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To the attention of Prof. Dr. Carsten Schultz or Prof. Dr. Haw Yang  

Associate editors of Chemical Science 

 

Saclay, September 8th 2017  

 

 

Dear Editor, 

 

 

We wish to submit our manuscript entitled ‘Sub-nanosecond tryptophan radical deprotonation 

mediated by a protein-bound water cluster in class II DNA photolyases’ by P. Müller, E. Ignatz, S. 

Kiontke, K. Brettel and L. O. Essen for publication as an edge article in Chemical Science.  

 

DNA photolyases are flavoproteins evolutionarily and structurally related to photoreceptors of the 

cryptochrome type. Photolyases utilize blue light (absorbed by FAD or by an antenna cofactor) to 

repair UV-induced damage in DNA. Based on the differences in their structure, CPD photolyases 

specifically repairing the most common UV-induced lesions in DNA (the cyclobutane pyrimidine 

dimers, CPDs) can be divided into three classes: I, II and III. While photolyases from classes I and III 

occur only in microbes, class II photolyases are also present in most eukaryotic cells including 

multicellular organisms (plants and animals). With the exception of some higher mammals, these 

enzymes are indispensable for all sun-exposed forms of life. 

 

Nonetheless, only the class I photolyases (which were discovered about 60 years ago, see Nobel 

prize 2015 to Aziz Sancar) have been thoroughly studied so far. Class II proteins (discovered more 

recently) remarkably deviate in their structure from other photolyases including the related 

cryptochromes. The major difference is in the chain of aromatic residues, which are involved in light-

induced electron transfer to the excited FAD cofactor. This process, which is often called 

photoactivation (because FAD needs to be fully reduced to FADH− in order for the photolyases to be 

active in DNA repair), occurs via two distinct chains in class II photolyases and the rest of the 

photolyase/cryptochrome superfamily (see Fig. 1 in the main text).  

 

Our present manuscript represents the first endeavor to thoroughly characterize the first 

photoactivation step in a class II DNA photolyase, i.e., the primary electron- and proton-transfer 
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processes induced by absorption of blue light by FADox leading to a formation of FADH via FAD−. 

Applying transient absorption spectroscopy to the Methanosarcina mazei CPDII photolyase 

(MmCPDII), we could (1) confirm the active role of the ‘particular’ triad of tryptophan residues 

(Trp381−Trp360−Trp388) in electron transfer to the photoexcited flavin and (2) show that the functionality 

of this triad is further enhanced by a fourth auxiliary tyrosine residue (Tyr345). The yield of the photo-

induced radical pair of flavin with the most distal tryptophan (FAD− Trp388H+) was found to be as high 

as 65%. This value is comparable to the bacterial (E. coli) class I CPD photolyase but it is much higher 

than that in many other members of the photolyase/cryptochrome-superfamily (e.g., 20% in plant 

cryptochromes). The ‘particular’ Trp triad in MmCPDII was hence shown to be as efficient as the best-

performing known ‘standard’ electron transfer chain in the whole protein superfamily.  

 

To our surprise, we found that the deprotonation of the terminal tryptophan cation radical (Trp388H+) 

was unprecedentedly fast: it occurred in 0.4 ns in MmCPDII and was hence by 3 orders of magnitude 

faster than TrpH+ deprotonation in aqueous solution or in other proteins from the photolyase/ 

cryptochrome family (typical values range from 200 ns to several μs under similar conditions). Given 

this remarkable difference, we first suspected that the proton has to be transferred directly to a 

neighboring amino acid residue, rather than to the bulk of buffer molecules (which is the case for other 

proteins of the family). Nevertheless, the mutation of the only plausible candidate – the glutamate 

Glu387 – had virtually no effect on the deprotonation kinetics. We hence conclude that the proton must 

be transferred to the unique cluster of protein-bound water molecules that is present in both known 

crystal structures of class II photolyases: (archeal) Methanosarcina mazei and (eukaryotic) Oryza 

sativa CPDII (PDB entries 2XRZ and 3UMV, respectively). According to our sequence alignment (with 

over 400 non-redundant sequences), most of the residues coordinating the water cluster seem to be 

conserved among CPDII photolyases but, to our knowledge, such clusters do not occur in any other 

proteins from the cryptochrome/photolyase superfamily. Protein-bound H2O clusters have been shown 

to play an essential role for the biological function of other proteins such as bacteriorhodopsins (K. 

