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Anti-windup Design for Linear Discrete-time Systems Subject to
Actuator Additive Faults and Saturations

Camille Sarotte1, Julien Marzat1, Hélène Piet-Lahanier1, Marco Galeotta2 and Gérard Ordonneau3

Abstract— In this paper a method is proposed to design
an anti-windup scheme for discrete time linear systems with
input saturations and actuator additive failures. This method
provides a fault tolerant system reconfiguration mechanism
with a control law which compensates for the estimated actuator
additive faults and maintains the overall system stability in spite
of actuator saturations. The design approach is derived from
the solution of linear matrix inequalities (LMI) to guarantee
the stability regions. For that purpose the fault tolerant control
method is based on a linear quadratic regulator (LQR) and a
fault estimator for compensation purposes. This method was
tested in realistic simulations with the software Carins (CNES)
on a pressure and mass flow rate model of a cryogenic test
bench cooling circuit.

I. INTRODUCTION

Modern technological systems rely on sophisticated con-
trol systems to meet increased performance and safety re-
quirements. A conventional control design for a complex
system may result in an unsatisfactory performance, or even
instability, in the event of malfunctions in actuators, sensors
or other system components. The consequences could be
damage to technical parts of the systems or to their envi-
ronments. The need for increased system reliability leads
to the development of health monitoring systems. In the
case of actuator failures, it is necessary to be able to handle
emergency situations that can affect a system performance.
The failure should be detected quickly and if possible a
control law should be designed to accommodate the presence
of faults, for example see [1], [2]. The main objective of a
Fault tolerant control system (FTCS) is to maintain, with
a control reconfiguration mechanism, current performances
close to the desirable ones and preserve stability conditions
in the presence of component and/or instrument faults. But
due to physical actuators characteristics or performances,
unlimited control signals are not available and saturations
should be taken into account in the control law design.
Multiple solutions have been studied to compensate for a
decrease in system performance caused by the saturation of
one or more actuators, one way is to add a so-called anti-
windup command, another way is to use direct synthesis
methods by taking into account the saturations in the control
law. Direct synthesis methods aims at taking into account the
nonlinearities due to the saturations in the development of
the control law in order to preserve the performances while
improving the stability [3], [4]. Some methods determine
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a stabilizing gain based on a stochastic linearization of the
saturations. The choice of this gain is very restrictive because
it limits the stability domain. Indeed, these methods require
to determine the parameters on which the gain depends [5],
these parameters making it possible to ensure a semi-global
stability. Methods that consist of a state, output or linear error
feedback to remain below the limits of the actuator often
have a slow dynamical behavior in order to avoid overshoots
[3], [6], [7]. These methods are based on low gains whose
values are limited to avoid saturation and therefore have a
relatively slow response in time which is undesirable for
fault tolerant control. The gain choice is then carried out
by the resolution of linear matrix inequalities and a Riccatti
equation whose solution depends on weighting matrices that
must respect certain constraints in order to not exceed the
limiting value. However, in these works, the choice of these
weighting matrices on the stability domain is not clearly
established. These methods have therefore to be improved
thanks mainly to two types of methods: the addition of a
control part based on high-gain methods or the addition of
a nonlinear part to the command [8], [9], [10]. The use
of these transient performance enhancement methods also
requires the selection of parameters that can be constraining.
These parameters make it possible to adjust the control in
order to improve the performance of the closed loop of the
system, in particular by activating the nonlinear part of the
control law when one moves away from the reference to
follow, in order to respect the limit on the system inputs.
This type of methods remains close to the anti-windup. The
idea of the anti-windup approach is to add a state, output or
error feedback so that the actuator remains within its limits.
This consists in neglecting the saturation in the first stage of
the control design process, and then to add some problem-
specific schemes to deal with the adverse effects caused by
saturation. In the case of discrete systems, our interest is
the development of control laws that provide a semi-global
convergence on any arbitrarily large set of state space. They
usually have a simpler structure and the controller is less
sensitive to model and disturbance uncertainties. The system
performance one wants to achieve can range from the classic
system stabilization problem to expanding the area of attrac-
tion, rejecting disturbances, and regulating the output of the
system [11]. The advantage of the presented control method
is that it studies the determination of the stability regions of
a discrete linear system over time and allows to determine
an anti-windup control law which ensures the asymptotic
stability of the saturated system. Unlike conventional anti-
windup methods based on the resolution of bilinear matrix



inequalities, this method is relatively simple and proposes an
iterative algorithm of linear matrix inequalities in the same
spirit as [12]. In this approach, the set of admissible initial
states and its associated domain of stability are determined
to take into account the compensation of additive actuator
faults. The first part presented in Section 2 consists in the
description of the considered system, then in Section 3 the
design of an anti-windup control law is proposed in order to
determine a set of admissible initial states and its associated
domain of stability. This method has been validated in
Section 4 on realistic simulations of a cryogenic combustion
test bench cooling circuit.

