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Multiscale Properties of Instantaneous Parasympathetic Activity in

Severe Congestive Heart Failure: a Survivor vs Non-Survivor Study

G. Valenza∗,#, H. Wendt∗, K. Kiyono, J. Hayano, E. Watanabe, Y. Yamamoto, P. Abry∗∗, R. Barbieri∗∗

Abstract— Multifractal analysis of cardiovascular variability
series is an effective tool for the characterization of patho-
logical states associated with congestive heart failure (CHF).
Consequently, variations of heartbeat scaling properties have
been associated with the dynamical balancing of nonlinear sym-
pathetic/vagal activity. Nevertheless, whether vagal dynamics
has multifractal properties yet alone is currently unknown. In
this study, we answer this question by conducting multifractal
analysis through wavelet leader-based multiscale representa-
tions of instantaneous series of vagal activity as estimated from
inhomogeneous point process models. Experimental tests were
performed on data gathered from 57 CHF patients, aiming
to investigate the automatic recognition accuracy in predicting
survivor and non-survivor patients after a 4 years follow
up. Results clearly indicate that, on both CHF groups, the
instantaneous vagal activity displays power-law scaling for a
large range of scales, from ≃ 0.5s to ≃ 100s. Using standard
SVM algorithms, this information also allows for a prediction of
mortality at a single-subject level with an accuracy of 72.72%.

I. INTRODUCTION

Fractal theory has been giving a major contribution in

understanding complex biological dynamics, especially in-

volving nonlinear cardiovascular control and related auto-

nomic nervous system (ANS) activity [1]–[7]. In fact, the

cardiovascular system exhibits fractal complexity at many

spatial and temporal scales. At the cellular level, for instance,

fractal structure and functional behaviour are associated with

the cardiac myocyte, whereas at a genome level fractal anal-

ysis has been providing meaningful information in case of

inherited heart muscle disease hypertrophic cardiomyopathy

and the so-called junk-DNA [1].

At a macroscopic level, fractal processes and multifractal

models were successfully employed to model the temporal

fluctuations in heartbeat dynamics [2], [4], [6], [7], whose

direct clinical application has been directed to congestive

heart failure (CHF) [4], [6], [8]–[10]. Particularly, it has been

demonstrated that features of heartbeat dynamics derived
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from the time and frequency domain transformations are not

sufficient to properly characterize the status of CHF patients,

as there is the need of complementary nonlinear/multiscale

metrics (cf., [4], [6], [9], [10] and references therein for

reviews).
As the mentioned previous studies focused on multifractal

analysis of heartbeat dynamics (through the analysis of

heart rate variability series, HRV) exclusively, there still are

questions left unanswered. In fact, it is unknown whether

such scaling properties arise from the nonlinear/complex in-

teractions between sympathetic and parasympathetic activity

at the level of the sinoatrial node (as thoroughly reported

in [11]), or whether there are already intrinsic multifractal

properties in each autonomic dynamics per se. To this end,

we here study multiscale properties of vagal activity as

estimated with high resolution in time.
We use a powerful and robust methodology for conducting

multifractal analysis, which employs multiscale representa-

tion and the so-called wavelet p-leaders, i.e., local ℓp norms

of fractionally integrated wavelet coefficients [5], [12]. These

multiscale quantities are known to better capture fluctuations

of regularity in heartbeat data by scanning all details finer

than the chosen analysis scale [2], [7].
Recently, we studied the impact of several interpolation

strategies on wavelet leader based multiscale representations

applied to heartbeat interval series [13]. We demonstrated

that such representations may be biased by the kind of

interpolation employed (e.g., linear, spline, etc.), therefore

an ad-hoc physiologically plausible modelling is strongly

recommended. We proposed the use of inhomogeneous

point-processes to effectively characterize the probabilistic

generative mechanism of heartbeat events, even considering

short recordings under nonstationary conditions [14]. The

unevenly spaced heartbeat intervals are then represented as

observations of a state-space point process model defined

at each moment in time, thus allowing to estimate instanta-

neous HRV measures, including instantaneous vagal activity,

without using any disruptive interpolation method.
Experimental tests are performed on data comprising 57

CHF patients, aiming to accurately assess the risk of pos-

terior mortality by automatically discerning and predicting

patients surviving more than 4 years after heart failure.

II. MATERIALS AND METHODS

A. Point-Process Models of Heartbeat Dynamics

A random point process is a stochastic process comprising

the occurrence of discrete events in time. In particular,

this model defines the probability density functions (PDFs)

predicting a future event, given a parametric formulation

of the current and past observations. Here, point-process



stochastic events are represented by heartbeats (i.e., the

time occurrence of R-waves in ECGs), therefore aiming to

characterize the PDF of the next ventricular contraction given

a linear combination of the past RR intervals. Motivated by

physiological and modelling reasons, such PDFs are known

to be inverse-Gaussian (IG) distributions [14].

