ng j, Mg j,

=: PulNnYn

for some permutation matrix P,. Moreover, since I'y, = P,N,Iy,, N, Py is a real symmetric matrix, by Lemma C.1(ii) and (iii), we obtain
the bound

Ty, |l = ||7DnNnFynNnP:” = Ca(n)Zmax[hl,hz] (C.14)
for the maximum eigenvalue of Iy,, where || - || is the matrix Euclidean norm.

For any n € N, consider the Gaussian vector Y, as in (C.1) but with only one octave j. It will be convenient to reexpress the sum
W (12) (a21) asin (3.10) (with g; = 1 and g, = 2) based on a quadratic form. Define the permutation matrix

m, = (10 '”51) € 0(211,,). (C.15)

Ng,j



Consider the spectral decomposition (C.2). Then

w1 (a2)) = YiI,y, (forone octave j)
a,j
1 _, (04320%)M,(04,°0" 1, A0 m,04Y°
a1 5. (04700 Vo 1l t , (C.16)
Tla’j 2 Tlayj 2
where Z ~ /\/2,1‘”(0, 12,1”) Let
A0 T, 042
S, = —Y Yy (C.17)
2
which is a real symmetric matrix. Write out its spectral decomposition
Sn = O_g/\_goz7 0e O(2na_j As = diag(M,s, .y )»2"”,5). (C]S)
Expression (C.16) becomes
A A
W(2(a2') = — 205 As0:Z < —Z*ASZ = Z Ly Z Rz = N it =Y miaZl, (C.19)
Na.j Na, iciy(n) Ma.j iei_(n) iciy(n) iei_(n)
where i (n) and i_(n) are the indices for which A; s is nonnegative or negative, respectively. In particular, note that
Var [ W{"(a(n)2)] = lIn, 13,
where
M= Mrns s 772navj,n)* (C20)
and nip,i =1 2ngqj, are as in expression (C.19)
Remark C.3. The following bounds on ||n, || and ||, Wills be useful throughout this section
As a consequence of expression (C.56) and the fact that j% — O under (3.6),
I, 12 Wi (a(n)2) — 142 a(n)
e — |k ( ) ~.—=C, n— oo, (C21)
a(n)®2 a(n)’2 n
for some C > 0. In particular
w2 (a2)) L) 1, n— oo
Moreover, expression (C.6) in Lemma C.1(iii), implies that
lAsl
”"n”oo =

1/2 )2
A
||A1/20*17nOA¥2|| <Ay I I Il _
aj na,
for some C' € R

A‘.
Cmax —¥
Ng,j

(C.22)
2(max{hy,hy}—hy2)

_ )

i=1,.7(n) Ngj —

Remark C.4. Note that any moment of ¥

n
a(n)ZJ)

(C.23)
iz is bounded in n, i.e.,
(12) . K
W, (a(n)2) — 1

In fact, for even x € N, expressions (C.19) and (C.23) imply that the left-hand side of (C.24) is bounded by
Z Niyn -« - MNiy

(C.24)
C(]E[(Zz _ 1)2])1«/2
n 2 2 1 2
a(n)<dn E[(Zh -1... (Zik - 1)] ’ = a(nys Z Miyn - Migjpm
11,.emnix €4 (n)Ui—(n) i15eensbie /2 €1 (MU (1)
C(E[(Z? — 1)?])/? c’ /2 ; qAmax{hi,ha}—h1z)+1 c’ gAmax{hy ha}=hi2)+1 /2
o CEE DD oy, <€ (5) ( ) = )=o),
a(nyon a(ny<iz \a n a(nyon n
where the last equality is a consequence of (3.6) (a similar derivation holds for odd « ). Expression (C.24) will be used in the proof of
Lemma CA4.
The following lemma provides a concentration inequality for centered quadratic forms, and corresponds to Lemma 1 in [60] (see
also [61], Lemma 8, and [62], p. 39). It will be used in the ensuing Lemma C.3 to establish a bound on the rate of convergence to zero
of the probabilities P(W(u)(aZJ) <r)and P(W“Z( (n)2) > r'), wherer < 1/2 < 3/2 < r’ (under (.2))



iid.
Lemma C.2 ([60]). Let Zy, ..., Z, By N(0, 1) and ny, ..., n, > 0, not all zero. Let |2 and ||n||~ be the Euclidean square and sup norms of
the vector n = (11, ..., nn)*. Also, define the random variable X = Z?:ln,-,,,(zf — 1). Then, for every x > 0,

P(X = 2|Inll2 v/X + 2[nlle0 %) < exp(—x), (C.25)
P(X < =2|Inll2 vX) < exp(—x). (C.26)
Lemma C.3. Let W,Sm(aZf) beasin (C.19), and fixr < 1/2 < 3/2 < r'. Then, forany0 < & < 1,

P(W(a(n)2) <r) < exp{—(*)l_g} (C27)
n — — a2(h1+hz)—4h1p+1 ’

. 1-¢
(12) J ’ _ n
P(W, “(a(n)2) = 1) < exp{ (7(12(,11+h2)74h12+1) } (C.28)

for large enough n.