II. SYSTEM DESCRIPTION

The system considered is:

(Σ)

{
Xk+1 = AcXk +BcUk +Bcfk

Yk+1 = CXk+1
(1)

where Xk ∈ <n is the state vector, Yk ∈ <m is the measured
output, Uk ∈ <l is the known input, fk ∈ <l is the unknown
actuator failure, Ac ∈ <n×n the state matrix, Bc ∈ <n×l the
known input distribution matrix and C ∈ <m×n the output
distribution matrix, with m ≤ n. In the unsaturated case, we
can use a control law of the form:

Uk := −B+
c Bcf̂k +Wc(X̂c,k −Xk) (2)

where we denote B+
c as the pseudo-inverse of Bc, −B+

c Bcf̂k
is the fault compensation part and Wc(X̂c,k − Xk) is the
reconfiguration part. The fault magnitude estimation f̂k is
assumed to be estimated with a filter and the gain Wc

is calculated with a linear quadratic regulator [13], [14].
The reference state trajectory Xk is predetermined and its
dynamics is given by:

Xk+1 = AcX̄k +BcŪk (3)

with Ūk the nominal input. Since the fault tolerant control is
activated once a fault has been detected, the nominal input
can be chosen as the mean input over a sliding window
during nominal performances.
The control law can be alternatively written as

Uk := −B+
c Bcf̂k +Wcec,k +Wcηk (4)

The dynamics of the augmented state is expressed as:

ζk+1 =

[
Ac +BcWc BcWc

0 Nc

]
ζk (5)

where ζk :=
[
ηk ec,k

]T
, with ec,k = X̂c,k − Xk

the estimation error, ηk = Xk − Xk the reconfiguration
error and Xk the state reference. Nc is the gain of an
observer ensuring the estimation error convergence so that
its dynamics reduces to ec,k+1 = Ncec,k.

For the nominal system, the gain Wc must stabilize (Ac+
BcWc). Since the pair (Ac, Bc) is assumed to be control-
lable, a Linear-Quadratic Regulator (LQR) formulation can

be adopted where Wc is selected to minimize

Jk :=
∑
k

XT
k QkXk + UTk RkUk (6)

where Qk and Rk are symmetric positive definite design
matrices.
When the input is assumed to be saturated the system
considered becomes:{

Xk+1 = AcXk +Bcsat(Uk) +Bcfk
Yk+1 = CXk+1

(7)

with sat(Uk) :=

 Ui,sat if Ui,k > Ui,sat
Ui,k if −Ui,sat ≤ Ui,k ≤ Ui,sat
−Ui,sat if Ui,k < −Ui,sat


where Uk ∈ <l is the control law and Usat ∈ <l

+

is the
actuator limit, ∀i = 1, . . . , l.

III. DESIGN OF THE ANTI-WINDUP CONTROL LAW

The aim of this section is to design an anti-windup control
law in order to ensure the asymptotic stability of the system
with a saturated input for a given set of initial conditions
and determine the associated stability domain.
We want to determine the anti-windup gain matrix Ec such
that for a set S of admissible initial states (ζ0 ∈ S),
the corresponding trajectory converges asymptotically to the
origin of the subset E ⊂ S. Then, E is a region of asymptotic
stability. For that, we want to determine a new control law of
the form Uk

+ = Uk−Gζk when the control law Uk reaches
its bounds with G ∈ <l×2n.