Therefore, we model the unevenly sampled RR interval

series through IG PDFs whose first order moment (the mean

µRR(t,Ht, ξ(t)), with Ht as the history of past RR intervals,

ξ(t) the vector of the time-varying parameters, and ξ0(t)
the shape parameters of the IG) has a linear autoregressive

formulation. As a major advantage, since such PDFs are

mathematically defined in continuous time, we can obtain

instantaneous measures without applying any interpolation

techniques to the original RR interval series. Importantly,

this advantage applies also for the derivation of spectral

measures, following the estimation of µRR(t,Ht, ξ(t)) and

kernels therein.

Formally:

µRR(t,Ht, ξ(t)) = γ0 +

p∑

i=1

γ1(i, t)RRÑ(t)−i (1)

where Ñ(t) is the left continuous sample path of the associ-

ated counting process (i.e., the index of the previous R-wave

event before time t), Ht = (uj ,RRj ,RRj−1, ...,RRj−p+1),
ξ(t) = [ξ0(t), γ0(t), γ1(1, t), ..., γ1(p, t)], and ξ0(t) > 0.

We effectively estimate the parameter vectors ξa(t) at each

time interval ∆ = 5ms using the Newton-Raphson procedure

to compute the local maximum-likelihood estimate [14].

Because there is significant overlap between adjacent local

likelihood intervals, we start the Newton-Raphson procedure

at t with the previous local maximum-likelihood estimate at

time t−∆.

We determine the optimal model order {p} by prefit-

ting the point process model goodness-of-fit to a subset

of the data [14]. Model goodness-of-fit is based on the

Kolmogorov-Smirnov (KS) test and associated KS statistics

[14]. The recursive, causal nature of the estimation allows

to predict each new observation, given the previous history,

independently at each iteration. The model and all its pa-

rameters are therefore also updated at each iteration, without

priors. In other words, each test point RRk is tested against

one instance of a time-varying model trained with points

{RRj} with j < k. Autocorrelation plots are also considered

to test the independence of the model-transformed intervals

[14]. Once the order {p} is determined, the initial model

coefficients are estimated by the method of least squares

[14]. Extensive details on this modelling can be found in

[14]

B. Multiscale analysis

1) Self-similarity and wavelets: Classical multiscale anal-

ysis relies on the estimation of wavelet coefficients, which

are obtained by comparing a series of RR intervals {RR}
to the collection {ψj,k(t) = 2−jψ(2−jt − k)}(j,k)∈N2 of

dilated and translated templates of a mother wavelet ψ via

inner products, d{RR}(j, k) = 〈ψj,k|{RR}〉 (see, e.g., [15]

for details on wavelet transforms).

For self-similar processes such as fractional Brownian

motion, which are commonly used models for HRV series

[8], the so-called wavelet structure functions S(j, q) display

power laws with respect to scale j

S(j, q) =

nj∑

k=1

|d{RR}(j, k)|
q ≃ Kq2

jqH (2)

with nj the number of d{RR}(j, k) available at scale 2j . The

Hurst parameter H and the function S(q = 2, j) are directly

related to the distribution of energy along frequencies (i.e.,

to the Fourier spectrum or autocorrelation of {RR}). They

are hence linear features of {RR} that can be efficiently

estimated using wavelets [2], [5].
2) Multifractal models and wavelet p-leaders: It has been

demonstrated that self-similar models describe only parts

of the scaling properties in HRV data and that multifractal

models could provide more complete descriptions (see, e.g.,

[2], [4]). These essentially imply that the linear scaling

exponents qH in (4) should be replaced with a more flexible,

concave function ζ(q), and that the parameter H alone can

no longer account for all scaling properties in HRV data. To

correctly estimate ζ(q), wavelet coefficients must be replaced

with non-linear multiscale quantities that sense the local

regularity fluctuations in data across all finer scales [5]. In

this study, we employ the wavelet p-leaders, which have

recently renewed the state-of-the-art for the estimation of

multifractal models [12]. They are defined as ℓp-norms of

(fractionally integrated of order γ) wavelet coefficients in a

narrow time neighborhood over all finer scales

L
(p,γ)
{RR}(j, k) =

(
2j
∑

λ′⊂3λj,k

|2j
′γdX(λ′)|p2−j′

)1/p

, (3)

with λj,k = [k2j , (k + 1)2j) and 3λj,k =⋃
m∈{−1,0,1} λj,k+m. The parameters γ ≥ 0 and p > 0

must be chosen to ensure minimal regularity constraints

(cf. [12] and references therein for details on multifractal

analysis, beyond the scope of this contribution). It can

been shown that the multifractal properties of {RR} are

well described by a multiscale representation consisting of

the sample cumulants Cumm of the logarithm of p-leaders

lnL(p,γ)(j, ·) [5]

C(p,γ)
m (j) ≡ Cumm lnL(p,γ)(j) ≃ c0m + cm ln 2j . (4)

In particular, the coefficients cm are related to ζ(q) via

the polynomial expansion ζ(q) ≡
∑

m≥1 cmq
m/m! (and

hence to the multifractal spectrum, cf., [5] for details).