Gerwert et al., Biochim. Biophys. Acta, 2014). Our findings imply that class II CPD photolyases add to 

these natural systems, in which proton conductors based on protein-bound networks of water 

molecules can be as important for the biological function as amino acids. 

 

We are confident that our work represents a major advance in the field and will inspire future 

theoretical and experimental studies. We submit our manuscript to Chemical Science because we 

would like to reach a broad audience of readers that are interested in photoactive proteins, light-

induced electron and proton transfer reactions and/or in DNA repair. We would hence appreciate if 

you were to recognize the importance of our work and consider it for publication in Chemical Science. 

 

 

Sincerely yours, 

 

 

     
 

Pavel Müller 
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Sub-nanosecond tryptophan radical deprotonation mediated by a 
protein-bound water cluster in class II DNA photolyases 

Pavel Müller,*‡a Elisabeth Ignatz,‡b Stephan Kiontke,¶b Klaus Brettela and Lars-Oliver Essen*b 

Class II DNA photolyases are flavoenzymes occurring in both prokaryotes and eukaryotes including higher plants and 

animals. Despite considerable structural deviations from the well-studied class I DNA photolyases, they share the main 

biological function, namely light-driven repair of the most common UV-induced lesions in DNA, the cyclobutane pyrimidine 

dimers (CPDs). For DNA repair activity, photolyases require the fully reduced flavin adenine dinucleotide cofactor, FADH−, 

which can be obtained from oxidized or semi-reduced FAD by a process called photoactivation. Using transient absorption 

spectroscopy, we have examined the initial electron and proton transfer reactions leading to photoactivation of the class II 

DNA photolyase from Methanosarcina mazei. Upon photoexcitation, FAD is reduced via a distinct (class II-specific) chain of 

three tryptophans, giving rise to an FAD− TrpH+ radical pair. The distal Trp388H+ deprotonates to Trp388
 in 350 ps, i.e., by 

three orders of magnitude faster than TrpH+ in aqueous solution or in any previously studied photolyase. We identified a 

class II-specific cluster of protein-bound water molecules ideally positioned to serve as the primary proton acceptor. The 

high rate of Trp388H+ deprotonation counters futile radical pair recombination and ensures efficient photoactivation.  

Introduction 

The exposure of DNA to UV-light causes serious damage of the 

genetic code and eventually results in fatal mutations. The 

most prominent forms of UV-induced lesions are cyclobutane 

pyrimidine dimers (CPDs) and the pyrimidine(6-4)pyrimidone 

photoproducts ((6-4)PPs). Several mechanisms evolved to 

restore the integrity of DNA, like nucleotide excision repair, 

base excision repair and photorepair.1, 2 The latter is catalysed 

by photolyases, a class of flavoenzymes, which belong to the 

photolyase/cryptochrome-superfamily (PCSf).3 Photolyases are 

substrate-specific and they are divided into (6-4) and CPD 

photolyases, which are further subdivided into classes I - III. 

Compared to other members of the PCSf, the class II CPD 

photolyases, which occur in plants, animals and many 

microbial organisms, are highly divergent in terms of their 

sequences, especially in functionally important parts of the 

catalytic C-terminal domain.4-6  

For DNA repair, all photolyases depend on a fully reduced 
FAD cofactor, FADH−. Upon photoexcitation,  FADH− transfers 
an electron to the damaged DNA and thereby catalyzes the 
repair of the lesion. Isolated photolyases often contain a semi-

reduced (FADH) or even a fully oxidized flavin (FADox).4, 7-9 
Photocatalytically active FADH− is generated from oxidized 
flavin species by a second light-induced reaction, usually 
referred to as  photoactivation. In the case of initially oxidized 
FADox, the FAD− resulting from the primary photoinduced 
electron transfer (ET) becomes protonated (on a timescale of a 
few hundred milliseconds to a few seconds) to form FADH.10, 

11 Further reduction of FADH to FADH− can be achieved by 
absorption of another photon, inducing transfer of a second 
electron to the flavin cofactor. 