The reference state dynamics for the anti-windup strategy
is given as:

Xk+1 := AcXk +BcUk + Ec(sat(Uk)− Uk)

Uk := Uk −B+
c Bcf̂k +Wc(X̂c,k −Xk) (8)

If the control law is saturated then Uk = ±Usat:

Xk+1 = AcXk +BcUk (9)

+ Ec(±Usat − Uk +B+
c Bcf̂k −Wcec,k −Wcηk)

We can then write:

Xk+1 −Xk+1 = Ac(Xk −Xk) +BcUk +Bcfk (10)

−Bcf̂k −BcUk +BcWcec,k +BcWcηk

+ Ec(±Usat − Uk +B+
c Bcf̂k −Wcec,k −Wcηk)

which gives

ηk+1 = Acηk +BcWcec,k +BcWcηk (11)

+ Ec(±Usat − Uk +B+
c Bcf̂k −Wcec,k −Wcηk)

we then have:

ζk+1 =

[
Ac +BcWc BcWc

0 Nc

]
ζk − (REc)Ψ(Kζk) (12)



with

Ψ(u) :=



ui − Ui,sat + U i,k − (B+
c Bcf̂k)i

if ui + U i,k − (B+
c Bcf̂k)i > Ui,sat

0

if −Ui,sat ≤ ui + U i,k − (B+
c Bcf̂k)i ≤ Ui,sat

ui + Ui,sat + U i,k − (B+
c Bcf̂k)i

if ui + U i,k − (B+
c Bcf̂k)i < −Ui,sat


(13)

where R =

[
In
0

]
, K =

[
Wc Wc

]
, ∀i = 1, . . . , l.

The set of admissible initial states S considered will be
defined as a polyhedral set and the domain of stability E will
be designed as an ellipsoid.

A. Determination of the set of admissible initial states

Lemma 1: Consider a matrix G ∈ <l×2n and define the
following polyhedral set:

S = [ζk ∈ <2n;−Ui,sat ≤ ((K −G)ζk)i + U i,k − (B+
c Bcf̂k)i

≤ Ui,sat;∀i = 1, . . . , l] (14)

For the function Ψ(u) defined in (13), if ζk ∈ S then:

Ψ(Kζk)
T
T [Ψ(Kζk)−Gζk] ≤ 0 (15)

for any matrix T ∈ <l×l diagonal and positive definite.

This property will be used in the proof of Theorem 2 (34)
to find the gain Ec depending on the choice of G to ensure
the exponential asymptotic stability of the system.
Proof:
(1) We consider the case where:

(Kζk)i + U i,k − (B+
c Bcf̂k)i > Ui,sat

then,

(Kζk)i − Ui,sat + U i,k − (B+
c Bcf̂k)i > 0 (16)

We have:

Ψ(Kζk) = (Kζk)i − Ui,sat + U i,k − (B+
c Bcf̂k)i (17)

If ζk ∈ S, ((K −G)ζk)i+U i,k−(B+
c Bcf̂k)i ≤ Ui,sat, then:

[(Kζk)i − Ui,sat + U i,k − (B+
c Bcf̂k)i]

T
(18)

Ti,i[((K −G)ζk)i − Ui,sat + U i,k − (B+
c Bcf̂k)i] ≤ 0

for T diagonal and positive definite.
(2) We consider the case where:

(Kζk)i + U i,k − (B+
c Bcf̂k)i < Ui,sat

then,

(Kζk)i + Ui,sat + U i,k − (B+
c Bcf̂k)i < 0 (19)

We have:

Ψ(Kζk) = (Kζk)i + Ui,sat + U i,k − (B+
c Bcf̂k)i (20)

If ζk ∈ S, ((K −G)ζk)i + U i,k − (B+
c Bcf̂k)i ≥ −Ui,sat,

then:

[(Kζk)i + Ui,sat + U i,k − (B+
c Bcf̂k)i]

T
(21)

Ti,i[((K −G)ζk)i + Ui,sat + U i,k − (B+
c Bcf̂k)i] ≤ 0

for T diagonal and positive definite.
(3) Ψ(Kζk) = 0, then:

Ψ(Kζk)
T
T [Ψ(Kζk)−Gζk] = 0 (22)

for T diagonal and positive definite.

Theorem 1:
Define E(P ) = [ζk ∈ <2n,∀i = 1, . . . , l; ζk

TPζk ≤
1 +

((B+
c Bcf̂k)i−Ui,k)

2

‖(B+
c Bcf̂k)i−Ui,k‖

2 ] with P ∈ <2n×2n a positive definite

matrix and W := P−1. If W satisfies (23) for each input
value then E(P ) ⊂ S.