Proof. Expression (C.19) implies that

PW(a2) =) =P( Y mial@ =) =141+ Y mialZ = 1),

i€iy(n) iei_(n)
For notational simplicity, let an. = Zieu(n)m’"(ziz — 1)and Y,,aj = Zia;(n)n,-,,,(zi2 — 1), which are zero mean random variables. Let

Nip = Mindicizm)» Mo = Mindiei_(n)-

By (C.21),
a2(hl+hz)—4h12+l
2 2 2
max{[imy, 3, [172.all2} = Ml ~ C—————,
max{[|n nlloos 1M2nllec} < Mnlloc < IMll2, (C.29)

for a constant C > 0. Moreover, in view of (.2), 19 ,1l2 > 0, n € N. Suppose, without loss of generality, that
Iyl >0, neN

(otherwise, Yp,; =0as. for n such that ||, , |l = 0). Fix a constantr < ¢ < 1. By the independence oanaJ. and Yoo

1-¢
P, < ~14 14+ ¥y ) = | / + [ )P0, = =1, 0, (C:30)
— 1-¢ A

where fyn is the density function of Yo, .The first integral in (C.30) is bounded from above by P(X; ey < =6+ r)P(Y, ey < 1-¢ ). Moreover,
since —¢ + r < 0, then

P(Xnajf —{+r)= (Z Nin(Z ) < §+r)
iciy(n)
(¢ —r) (¢ —1/2)
= p(Y a2~ 1) = ~2imyl i) = exp{—ﬁ}
iciy (n) 11,0115 1015
< | ~C iy | (C:31)
In (C.31), C does not depend on r and the last two inequalities are a consequence of (C.26) and (C.29), respectively, where
2max{hg, + hg,, 2hq,q,} = 2(hg, +hg,), q1,.q2=1,...,m, (C.32)
stems from (2.10). On the other hand, for any 0 < & < 1 and large enough n the second integral in (C.30) is bounded from above by
[ Ftag; )y = P(Yn,; > 1= ¢) —P(Z Nin(Z] —1)>1—;) (C33)

ici_(n)
Note that, by (C.29),
= 1=
||"2,n||2(m) + ||n2,n||oo(m) — 0,

forany 0 < & < 1,as n — oo. Consequently, for large enough n, (C.33) is bounded by
1-¢

P( ma@ =0 > 2l () + 2l ainsr)
Nin M2 2\ ot Thy)ahpp 1 M2.nlloo\ athi+hy) =41

ici_(n)

n 1-¢
= e"p{‘(m) } (C.34)



where the last inequality follows from (C.25). From (C.31) and (C.34), since C does not depend on r, we obtain (C.28).
We now turn to (C.28). Fix 2 < ¢’ < 1 < r’. Then,

P(WD(a2) > ') = P(X,

Ng,j

>r—1+Yn )

¢—1
/‘ / Oy = 7' = 1+ Y, (). (C.35)
=1

The first and second integral terms in (C.35) are bounded by, respectively,

=1
/4 oy @)y = P(¥r,, < &' — 1)
and
P(Xny, = 7 +¢' —2),

where ¢’ — 1 < 0 < 1’ + ¢’ — 2. Therefore, an argument similar to that for (C.27) can be applied to conclude that (C.28) also holds. O

C.2. Asymptotic covariances

We will establish Theorem 4.1 at the end of this section, after proving Lemmas C.4-C.7. The latter establish the asymptotic behavior of
the first four moments of the R-valued random variables W.\"1%)(q(n)2/), W% (q(n)2/). So, consider the function

; 1
log S{192)(a(n)2/)| 1 lsqisqpsm 0<r<-, (C.36)

(w9 i) =1y’

where the truncation works as a regularization of the log function around the origin. In the event |W,(1q”m(a(n)21 )| < r,we interpret that

(9192) J _
log |S,192(a(n)2")]| 1{\W,(1q1q2)(a(n)2f)|>r} =0 as.
Throughout this section, we will make use of the Isserlis theorem (e.g., [63]). For a zero mean, Gaussian random vectorZ = (Z1, ..., Zy)" €
R™, the theorem states that
ElZi...Zul =Y []E[2Z]. ElZi...Zu1]l=0, k=1,...,|m/2]. (C.37)

The notation ) [ ] stands for adding over all possible k-fold products of pairs IE[Z,-ZJJ, where the indices partition the set 1, ..., 2k.

The following lemma shows that the high order centered cross moments of W,S] )(a(n)2j ), ,(,34)(a(n)2f ) are negligible with respect to
their low order counterparts.

Lemma CA4. Let k1, ko € NU {0}, k1 + k2 > 3,and fix0 < r < 1/2. Then, asn — oo,

o (W tam2) — 1y W) — 1y _ o (4my? C.38
( a(n)2 ) ( a(n)’4 ) {min{ [ WS a2 ) WS a2 y>ry | T [(T) ] (C.38)
Proof. For each case k1, ko € N, k1 + k3 > 3, we first show that
B (12) i (34) i’
W a2y — 1ya W a2y — 1\« 2
o (A (I (2]
a2 ad3a n

i.e., without indicators, and then extend the claim to the full expression (C.38).
Consider the case where k; = 1 and «; = 2. Then, the left-hand side of (C.39) can be rewritten as

n n ‘ i o o .
! LR SR (a2 Rda(a2 k) odala Kdaa2 K) i@ k(a2 k)
a2+ i E[§ Z Z( 0(12)(a2)) 1)( 0G4 (a2) - 1)( 0G9(a2) - 1)] (C.40)
K k’ 1ky=1

Startmg from assumption (.2), for notational simplicity relabel the generic terms under the summation sign in (C.49) as X; =

di (a2, k)//0(12(a2), )Xo = d (a2, k)//0'1P(a2), X3 = ds3(a2’, K,)//oBN(a2), X4 = da(a2, K;)/y/0B3P(a2), Xs = ds(a2’, K,)/
VoB(a2"), Xs = day(a 2’,k2)/ 034 (a2). Then,