The mechanism of photoactivation has been studied in 

detail in vitro for a class I CPD photolyase (from E. coli) and for 

a (6-4) photolyase (from X. laevis).10-16 Upon photoexcitation, 

FADox or FADH abstract an electron from the first member of a 

chain of three12 (or four10) tryptophan residues to form a 

primary FAD− TrpH+ radical pair or an FADH− TrpH+ pair, 

respectively. The electron hole then migrates along the Trp 

chain from the flavin-nearest Trp towards the most distant 

one, stabilizing the pair thermodynamically and by its spatial 

separation within less than 100 picoseconds.14-16 Further 

stabilization of the pair is achieved by deprotonation of the 

exposed terminal TrpH+ cation radical by the solvent, which 

typically occurs within a few hundreds of nanoseconds.10, 12, 17 

Finally, the resulting Trp radical is scavenged by an extrinsic 

reducing agent. 

Despite the low sequence identity with other photolyases 

and cryptochromes (<16%),18 class II CPD photolyases such as 

the one studied here – MmCPDII from the archaeon 

Methanosarcina mazei – share the same overall structural fold, 

with an N-terminal domain comprising a Rossman-like fold and 

an α-helical C-terminus which harbors the catalytically active 

FAD cofactor.4 Interestingly, class II CPD photolyases differ 
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from other branches of the PCSf by the localization of the 

tryptophan cascade and by the presence of auxiliary tyrosine 

residues (Fig. 1). A previous mutational study of this ET 

pathway revealed that the Trp triad can also be functional as a 

dyad including only the first two FAD-proximal tryptophans.4  

In this study, we investigated the photoreduction of FADox 

to FADH via FAD− in MmCPDII photolyase using transient 

absorption spectroscopy. We identified a cluster of water 

molecules involved in an unprecedentedly fast deprotonation 

of the distal tryptophan, Trp388. Additionally, we 

demonstrated, that a conserved tyrosine, Tyr345, also 

participates in electron transfer to photoexcited FAD. This 

work represents the first endeavor to thoroughly characterize 

the initial photoactivation step in a class II CPD photolyase. 

Experimental  

Multiple sequence alignment-based analysis of class II CPD 

photolyases 

451 non-redundant class II sequences with a pairwise 

sequence identity of less than 90% were extracted from a 

previous sequence-similarity network analysis of the 

photolyase-cryptochrome superfamily (combined PFAM 

protein families PF00875 and PF04225)19  using the Cytoscape 

suite.20 The multiple sequence alignment was done using 

Clustal omega.21 WebLogo22 was used for the visualization of 

the degree of position-specific conservation. 

 

Protein Preparation 

Cloning of MmCPDII mutants. The generation of the E387Q 

mutant was based on pET-28a-MmCPDII and done according 

to the phusion protocol (NEB) using the 5'- phosphorylated 

primers listed below. The preparation of the W388F and Y345F 

mutants was described earlier.4 

E387Q Primer 

sense:    5'-Pho-CAG TGG AGC GAA TCT CCC GAA AAA-3' 

reverse: 5’-Pho-CAG AAT TTT TTT TGC CCA GTA CAT GCG-3' 

Overexpression and purification of MmCPDII and mutants. 

Overexpression of MmCPDII and mutants was done as 

described previously using E. coli BL21-Gold(DE3) cells 

(Stratagene).4 The cultivation was done in terrific broth 

medium for 24 hours at 25°C (20°C for W388F). The proteins 

were purified using a NiNTA column (MACHERY-NAGEL) with 

50 mM NaH2PO4, 300 mM NaCl, pH 8.0 and SEC column with 

Superdex 200 material (GE-Healtcare) with 10 mM Tris-HCl of 

pH 8.0 and 100 mM NaCl. 