[
W 02n,1

01,2n −1

]
WKT

i −(GW)i
T

‖(B+
c Bcf̂k)i−Ui,k‖

KiW−(GW)i
‖(B+

c Bcf̂k)i−Ui,k‖
Ui,sat

2

‖(B+
c Bcf̂k)i−Ui,k‖

2

 ≥ 0 (23)

∀i = 1, . . . , l
Assume that (B+

c Bcf̂k)i − U i,k 6= 0 since the case where
the fault amplitude is equal to the reference input is not
considered as a faulty case.

Proof:
By Schur’s complement, (23) gives ∀i = 1, . . . , l:[

W 02n,1

01,2n −1

]
−

[
WKT

i −(GW)i
T

‖Yi‖
1

]
Ui,sat

−2

‖Yi‖−2[
KiW−(GW)i
‖Yi‖ 1

]
≥ 0 (24)

with P =W−1, Yi = (B+
c Bcf̂k)i − U i,k, Ki and Gi are

the ith lines of K and G. Then we have:[
P 02n,1

01,2n −1

]
−

[
KT

i −G
T
i

‖Yi‖
−1

]
Ui,sat

−2

‖Yi‖−2

[
Ki−Gi

‖Yi‖ −1
]

≥ 0 (25)

Left multiplying by
[

ζk
Yi

‖Yi‖

]T
and right multiplying by[

ζk
Yi

‖Yi‖

]
we obtain:

[
ζk
Yi

‖Yi‖

]T [
P 02n,1

01,2n −1

] [
ζk
Yi

‖Yi‖

]
≥ (26)[

ζk
Yi

‖Yi‖

]T [ KT
i −G

T
i

‖Yi‖
−1

]
Ui,sat

−2

‖Yi‖−2

[
Ki−Gi

‖Yi‖ −1
] [ ζk

Yi

‖Yi‖

]
then

ζk
TPζk −

Y2
i

‖Yi‖2
≥
[
ζk
T KT

i −G
T
i

‖Yi‖ −
Yi

‖Yi‖

]
Ui,sat

−2

‖Yi‖−2

[
Ki−Gi

‖Yi‖ ζk −
Yi

‖Yi‖

]
(27)



So ζk ∈ S since ζkTPζk − Y2
i

‖Yi‖2
≤ 1:(

ζk
TPζk −

Y2
i

‖Yi‖2

)
Ui,sat

2

‖Yi‖2
≥[

ζk
T KT

i −G
T
i

‖Yi‖ −
Yi

‖Yi‖

] [
Ki−Gi

‖Yi‖ ζk −
Yi

‖Yi‖

]
(28)

Ui,sat
2

‖Yi‖2
≥
[
ζk
T KT

i −G
T
i

‖Yi‖ −
Yi

‖Yi‖

] [
Ki−Gi

‖Yi‖ ζk −
Yi

‖Yi‖

]
(29)

we then have:

−Ui,sat ≤ ((Ki −Gi)ζk + U i,k − (B+
c Bcf̂k)i) ≤ Ui,sat (30)

so that E(P ) ⊂ S

B. Determination of the associated domain of stability

In this part, we denote: A :=

[
Ac +BcWc BcWc

0 Nc

]
.

Z ∈ <n×l and ∆ ∈ <l×l a diagonal positive definite matrix
are parameters which will be chosen in order to maximize
the size of the set of admissible initial states and ensure
the exponential asymptotic stability of the augmented system
(12).

Theorem 2:
The ellipse E(P ) = [ζk ∈ <2n,∀i = 1, . . . , l; ζk

TPζk ≤ 1 +
((B+

c Bcf̂k)i−Ui,k)
2

‖(B+
c Bcf̂k)i−Ui,k‖

2 ] with P =W−1 is a region of exponential
asymptotic stability for the augmented system, if for Ec =
Z∆−1 :  W −(GW)

T −WAT
−(GW) 2∆ ZTRT
−AW RZ W

 > 0 (31)

for the considered Lyapunov candidate quadratic function:

V (ζk) := ζk
TPζk, P = PT > 0, P ∈ <2n×2n (32)

V (ζk) is a Lyapunov function since:
1) ∆V (ζk) < 0, ∀ζk ∈ E(P ), ζk 6= 0
2) ∃α ∈ <+, ∆V (ζk) ≤ −αV (ζk)

Proof: We calculate δV (ζk):

δV (ζk) = V (ζk+1)− V (ζk) (33)

= ζk
TATPAζk − 2ζk

TATP (REc)Ψ(Kζ)