E[(X1 Xy — 1)(X3Xs — 1)(XsXs — 1)] = E[X1X2X3XaX5X6] — {E[X1X2X3X4] + E[X1X2X5Xs] + E[X3XaX5X6]} + 2. (C41)
By applying the Isserlis relation (C.37) to the six-fold and four-fold products in (C.41), the latter expression becomes

E[X1X3] E[XoX5] E[X4Xs] + E[X1X3] E[X2X6] E[X4X5] + E[X1X4] E[X2X5] E[X3Xs] + E[X1X4] E[X2Xs] E[X3X5]
+E[X1Xs5] E[X2X3] E[X4Xs] + E[X1X5] E[X2X4] E[X3X5] + E[X X6 E[X2X3] E[X4X5] 4 E[X1Xs] E[X2X4] E[X3X5] . (C42)



The asymptotic behavior of the summation of each term in the seven-fold sum (C.42) can be established in the same way, so we only study
the first one. Up to a constant, the latter is asymptotically equivalent to

s 2 2h) g sy 1 103, "o o) B di(a2), K)ds(a2, Ky)| B[ da(a2, kds(a2’, Ky)| E[da(@2 k)@l k)]

ab12+2834 Na.i n2 , Z a2his a2has a2ha
J a’ k=1K=1k,=1

R S L E[d4(azf’,1</1)d4(a21",1<’2)] o, E[dl(azj,k)d3(a2f,k/1)] E[dz(azf,k)d3(a2f’,k’2)]

= gty 2y thy) N n? a2ha ’ [ 22 eI } (C43)
YO K =1k=1 k=1
However, the summation in k in expression (C.43) is bounded by
i B[ di(@2l, K)ds(@2 k)] E[da(a2, kds(a2’, k)|
‘ e a2h13 a2h23 ’

o n«:[d](azf, k)ds(a2/ . K, )] — @la@k-2K), | ol (q@k—2k)
- ZO azhs l + ‘ azhs D

k=1

E|daa2, kids(a2!, k)| = dlia@k = 2K) o (a2l — 27k,)
( z |+ )

q2h23 a2has

o E[dl(azf', k)ds(a2/, K, )] — ol (a@k - 2'K,) E[dz(azf, k)ds(a2 k’z)] — ol a2k — 2'K)
= ’ a2hi3 ‘ ’ ’ a2h23

k=1

o (k- 2K,) [dz (a2, k)ds(a2, kz)] — ol a2k — 2'K,)
‘ a?hi3 H a2ha3 ‘
X ‘E[d1(a21, k(a2 k)| - Plia@ik - 2'K)) H o7 a2k — 2 ’<é))’
a3 a2h2s
N ‘ @J{3(a(2121<h— 2k) ‘ ‘ @ (a(2k — 2 k’z))H <c, (Cad)
a2z a2h2s

where C does not depend on k. To justify the last inequality, we only look at the second term in (C.44), since the remaining terms can be
analyzed in a similar way. It suffices to proceed as in [53], in particular around expression (B.31) in the latter reference. Indeed, starting
from (3.2), suppose without loss of generality that

supp(y) = [0, 1].

For0 < ¢ < 1/2, decompose

Mo E[dz(azf  k)ds(a2 | k;)] — ol a2k — 2'k,))

3 etk -2k, ‘ il ’
k=1

Mo E[dz(azj, k)ds(a2, k’z)] — ol (a(Pk — 2'K))

= (1{max{212’)>g}+l{max(2}2] })‘¢13 2”(-2}](1)
k=1 k=21 12k 2}k’\

(C.45)

‘ a2ha3

The first sum term in (C.45) only contains a finite number of terms, where such number does not depend on k or k}. Moreover,

E[dz(azf, K)ds(a2 | k;)] — ol a2k — 2'K)
S | =c

where C does not depend k, k’; or k;. The latter statement follows from the fact that @”; is, up to a change of sign, the wavelet variance of a
fBm and from (A.24). Moreover by Proposition I1.2 in [47] and again by (A.24), the second sum term in (C.45) is bounded by CZZEZ\ z74,
This shows that (C.45) is bounded by a constant not depending on k, k} or k;. Hence, (C.44) holds.

Consequently, up to a constant the absolute value of (C.43) is bounded from above by

| Xhisthsth+2 g "aj Ma [d4(a2 ki )da(a2’ k/z)] a2
ahi+ha 2k +ha) 2 =c (g) ’ (C.46)

max[|q)f1'f';(2fk N

2h,
Ng j a<"4
Ky =1k=1

where we used the fact that m < 1. This establishes (C.39).



So, rewrite

“ Wi a2) — 1\  Wa2') — 112 " W,S”’(azf)—l1 w2y -1 2
a2 b4 B e Wi (a2)>r) b4 W@l )>r)

_ E[(Wfﬂ”(azf) — 1)(W£3‘”(a2f’) —1y2

a4 ) { L2 <n w2 )y

a2

+1 1 (C47)

WiDa2en w2 = T 1w @z TwEar <) ”

The asymptotic behavior of every term on the right-hand side of (C.47) can be established in the same way, so we only look at the first
one. For any 0 < & < 1, the Cauchy-Schwarz inequality, Lemma C.3 and expression (C.39) yield

wiP(a2i) — 1 w2’y — 12
‘E ( n )1 (12) (all)<r< 3 ) 1(W,ﬁ34>(a2j’)>r) ‘
(12), o (34), o
W, a2)—1\2 /W, a2’ ) — 1\4 .
: E{( S ) (e )}Wwﬁm(amsr)
adi2 ad34