Consequently, the leading coefficients c1 and C
(p,γ)
1 (j) are

closely related to H and S(2, j), respectively, and constitute

linear features associated to the autocorrelation of {RR}

[2], [5], while C
(p,γ)
2 (j) and C

(p,γ)
3 (j) (the variance and

skewness of lnL(p,γ)(j), respectively) and c2 and c3 (related

to the multifractal properties of {RR}) are nonlinear features

that capture information beyond correlation.

C. Experimental Data

24-hour Holter ECG recordings from a cohort of 57

patients suffering from CHF were made available by the

Fujita Health University Hospital, Japan. A total of 28 of

these patients died within 33 ± 17 months (range, 1-59



months) after Hospital discharge, whereas 27 survived for

a longer time (see [3] for further clinical details). Below, the

former group will be referred to as non-survivors (NS) and

the latter as survivors (SV). Two recordings were discarded

due to poor signal quality. From the ECG recordings, R

peak arrival times were automatically extracted for each

patient, and missing data and outliers stemming from atrial or

ventricular premature complexes were handled by automated

preprocessing tools. None of the subjects considered in this

study present sustained tachyarrhythmias.

D. Analysis setting, Statistical Testing, and Pattern Recog-

nition

Instantaneous series of µRR(t,Ht, ξ(t)) are estimated

from the {RR} interval series through the point-process

method previously described. The instantaneous autospec-

trum Q(t, f) is obtained directly from the instantaneous

kernels [γ1(1, t), ..., γ1(p, t)]. Then, we can compute the

instantaneous index within the low frequency (LF = 0.04-

0.14 Hz) and high frequency (HF = 0.14-0.4 Hz) ranges

[14]. Instantaneous series of HF power are taken as marker of

vagal activity and, then, analyzed using the p-leaders based

multiscale representations. The analysis is conducted using

Daubechies3 wavelets. Further, p-leaders with p = 1, which

have been shown to yield lowest variance [12], are used.

Moreover, inspection of the database leads to the choice

γ = 1. In what follows, we compactly write Cm(j) for

C
(p,γ)
m (j) 1.

To average among groups, we condensed the information

about the time-varying dynamics of a given instantaneous

feature through its median value. We then evaluated between-

group differences (NS vs. SV) for every feature using bivari-

ate non parametric statistics (Mann-Whitney test) under the

null hypothesis that the between-subject medians of the two

groups are equal.

Furthermore, we employed an automatic classification

algorithm based on well-known Support Vector Machine

(SVM) in order to automatically discern NS vs. SV at a

single subject level. We use the following feature sets:

• α set: a subset of multiscale representation

log2 S(2, j), C1(j), C2(j), C3(j) for j ∈ [jm, jM ]
• β set: a subset of exponents ζ(2), c1, c2, c3, estimated

for each range of scales

A multidimensional point in a given feature set was

considered an outlier if z-scores associated to its dimensions

were greater than 3. To assess the out-of-sample predictive

accuracy of the system, we adopted a Leave-One-Out (LOO)

procedure based on a SVM-based classifier. Specifically, we

employed a nu-SVM (nu=0.5) with a radial basis kernel

function with γ = n−1, where n is equal to the number

of features. Within the LOO scheme, the training set was

normalized by subtracting the median value and dividing by

the MAD over each dimension. These values were then used

to normalize the example belonging to the test set. During

the LOO procedure, this normalization step was performed

1Note that it can be shown that, for a large subclass of multifractal

processes, C1(j) ≡ C
(p,γ)
1 (j) − γ ln 2j while C

(p,γ)
m (j) for m ≥ 2

does not depend on γ and p.
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Fig. 1. Multiscale representations S(j, 2), C1(j), C2(j) and C3(j) for
HF time series (median and mad) for survivors (blue squares) an non-
survivors (red triangles) subjects (top panels); Wilcoxon rank-sum test p-
values (bottom panels).

TABLE I

NS: med (mad) SV: med (mad) p-value

ζ(2) −0.069 (0.223) −0.013 (0.257) 0.36
c1 0.566 (0.071) 0.528 (0.106) 0.40
c2 −0.164 (0.122) −0.165 (0.114) 0.62
c3 −0.137 (0.243) −0.075 (0.272) 0.63

Scaling and multifractal exponents ζ(2), c1, c2, c3 estimated over scales
[2.6, 81.9]s (median and mad; second and third columns) and

Mann-Whitney p-values.

on each fold. Classification results are summarized as bal-

anced recognition accuracy (i.e., average of sensitivity and

specificity).