+ Ψ(Kζk)
T

(REc)TP (REc)Ψ(Kζk)− ζkTPζk

Using Lemma 1, we have:

δV (ζk) ≤ −(ζk
TATPAζk + 2ζk

TATP (REc)Ψ(Kζk)

−Ψ(Kζk)
T

(REc)TP (REc)Ψ(Kζk) + ζk
TPζk)

− 2Ψ(Kζk)
T
T [Ψ(Kζk)−Gζk] (34)

We can write this inequality under the form:

δV (ζk) ≤ −
[
ζk
T ΨT

] [ X1 X2

X2
T X3

] [
ζ
Ψ

]
(35)

With X1 := P −ATPA, X2 := ATP (REc)−GTT ,
X3 := 2T − (REc)TP (REc).

By Schur’s complement, (31) gives:[
W −(GW)

T

−(GW) 2∆

]
−
[
−WAT
ZTRT

]
P
[
−AW RZ

]
> 0 (36)

By multiplying from the left and from the right by[
P 0
0 T

]
, with T := ∆−1 et P := W−1 we have:[

X1 X2

X2
T X3

]
> 0 (37)

Then we have δV (ζk) < 0 for all ζk ∈ E(P ), ζk 6= 0 ,
so V (ζk) is strictly decreasing along the system trajectories.
Then E(P ) is a stability region for the system. We can see
that there always exists a positive scalar δ such that:

δV (ζk) ≤ −δ‖ ζk ‖2 − δ‖ Ψ ‖2 ≤ −δ‖ ζk ‖2

≤ −δ̃ζkTPζk (38)

which ensures the exponential convergence with δ̃ :=
δ

λmax(P ) and λmax(P ) the maximum eigenvalue of P .

IV. APPLICATION

A control reconfiguration mechanism under actuator sat-
urations for the cooling circuit of a cryogenic combustion
bench, Mascotte (CNES/ONERA, [15]), is studied in this
part. This bench has been developed to study heat transfers
in the combustion chamber and jet separation in nozzles in
the same conditions as for Vulcain 2 engine. The method
proposed here consists in the design of a controller based
on an unknown input observer by considering the fault to
be the unknown input similar to [2] and the design of
an anti-windup strategy in order to ensure the asymptotic
stability of the saturated system for a given set of initial
conditions and determine the stability domain. This FTC
strategy permits to compensate the fault and maintain current
performances in the presence of actuator saturations but
also to converge if necessary to another reference state.
The results are obtained with off-line tests based on real
experimental data and the reconfiguration control law was
validated on realistic simulations based on the established
model. The system studied here is the water cooling system
of Mascotte. This part of the system cools the combustion
chamber. The detection of a leak or an obstruction in this
part is a critical safety task for the bench operation. The
water cooling circuit consists in different pipes sections with
multiple pressure release valves and a tank at the inlet.
The available measurements are pressure, mass flow and
temperature. Sections are separated by sliding valves with
additional pressure measurements. The model, the estimation
and fault detection part has been presented in [14]. The
system is regulated with a pressure dome-loaded regulator.
The actuator is saturated since the pressure is limited by
thermo-mechanical constraints. As in the previous work, the
control loop operates once the fault has been detected during
the steady state of the bench operation.



A. Model of the cooling circuit

In this section we denote ṁ the mass flow rate (kg/s),
ρ the density (kg/m3), S the surface (m2), c the velocity
of sound (m/s), P the pressure (Pa), D the orifice diameter
(m), Dh the hydraulic diameter (m), L the length (m), µ
the dynamic viscosity (Pa.s) and V the volume (m3). The
flow is assumed to stay monophasic, to be ideal (no force
due to viscosity acts) and incompressible following Euler
equations. The cavity section is assumed constant and the
velocity of sound is defined as for an isentropic reaction in
the orifice. We assume that the fluid flow velocity is small
in comparison to the velocity of sound. The flow crossing
cavities respects the mass balance equation, after integrating
this equation over the cavity volume, we obtain:

∂P

∂t
=
c2

V
(ṁe − ṁs) (39)

The flow crossing the orifice between the two cavities
respects the momentum balance equation with friction forces,
expressed with the Darcy-Weisbach and Blasius equations for
moderate turbulent flows in a smooth pipe. After integrating
this equation along the orifice volume we obtain:

1

S2

∂ṁ

∂t
+

∆P

V
= −0.316

(
4ṁ

πDµ

)− 1
4 L

Dh

ṁ2

2ρV S2
(40)