(8 1 n B c48
- (E)EXpl_§<a2<"‘3+"’4)*4h34+1) ] (C.48)

where C does not depend on r. Moreover, under (3.6),

1 n 1-¢ a
eXp[_§<aZ(h3+h4J*4h34+1) ] - O(E)'

Therefore, (C.38) holds. The remaining cases where x1 + k; = 3 can be handled similarly.
Now consider the case where k1 = 4 and k, = 0. Then, the left-hand side of (C.39) can be rewritten as

Ngj Maj Maj Maj

(a2, ky)do (a2, ky) di(a2, k))dy(a2, ky)
L2 X () )

k1=1ky=1k3=1ky=1

(d1(02j, k3)d2(a21, ’(3) _ 1) (d1(a2f, k4)d2(02j, k4) _ 1)] (C49)

012)(a2)) 01)(a2))
Starting from the assumption (.2), for notational simplicity relabel the generic terms under the summation sign in (C.49) as X; =

di(a2, ky)//o(1D(a2), Xo = dy(a2, ky)/+/012N(a2)), X3 = di(a2, ky)//01D(a2), X4 = dyr(a2, ky)//01P(a2i), Xs = di(a2’, ks)/
Vo2(a2)), Xs = do(a2’, ks3)//012(a2), X; = di(a2, l<4)/,/g(12) a2, Xg = da(a2, ks)/+/0(12)(a2). Then,

E[(X1X2 — 1)(X3Xs — 1)(XsXs — D(X;Xs — 1)]
= l]E[X]X2X3X4X5X6X7X8 ] ]

- {E[X3X4X5X6X7X8] + E[X1X2X5 X6 X7 X5 ] + E[X1X2X3X4X7Xg] + ]E[X1X2X3X4X5X5]}

+ {]E[XSXSX7X8] + E[X3XaX7Xs] + E[X1X2X7Xs]

+ E[X1X:X3X4] + E[X1X2X5X5] + E[X3X4X5X6] }

— [BUGX ]+ EIX X)) + B X6 + X Xs] — 1] (C50)
Namely, we arrive at an expression with four terms between braces. By relabeling them A, B, C and D, respectively, we can write

E[(X1Xa — 1)(X3Xa — 1)(XsXg — 1)(XsXs — 1)] = A — B+ C — D. (C.51)

We claim that, by an application of the Isserlis theorem, the expression (C.51) can be written as a sum of products of the form

E[thlz] E[X13X,4] E[Xlsxls] E[X17X18] ’ (C52)

where [; < I3 < Is < I; and no pair E[X.X.] has consecutive indices (the latter condition implies that no pair is identically 1 with respect
to summation in kq, k», k3 and k4 in expression (C.49)).

In fact, recall that E[XX;] = E[X3X4] = E[XsXs] = E[X7Xg] = 1. Note that the Isserlis theorem breaks up any term in the original
sum (C.50) into a product of expectations of the form E[X X |, where each product can only be identically 1 (with respect to summation
in kq, ko, k3 and ky) if each odd index [ is paired with [ 4 1 (e.g., after decomposing A by Isserlis, the only term which is identically 1 is
E[X1 X, E[X3X4] E[X5Xs] E[X7X3]). Hence, after applying the Isserlis theorem to A, Band C, each if the 11 terms contained in the sum A—B+C
ends up with exactly one term identically equal to 1. Therefore, we obtain (1 —4+ 6 — 3) x 1 = 0 the right-hand side of (C.51). Hence, the
full expression (C.51) contains no term identically 1, and, in addition, we no longer need to account for D. Next, note that, after applying the
Isserlis theorem to (C.50), no resulting term can be of the form E[XHXIZ] x 13, where 1 stands for “identically 1” with respect to summation
in some index k. (and E[X,, X, | is not identically 1). So, consider terms of the form E[X, X, | E[X,X,,] x 1%, where, again, 1 stands for



“identically 1” (and E[X;,X,, ] and E[X,,X;, ] are not identically 1). For the sake of clarity, consider the particular term E[X1X3] E[X2X4] x 1.
After applying the Isserlis theorem, the latter ends up appearing (once) in the expansions of A, of E[X1X2X5X4X7Xg] and E[X1X>X3X4X5Xs] in
B, and of E[X1X2X3X4] in C. Thus, on the right-hand side of (C.51), we obtain (1 —2+ 1) x (E[X1X3] E[X2X4] x 1%) = 0. Since the same is true
for every other term of the form ]E[XHXIZ] IE[X13X,4] x 12, the full expression (C.51) contains no such terms and, in addition, we no longer
need to account for C. Now consider terms of the form E[X}, X;, | E[X,X,, | E[X};X;; ] x 1, where 1 stands for “identically 1" (and E[X;, X, ],
E[X,X, | and E[X;,X;; ] are not identically 1). Note that, after applying the Isserlis theorem, B ends up containing the sum of all possible
terms of this form, and each one appears only once. Since they also all appear only once in the expansion of A, the terms stemming from
A and B cancel. Therefore, (C.50) is made up of the sum of terms of the form (C.52), as claimed.