 

Experimental Conditions 

Unless otherwise stated, the solutions of wild-type (WT) and 

all mutant MmCPDII photolyases studied herein contained 10 

mM Tris-HCl buffer at pH 8.0 (measured at room 

temperature), 100 mM NaCl and 10% (v/v) glycerol. For the 

experiment in D2O, 10 mM Tris-HCl buffer (at pH 8.0) with 100 

mM NaCl was lyophilised to dry powder and the sublimated 

H2O was replaced by D2O, adding up to the original volume of 

the H2O buffer; note that both H2O and D2O samples in this 

experiment (Fig. 5) were hence glycerol-free. In the 

experiments where cysteine was added as an external 

reducing agent, cysteine was first dissolved in a more 

concentrated Tris-Cl buffer with NaCl. After titration by NaOH 

back to pH 8.0 and the addition of glycerol and water to the 

desired final volume, a stock of 500 mM cysteine solution was 

finally obtained in the standard 10 mM Tris-Cl buffer with 

100 mM NaCl and 10% (v/v) glycerol. The addition of cysteine 

to the photolyase sample has hence diluted the protein but 

the concentrations of other components (buffer, salt and 

glycerol) and the pH were kept constant. 

All samples were air-saturated and kept at 7°C during the 

measurements or on ice in between. Before each experiment, 

they were rid of free FAD and other low-molecular-weight 

impurities by filtration over size-exclusion columns (Micro 

Bio-Spin, Bio-Gel P-6). The UV/Vis spectrum was checked 

before and after each measurement to ensure that the sample 

was in a good shape, i.e., not aggregated and FAD was not 

released, but protein-bound and fully oxidized (> 95% FADox). 

UV/Vis spectra were recorded on a Uvikon XS spectrometer 

(Secomam). 

 

Transient Absorption Spectroscopy 

Transient absorption kinetics were measured on three 

different setups described in detail in Refs. 10, 11, 17, 23. 

In experiments on ps/ns timescales, the photolyase 

samples were excited at 355 nm by a Nd:YAG laser (Continuum 

Leopard SS-10, pulse duration of 100 ps, repetition rate 1 or 2 

Hz, and an energy in the order of 5 mJ per cm2).  

In all other experiments, the samples were excited at 

470 nm by laser flashes of 5 ns duration and an energy ≤10 mJ 

per cm2, delivered by a Nd:YAG pumped optical parametric 

oscillator (OPO; Brillant B/Rainbow, Quantel, France).  

Indicative values of excitation energies were obtained by 

measuring the laser pulse energy behind a cell filled with H2O 

using an energy meter (Gentec QE25SP-H-MB-D0). 

For kinetic measurements on the ps/ns and ns/s 

timescales (with 2GHz and 100 MHz bandwidth limits, 

respectively), the monitoring light was provided by 

continuous-wave lasers as listed in Ref. 11. 2 x 2 x 10 mm cells 

were used (excitation pulses entered the sample through the 

2 x 10 mm window; monitoring light through the 2 x 2 mm 

window). The monitoring light beams were attenuated by 

neutral density filters and mechanically chopped to produce a 

rectangular light pulse of 140 s duration and energy in the 

order of 1 J at the entrance of the cell, thus avoiding 

significant actinic effects. This pulse was synchronized with the 

excitation laser flash (see Ref. 23 for more details). 
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For experiments on millisecond to second timescales, the 

monitoring light was provided by a tungsten halogen lamp. For 

selection of a specific wavelength, an interference filter of 5 to 

10 nm spectral bandwidth was inserted between the lamp and 

the sample. A similar filter was placed in front of the detector 

to block scattered light from the excitation flash and 

fluorescence. The bandwidth of the amplifier was limited to 30 

or 100 kHz. 

 

Signal Analysis 

Multiple transient absorption signals were fitted globally with 

shared time constant(s) by using Origin 8.6. 