The model of this part of the cooling circuit is then:{
∂ṁ2e

∂t = θ1ṁ
7
4
2e − θ2∆P

∂P2

∂t = −θ3∆ṁ
(41)

θ1 := −0.316
(

4
πDµ

)− 1
4 L
Dh

1
2ρV , θ2 := S2

V , θ3 := c2

V

The system (41) is linearized around a steady state trajectory
and can be transformed into an equivalent discrete-time state
space system with an Euler explicit scheme:{

Xk+1 = Ak(X)Xk +BUk + EDk

Yk+1 = CXk+1
(42)

X :=
[
ṁ2e P2

]T
, Y := P2, U := P1, D := ṁ2s

where ṁ2e is the cavity 2 input mass flow rate, P2 is the
cavity 2 pressure, P1 is the cavity 1 pressure and ṁ2s

is the cavity 2 unknown output mass flow rate. With Ak
the state matrix, B the known input distribution matrix,
E the unknown input distribution matrix and C the output
distribution matrix.

Ak :=

[
1 + dt

7θ1 ¯̇m
3
4
2e

4 −dtθ2

dtθ3 1

]
, B :=

[
dtθ2 0

]T
,

E :=
[

0 −dtθ3

]T
, C :=

[
0 1

]
In order to annihilate the actuator fault effect on the system,
an extended unknown input observer (EUIO) is used to
estimate the fault magnitude (see [16]). A control law has
then to compensate the fault and be computed such that the
faulty system is as close as possible to the nominal one.

We use an unknown input reconstruction method based on
sliding mode observers to rewrite the system under a second
form only depending on known inputs for control purposes.
The system is linearized around a steady state equilibrium,
the nominal state to reach, the matrix Ak is then constant in
time. We then obtain a system with new distribution matrices
Ac and Bc under the form:{

Xk+1 = AcXk +BcUk +Bcfk
Yk+1 = CXk+1

(43)

B. Results

With the help of the simulation software Carins (CNES),
an obstruction at the input of the ferrules part has been
simulated by computing a closure profile of the actuator.
The closure profile is computed as a modification of the
cross-sectional area of the actuator. The fault is the same
for the two following examples. The first result intends
to compensate the fault. We fixed the saturated value at
Usat = 3.59 · 106Pa in this case.

Fig. 1. Fault compensation - Control law & system input

Fig. 2. Fault compensation - System state

The second result aims at compensating the fault and at
converging to a different state reference than the nominal one
(chosen arbitrarily). We fixed the saturated value at Usat =
3.782 · 106Pa in this case (the saturation value has been



changed in order to allow the convergence to the new state
reference).

Fig. 3. Fault compensation & reconfiguration - Control law & system input

Fig. 4. Fault compensation & reconfiguration - System state

With the first trial (Figures 1 and 2) we can see that
the fault is well compensated and the convergence to the
nominal value is faster. With the second trial, we can see
that since the reference state dynamics is modified by the
anti-windup scheme in order to ensure the exponentially
asymptotic convergence, the trajectory is more stable than in
the case of a fixed imposed limit (Figures 3 and 4). The new
reference state dynamics is consistent with the established
model, we can see that the dynamics relations between the
state and the input are respected.

V. CONCLUSION

A method to design an anti-windup scheme in order to
compute another steady point which may be reachable in
the case where the previous nominal steady point cannot
be reached because of the actuator failure and the effect of
the saturation has been proposed. This anti-windup scheme
is designed for discrete-time linear systems. Being able
to shape the nominal behavior of the system is useful to
take into account actuator saturation. This method is based
on the resolution of linear matrix inequalities and ensures
exponential asymptotic stability in an ellipsoidal domain for

a polyhedral set of admissible initial states. This method was
tested on a model proposed for the evolution of pressure and
mass flow rates in the cooling circuit of a cryogenic test
bench. Once the fault in the actuator has been detected by a
FDI method, the designed FTCS based on a state observer
and fault estimator (beyond the scope of this paper), a LQR
control law and the proposed anti-windup scheme permits
to compensate the failure and to converge if necessary
to a chosen steady state. Future works will address the
improvement of the anti-windup scheme method by taking
into account costs functions depending on the reconfiguration
objectives, for example, enlarging the stability domain. The
extension to a nonlinear framework will also be considered
to improve performances during transients.
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