We are now in a position to establish the asymptotic behavior of (C.49). For notational simplicity, we focus on the particular term of
the form E[X1X5] E[X2Xs]| E[X3X7] E[X4Xs]. After taking summations, the resulting expression is asymptotically equivalent to

gim+4h &L L E[di(a2, ki)di(a2), ks)] E[da(a2, ki)da(a2, k)]

C o i 2 20 2. 2.
a4d12+8h12 n4 azh azhz

@ ky=1ky=1kz=1kg=1

E[d1((12], kz)d1(a2f, k4 ] E[dz(azj, kz)dz(azj, k4)]

a2h1 azh2
C1 E[d1(a2/, ky)d1(a2, ks)] E[da(a2!, ky)da(a2, ks)]
=215 2h 2h
g S ki=1ks=1 @ o
1 & & E[di(a2), ko)di(a2, k)] E[da(a2, ky)da(a2, ky)]
. Naj Z Z azhi a2ha ]

The terms |E[d(a2/, kq)da(a2’, k3)] /a®"2], |E[d2(a21 ka)d(a2/, ks)] /a*"2| are bounded in ki, ks, k3 and ky. Moreover, by a reasoning anal-
ogous to the one leading to (C.46), the averages n, ZZ:” 12;?’ (E[d1(a2, ky)d1(a2/, ks)] /a*™ and n”ZZ;’ 12;‘” (E[d1(a2, ky)d4 (a2,
ks)] /@'t converge to constants as n — oo. This shows (C.39)fork; =4 and k, = 0.

A simple adaptation of the argument for the case k1 = 1 and x, = 2 (see (C.47)) shows that (C.38) also holds when x; = 4and k, = 0,
as claimed.

We now turn to the case where 1 > 2 and x; > 2. Let ¢, > 1/2 be a fixed constant. Then,

[ w(@2) — 1\ WP (@2) — 1\
2| ( ) ( )|
a2 ad3a

K2

| WiP@2) - 1" w2y -1 1
= H @en ’ ‘ P ‘ ({|WQ”>(a2/')—1|z;o)m(\W£3“)<azi)—1|zco}+ (WS @)1 <o) (w P a2))-1120)
1wl @212 000w a2 11<ao) T TiwdPiaz-11<coiniw (asz—u«o))]' (C53)

However, by the Cauchy-Schwarz inequality,

EH w2y -1 ‘Kl ‘ Wi a) -1 ‘K21

ad12
< ( %o )KlE ‘W34)(a2;) 1‘
- \gd12 ad34

( %o ) \/E(V‘m(az]))zkzpuw,ﬁ“)(azf) —1| > ¢)

adiz ad34

< ()" ruw @) - 1= ) = o (4)],

where the last inequality and the equality are consequences of (C.24) and Lemma C.3, respectively. The same bound applies to the first
and third terms in the sum (C.53). Therefore, the latter is bounded by

a3 uw,S”%azJ)—l\<:o>m{|w,234)(a2f)—1|z;o}]

K2
1{|w,§34)(a2i)—1|>;0)}

2

) (12) Jy 1 (34) iy K
of(3)") x| [M R
n

as12 ad34

k1= K= 2 B iy _ 12
<ol (] GG MR P
. 4 . 4
(] () [T [
(2]

(W a2i)- 1<{0}ﬁ{|Wr(134)(02i)1|<{0}i|




In (C.54), the first inequality is a consequence of the Cauchy-Schwarz inequality, and the second inequality follows from (C.38) for k1 = 4
and k; = 0 or k1 = 0 and x; = 4. In addition, by a simple adaptation of the argument for the case k; = 1 and x; = 2 (see (C.47)), (C.38)
also holds for k; > 2 and «, > 2.

The cases where k1 = 1and x; > 4 or k7 > 4 and x; = 1 can be tackled by a similar procedure. 0O

The following lemma expresses, up to a residual term, the cross-covariance (first cross-moment) between sample wavelet variances in
terms of the functions (3.14).

Lemma C.5. Let q)!?/(z) and n, be asin (3.14) and (4.1), respectively. For 0 < r < 1/2,

E[(W'SIZ)(C’(")ZJ) = D102 gy Wi (0(0)27) = m{lw,?“’(a(n)zf>|>r1]

2+ a(n)2(M3+h2a)—2(hia+h34) - 2 ny 2, I , o p
== { (n) [7 SN ol @k - 2 K@l 2k - 2 k’)]
¢12(0)(p34 (O){l + O(a(n)ﬂUO )}2 L M k=1 k'=1
2'n, 2n
a(n)z(h14+h23)*2(h12+h34) 1 e , L , a2 max{hyz+hg,hiz+hy3}=2(h12+h34)
n [— ol 2k — 2k )l (2K — 2K ] +o( )] C.55
- — 2.0 2 )y ) - (C55)

* k=1 k=1
asn — oQ.

Proof. As in the proof of Lemma C.4, we first drop the indicator functions on the left-hand side of (C.55) and investigate the limit. We will
show that
2—0+")

cOv[w,(,”)(azf ), WE9(a2 )] -
[@7,(0)®%} (0)(1 + O(a=™0))?]

.
@2i3+haa)—2h1p+hag) 1 2N 2

: { - =Y Y oh@k— 2 K)ol @k - 2k)
* * k=1 k=1
@it 2hipthyg) g A2
+ n — o> ol 2k — K)ol (2k - 2K)
* * k=1 k=1
a2 max{hi3+hag,h14+hy3}=2(h1a+h34)
n 0( )} (C56)
n,
In fact, the left-hand side of (C.56) can be written as
Ngi Ngi . . ) "
: , 1 A dy(a2, k)dy (a2, k) ds(a2’, K')da(a2’, k'
E[(Wrslz)(azj) o 1)(W1534)((12] ) o 1)] — 1(a ];) 2(a ) 3(a 34) 4(‘/1 () _1\ (C57)
NajNaj &= £ o1¥(a2)) 0B¥(a2")
By the Isserlis relation (C.37), the first term in the argument of the sum (C.57) can be reexpressed as
E[dl(aZf  K)da(a2, k)ds(a2 , K)da(a2 , k/)]
012)(a2)o*¥(a2')
E[dl(azf, K)ds(a2 | k’)] ]E[dz(azf, K)da(a2 | k’)] ]E[dl(azj, K)da(a2 | k’)] E[dz(azf, k)ds(a2 | k’)]
=1+ (@) (a2) ’ @) a2 | (€58