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Scaling properties

In Fig. 1, the wavelet coefficient based log2 S(2, j) and

p-leader based log-cumulants C1(j), C2(j), C3(j) of the

instantaneous HF power time series are plotted as a function

of analysis scale a = 2j . The shaded area indicates the

time scales of finer resolution than the raw {RR} interval

data (below j ≤ 7, i.e., smaller than ≃ 0.8s). The results

clearly indicate that the instantaneous vagal activity displays

power law scaling for a large range of scales, from ≃ 0.5s

to ≃ 100s. These scaling properties are observed both for

the NS and SV groups. Moreover, the associated exponents

ζ(2) and cm (estimated over scales [2.6, 81.9]s, summarized

in Tab. I) show that the instantaneous HF power time series



can be well described by a multifractal model, since both c2
and c3 take on values that are different from zero.

Fig. 1 further indicates that the scaling laws of

C1(j), C2(j), C3(j) of the NS and the SV group are slightly

different for fine scales (≃ 0.5s to ≃ 20s). To assess

the independent and scale-wise discriminative power of the

multiscale representation, p-values from Mann-Whitney test

are computed and plotted in Fig. 1 (bottom panels; the dashed

line indicates the value p = 0.05). None of the multiscale

quantities log2 S(2, j), C1(j), C2(j), C3(j), considered in-

dividually, are significant for distinguishing NS from SV

subjects. Similar conclusions are obtained for the scaling and

multifractal exponent ζ(2), c1, c2, c3, which also yield large

p-values (see Tab. I).

B. SV versus NS classification

We evaluated the LOO-SVM performance in predicting

SV vs. NS patients using the feature sets α and β estimated

from instantaneous HF series exclusively (constituting αHF

and βHF sets), as well as from combined estimates of

instantaneous µRR and HF power (constituting α[µRR,HF ]

and β[µRR,HF ] sets).

Classification performance (measured in terms of accura-

cies, i.e., % of overall — True Negative and True Positive

— total correct classification) are reported in Table II.

Considering the SV vs. NS classes, accuracy of 50% is the

change.
TABLE II

CLASSIFICATION ACCURACY IN %

scale (j) α[µRR,HF ] set β[µRR,HF ] set αHF set βHF set

5 69.09 40.00 43.64 43.64
6 65.45 50.91 60.00 60.00
7 56.36 54.55 52.72 50.91
8 56.36 40.00 61.81 56.36
9 54.54 41.82 61.81 36.36
10 72.72 43.64 61.81 36.36
11 63.63 50.91 47.27 29.09
12 65.45 45.45 47.27 50.90
13 61.81 38.18 45.45 41.82
14 52.72 - 43.64 -
15 49.09 - 40.00 -
16 52.73 - 38.18 -
17 49.09 - 47.27 -
18 49.09 - 29.09 -
19 61.82 - 40.00 -

Bold indicates best accuracy per feature set with jm = 5, and jM = 19.

Table II shows that multiscale representation of com-

bined µRR and HF power (α[µRR,HF ] set) show the

best recognition accuracy (up to 72.72%). Of note,

best accuracy obtained from multiscale representation

log2 S(2, j), C1(j), C2(j), C3(j) of instantaneous vagal ac-

tivity is above the chance (up to 61.81%), although below

the best accuracy obtained from the use of µRR alone (i.e.,

65.45%; data not shown here, cf., [13]). Confusion matrix

of the best recognition is shown in Table III.

TABLE III

SVM SV NS

SV 78.57% 21.43%
NS 33.34% 66.66%

Confusion matrix of SV vs. NS classification using α[µRR,HF ] set at
scale j = 10

IV. CONCLUSION

In conclusion, we studied time series of instantaneous

HF power (time resolution of 5ms) using multiscale anal-

ysis based on the recently introduced p-leader formalism.

We demonstrated that, both on SV and NS patients, the

instantaneous vagal activity displays power-law scaling for a

large range of scales. This complements current knowledge

which has been limiting multiscale dynamics to nonlinear

sympathetic/parasympathetic interactions, thanks to the anal-

ysis of RR interval series. Using standard SVM algorithms,

we leveraged on this information in order to achieve a

prediction of mortality at a single-subject level with an

accuracy of 72.72%. From a methodological view, these

results strengthen the link between inhomogeneous point-

process models of heartbeat dynamics and wavelet leader-

based multiscale representation. In line with the current

literature, this study poses a step forward for a diagnostic

tool able to assess CHF morbidity and mortality. Future

endeavours will focus on the study of a comprehensive set

of point-process derived instantaneous linear and nonlinear

features gathered from multiscale analyses, as well as on

the investigation of optimal classification model and feature

selection.
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