By Lemma C.1(ii), and (C.58), we can rewrite (C.57) as

| s My E[dl(azf, k)d3(a2f,k/)] E[dz(azf,k)d4(a2f’,l<')] n«:[d](azf,1<)d4(azf’,k')] E[dz(azf, k)dg(azf’,k/)]
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2hathos)-2hiz thse) 1 ZJZ i E[di(a2), kda(a2’, k)] B[ da(a2, kds(a2, k)]
[ iE (C59)

n, n, a?ha a?has
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By adding and subtracting the counterparts @4’ (2/k — 2/'k’) for each term, up to the factor 2-0+)/ {@ﬂ(O)@ﬂ(O)(l + 0(a=™9))?} the
expression (C.59) can be written as
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It remains to justify the order of the error term in (C.60). So, by adapting the proof of (A.16), we obtain
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and
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a2haa
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By extending this analysis to the remaining terms of (C.60), we obtain analogous bounds and the error term o(
as claimed.

In view of (C.59) and (C.60), it suffices to show that the indicator functions on the left-hand side of (C.55) do not affect the approximation
order. In fact,

@2 max{hy3+hyg,hig+hy3)—2(h1+h3g) )
Ny ’



(12)¢ g (34 o (2 o (34 o
E[(Wn (a2) — 1YW (a2)—1)]—IE[(Wn (a2) = D111, (WS (az)—l)l{w,?‘”(ay’)>r}]

_ (12)¢ i (34)(
= ]EI:(Wn (a2) = YWy (a2") — 1) (]{W,(,lz)(azf)w}1{W,(134)(a2}'/)§r}
L aai<n Lw @ ron T 1(w,212)<a2i)sr}1[W,‘F‘”(a2f")sr})]' (C61)
Define
h*= max  hg,, h.,= min hgg,. C.62
Ga2=1.2.3.4 9192 * G1,a2=1,2,3.4 q1492 ( )

For 0 < &’ < 1, by the Cauchy-Schwarz inequality, expression (C.39) (from Lemma C.4) and Lemma C.3, the first term on the right-hand
side of (C.61) is bounded by

12) 19 34y, 7
[E[Wi2021) = 11,2 (W@ ) = DI om0, ]|
(12)¢ 9iy _ 1.2 B4 91y _ 1.2
i E[(Wn ot l) (Wn e ])} P(W(a2) <)
a2 ao’34

a4hmax—4hmin+1 1 n 1-¢
= C( n )exp{—i (aZ(I13+h4)—4h34+1> }

@2 max{hi3+hog hip+ho3)=2(h12+h34)
=o( )
[

where the constant C does not depend on r and the last equality is a consequence of (3.6). Similar bounds hold for the remaining terms
on the right-hand side of (C.61). Therefore, the expression (C.55) follows. O

The following lemma describes the decay rate of the first individual truncated moment of the wavelet variance.

Lemma C.6. Forany0 <& < 1and0 <r < 1/2,

max”E[{W,SIZ)(a(n)Zj) - 1}1{W§12>(a(n)2,-)5,)] ; E[{W,ﬁlz)(a(n)zj) - 1}]{W,(l]2)(a(n)2f)>r}:| H
a(n)h1+h272h12+1/2 1 n 1—£
= O(—ﬁ exp{—i(iaz(hﬁhz)_%uﬂ) }) (C.63)

Proof. Notice that
12 j 2 j 2 j
0=E[W;"(a2) 1] = ]E[(W'S] (a2) - ])1(Wy(1]2)(02j)>r}] * ]E[(W'El (a2) - m(Wﬁ”%azJ)gr}] ‘
Hence,

E[(w,512>(a21) -1, M] = —E[(W,Sm(azf') -1

w2 {W,S”)(azi)sn] :

However, by the Cauchy-Schwarz inequality,

E[WS2(@2) = D100 | | =/ Var [ Wia2) |y W™ a2)) < 1) (C.64)

By expressions (C.64), (C.22) and Lemma C.3, the expression (C.63) follows. O

The following lemma establishes the decay of the covariances between truncated terms (C.36) and indicators involving wavelet
variances, or between indicators only.

Lemma C.7. Forany0 <& < 1and0 <r < 1/2,
(i)
1 n 1-§ n 1-§

Cov I:l{‘wr(]12)(a2j’)‘>r}7 1[|W,534)(azf’)‘>r)i| = EXP{_E I:(az(h1+h2)—4h12+l) + (7a2(h3+h4)—4h34+1) ]] (C.65)
(if)

Var| log |[W{(a(n)2)[1 < (C + log*(r)) ex —1(;)17S (C.66)

g 1Wn wi'Pamy2y<—r) | = g 3 a(n)2(h+hy)=ahiz+1 :
and

. n 1-¢
Var[log Wr(llz)(a(n)zj)l[Wr(‘12)(a(n)2j)>r}] < logz(r)expl—(m) ] + 0(1), (C67)



(iii)

(12)( 49i
Cov [log W@ 1,12y 1 {\W,(134)(a2j')|>r}]

5 n 1= 1 n 1-¢
= flog)exp| (i) + o] exel=3 () | (C68)

In (C.66), C > 0 does not depend on r.

Proof. We first show (C.65). By the Cauchy-Schwarz inequality, the left-hand side of (C.65) is bounded from above by

\/Var [l{IWﬁlz)(al")brl]\/var [1{\Wﬁ34)(a2j/)|>r}]' (C.69)

Moreover, for 0 < & < 1and the octave j, Lemma C.3 implies that

] = P(IW{?(a2')| > r)P((W P (a2)| <) < exp{_(#u“)l_s}. (C.70)

Var [1 Ty

(WP a2 >ry

The same bound holds for the octave j in (C.69). Thus, (C.65) holds.

To prove (C.66), note that Var [log (W' (a21)|1 (12) ay)<—r}] is bounded by

2114,(12)7 1o
E[log W (a21)|1(wr<llz)(a2j)<_r}]

= E[log?|W{?(a2) (1 +1

Wi (a2i)<—1/2) {—1/2<W,(,12)(a2j)<—r}):|

< CE[|W“Z)(a21)|1{W<m . 1/2}] +1og2(r)P(—1/2 < WP(a2)) < —r)

< c\/E[WS”(azf)Z] P(W'P(a2) < —1/2) + log?(r)P(—1/2 < WP (a2) < —r)

< 1 n 1-§ log? n 1-§
= exp{ ) <a2(h1+h2)—4h]2+1 ) } + log(r) eXp[_(az(h1+h2)—4h12+1 ) }
This establishes (C.66).

To prove (C.67), note that Var [log W(12 (a2/)1 ] is bounded by

W (a2i)>r)

E[10g2|w,5]2)(02j)| 1(W,(112)(02i)>r}:|

= EI:Ing'Wzle)(azj)'<l[r<W,(,12)(a2/ <12y T w2 az})zl/Z}):I
< 1og2(rP(r < W{2(a2') < 1/2) + E[log W@, /2]] .
However, for some C > 0,

log?|W{P(a2’)|1 Wi < CWD(a2)?,

)=1/2}
(12) 5jy P
where, by (C.22), W, “(a2) — 1and
E[W{"P(a2)’] = VarW{P(a2) +1— 1, n— oo.
Therefore, by the dominated convergence theorem for convergence in probability,

lim IE[log w1 (a2’)|1

n—oo

This establishes (C.67).
To show (C.68), again by applying the Cauchy-Schwarz inequality, the left-hand side of (C.68) is bounded from above by

(12), _oj
\/Var [1og Wi (@21 (‘ng]z)(azj)br}]\/Var [t w9y ) (c71)
Hence, the bound follows from (C.65) and (C.67). O

a21)>1/2}] 0.

We are now in a position to establish Theorem 4.1.
Proof of Theorem 4.1. Fix0 < & < 1 and recall that n, = ay"—ﬂ, Then,

Cov [log S22 102 log [S®4(a2)| 1

(a2))>rn}’ “Wr(134)(a2j/)|>rn}:|

,log (WG9 (@2)] 1

— COV [log |W(12 (a2])| 1 ‘W(12) aZI)\>r

{|Wé3‘”(azi’>|>rn}]



+ log |E[d3(azf, 0)da(a?’, 0)] | Cov [log WP(a2) 1, 1

WP a2 > ) {|W£,34>(a2i’>|>rn}]

log W4 (a2) 1

+ log [E[di(a2, 0)dy(a2/, 0)] | Cov [1“%]2)@1””"},

{|W§f4’(azf’>|>rn}]

+ log |E[dy(a2’, 0)dx(a2/, 0] | log |E[d3(a2f’, 0)da(a2’, 0)] |Cov [1

D (a2l >}’ 1{|Wé34)(aﬂ’>\>rn}]

wy

= Cov [log IW'(a2)]1 log [W39(a(n)2)|1

(\Wr(134)(ﬂ(")2j/)\>rn}]

n 0((w>2) (C72)

The last two equalities in (C.72) are a consequence of Lemma C.1, (ii), as applied to E[dy(a2/, 0)d2(a2’, 0)] and E[d3(a21", 0)d4(a2’ 0)], and
of the bound (C.68) (from Lemma C.7(iii)) under the condition (4.2).

Therefore, it suffices to show that the main term on the right-hand side of (C.72) is equal to the main term on the right-hand side of
(4.3). By accounting for absolute values, the covariance term in the former can be broken up into a sum of four terms, namely,

(WP a2y )

Cov [log Wr(ulz)(azj)l(w,ﬁ”’(azi)>rn1’ log W**(a2/ )l[w,§34)(azf’)>rn}] (C73)

plus the remainder

Cov [log w2 (a2)1 ). log (W3 (a2)))| 1,

WiP(a2)> 1, W,534)(027)<—rn):|

+Cov [log W2 @2 1,02 - logW(a2')1,

a2l)<—ry W,(134)(a2i)>rn]]

+ Cov [log W{P(@2)| 1y, log WS (a2)| 1 {W’(134)(a2,.)<_rn}] . (C74)

By the Cauchy-Schwarz inequality, the bounds (C.66) and (C.67) (from Lemma C.7, (ii)) and condition (4.2), the absolute value of the second
term in the sum (C.74) is bounded by

4hmax —4hmin \ 2
(12), i (34), i B a(n ) tmax==imin
\/Var [log Wy, “(a2))] 1{W,§12)(a2i)<7r,.;] Var [log Wi (azj)l{w,§3“)(azj)>rn)] = o((T .

By a similar argument, the same bound holds for the remaining terms in the sum (C.74). Thus, it suffices to focus on (C.73). In the following
derivations, expressions involving individual sample wavelet variance terms will be expressed in terms of W,(,m(azj ), but analogous
expressions hold when substituting W*¥ (a2’ for W.'?(a2).
Fix 0 < & < 1. For any given j, write out the almost sure Taylor expansion
1

log W{'?(a2)) L2 q2yarmy = {(Wﬁlz)(azj) -1)- 5(

(12) j

Wi ((121)—1>2}

_ 1,02, . s (C.75)
0. (W (a2)) Wi (@2 1)

where 6, (W{'"?(a2/)) € [min{W}'?(a2), 1}, max{W!?)(a2), 1}]. Then,

(12)( 49i (34)¢ 4
E[loan (a?) log W, (a2 )1min[[Wﬁlz)(ay),wﬁf“)(azi/)]>r,.]]

— (12)( g2y _ (34) gy _
= B[ W§'(a2)) = DIWEa2) = D1 2y waar o

—

(34)
o Wa ) - 142
(12)¢ 49i n
_E[(Wn - 1)(9+(w,2"““"(azf’))) mint42) 20 Wi 02 =1

(12), iy )
_;E[<W” (a2) 1)Z(W,?‘“(azf)—l)l

N

0. (W (a2)) {min{w,ﬁlz)(aﬂ),W,(.“)(azf)}>rn}}

1E[(w,§‘2’(azf) - 1)2<W,534)(azf’) -1
4

2
- - - T, o a2), i (34), . (C.76)
9+(W,§12)((12])) 9+(W,E34)((121/))> {min{W,, “’(a2)),Wy""(a2/ )}>rn}:|
For 0 < r, < 1/2, recast

(W,Em(aZj) -1 )21
= 1. .- (12) i
9+(W,(112)((121)) (W, " (a2))>ry}

(W,(llz)(aZj) — 1)2(] 41 )
=\=F5 (12), (12) i
9+(W,(,12)(a21)) {rn<W$'H(a2i)<1/2} Wi a2i)=1/2}
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(12) j
wiP(a2i) — 1\2
5( - ) 1(r,,<w,ﬁ12

(W,§12>(a2f) -1
T'n

2
Ja2)<1/2) 12 ) LD aaiy=1/2)° (€77)



Therefore, up to a constant, we can bound the fourth term in (C.76) by

E[‘ <w,§”>(azf) . 1)2<W,E34)(a2f) 1

- 1, . (12), i (34),
9+(W 12 (021)) 9+(W,534)((12j))) {min{Wy, *’(a2)),Wy" (a2 )}>rn}

|

(34) 1nf' 2
(W (a2')—1) 1[rn<w,534)(azj)<1/2}]

(12)

1 .
< TlE[(W},m(az) 171

- {rn<Wy “(a2))<1/2}
n
IE[ WP (a2) = 121, o W@ )= 121, on ]
rn/2 Wi a2)=1/2) (m<w$a2)<1/2)
(12)( 49J (34)( 49i’ 2
Tn/2 E[ (W, ?(a2’) — 1) . <W(12)(a2’)<1/2}(w (@2") -1 1{W,(134)(a2j)21/2}:|
1 .
(12)( i 2 (34)( 49J’ 2
+ WE[(WH (62)) = 11 421y (W02 = 1) 1{W,534)(02,.,)21/2}]. (C78)

By Lemma C.4, the fourth term in the sum on the right-hand side of (C.78) is bounded by

a4hmax*4hmin+1 2
o)) (€79)

By the Cauchy-Schwarz inequality, Lemma C.4 and condition (4.2), the first term in the sum (C.78) is bounded by

2(812+834) “ Wi a2y — 1,4 W (a27) — 14 iy :
ra ( P ) ( o3 ) ’ [ ra<WiP(a2i)<1/2) " (ra<W3* )a2f)<1/2}]

q?(812+034)

a (12), i (34), i
< r4 0 - P(rp, < Wy “(a2) < 1/2)P(r, < Wy 7 (a2) < 1/2)
n

q2(612+334) o a 1 n 1-& n 1-&
L (E) eXp{_E[(az(hﬁhz)*“hlzﬁ) + (a2(h3+h4)*4h34+1) ]}
4hmax —4hmin+1

()

since 2(812 + 634) < 8hmax — 8hmin. The second term in the sum (C.78) is bounded by

Ca?d12+934) W (a2) — 1\4  WE(a2) — 114
r2 E ( P ) ( Py ) ' E[]{ (12) (azl)>1/21rn<w,§34)(a2f)<1/2}]

Ca2(512+534

( )\/p D (a2i) = 1/2)P(r, < W) < 1/2)

Ca2(612+534) a 1 n 1-& a4hmax_4hmin+1 2
= Iy O(H) exP{_i(aZ(h#hO—‘*hsﬁl) } - O(( n ) ) (C81)

An analogous bound holds for the third term in the sum (C.78). Therefore, by (C.79), (C.80) and (C.81), the fourth term in (C.76) is of the
order
4hmax —4hmin+1

o(——))

By a similar reasoning, the same conclusion holds for the second and third terms in (C.76). Therefore, by (C.76) and Lemma C.5, we conclude
that (C.72) is equal to the right-hand side of (4.3), as claimed. O

Remark C.5. For g = q; = qo, W."”(a2/) = 0 as. (see (C.19)). Then, the existence of the moment E| log'|W"(a2/)| |, | € N, can be directly

established by applying relation (96) in [54]. Moreover, the analysis of moments in this section can be extended without the truncation
based on the sequence (4.2).
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