 

Quantum Yield Determination 

Quantum yields were determined by comparing the 

amplitudes of the 457 nm signals from the proteins (at 

t ≈ 10 ns; Figs. 3 and 8) with those yielded by excitation of 

[Ru(bpy)3]Cl2 (99.95%)24-26 under the same geometry and 

excitation (by 5 ns laser pulses at  = 470nm). The quantum 

yield was then calculated using Equation (1): 

𝚽PL

𝚽Ru
=

∆𝑨PL,457 ∆𝜺Ru,457 (𝟏−𝟏𝟎−𝒄Ru 𝜺Ru,470𝒅)

∆𝑨Ru,457 ∆𝜺PL,457 (𝟏−𝟏𝟎−𝒄PL 𝜺PL,470𝒅)
 (1) 

where A457 is the amplitude of the signals of the photolyase 

or the Ru complex at  = 457 nm, Ru,457 is the difference of 

molar absorption coefficients of the metal-to-ligand charge-

transfer triplet (3MLCT) of the [Ru(bpy)3]2+ complex and its 

ground state ( –11 000 M-1cm-1), c is the concentration 

(cRu = 27.4 × 10-6 M), 470 stands for molar absorption 

coefficients at the excitation wavelength (= 470 nm) of the 

Ru complex (10 128 M-1cm-1) or MmCPDII (9460 M-1cm-1), and 

d is the optical path of the excitation beam (0.2 cm). PL,457 is 

the difference in the molar absorption coefficient of the 

respective photoinduced radical pair and FADox. The quantum 

yield of the 3MLCT formation (Ru) equals one (100%). 

For oxidized WT MmCPDII, we assume that the observed 

photoinduced radical pair (at t ≈ 10 ns) is predominantly FAD− 

Trp, so PL,457 = 457(FAD−) + 457(Trp) – 457(FADox) = (4740 + 

940 – 9205) = –3525 M-1cm-1.  cPL = 40.0 × 10-6 M, APL,457 = –

0.023 and ARu,457 = –0.097 then yield PL,WT of 55.4%.  

For the calculation of the quantum yield of FADox 

photoreduction in the W388F mutant MmCPDII, we assume 

the vastly prevailing radical pair (at t ≈ 10 ns) is FAD– Tyr and 

PL,457 is hence equal to 457(FAD−) + 457(Tyr) – 457(FADox) = 

(4740 + 150 – 9205) = –4315 M-1cm-1. cPL= 38.5 × 10-6 M, 

APL,457 = –0.002 and ARu,457 = –0.108 then yield PL,W388F of 

3.7%.  

Note that the used value of 457(FAD−) was obtained from 

the published spectrum27 of FAD− in an insect cryptochrome. 

The spectrum of FAD− in MmCPDII is not available but it is 

likely not exactly identical to that in the insect cryptochrome, 

which could have a certain impact on the accuracy of the 

calculated quantum yields. 

Results 

The primary goal of this study was to characterize the first 

photoactivation step, i.e. the photoreduction of FADox to FAD–

/FADH, in the wild-type (WT) class II CPD photolyase 

(MmCPDII) and to find out how its class-specific tryptophan 

triad, Trp381−Trp360−Trp388, participates in this process. Our 

transient absorption spectroscopic data have confirmed the 

functionality of the tryptophan cascade but they have brought 

about an additional issue: it turned out that upon electron 

transfer (ET) to the excited FADox, one of the oxidized 

tryptophans (TrpH+) in the triad undergoes an 

unprecedentedly fast deprotonation, that is by three orders of 

magnitude faster than the terminal tryptophans in other PCSf 

proteins (typically a few hundreds of nanoseconds).10, 12, 17 This 

unusually fast rate indicated that the proton is probably 

transferred to a nearby, structurally-defined acceptor, rather 

than to disordered bulk solvent.   

In order to identify the Trp undergoing the fast 

deprotonation and the proton acceptor, we have first 

examined the W388F mutant protein, in which the third 

(terminal) tryptophan, Trp388, was replaced by a redox-inactive 

phenylalanine, which cannot not participate in photoinduced 

electron transfer to the flavin cofactor. Experiments on this 

mutant protein unequivocally pointed to the terminal 

tryptophan Trp388 being the fast proton donor and we have 

hence searched for the likely proton acceptors in its vicinity.  

 For a better understanding of the following transient 

absorption data, absorption spectra of the species (FADox, 

FAD–, FADH, TrpH+, Trp and Tyr) that could contribute to 

changes in transient absorption are shown in Fig. 2. 

 

Wild-type MmCPDII 

Isolated MmCPDII photolyase (WT, as well as all mutants 

studied here) contains a fully oxidized FAD cofactor (FADox), 

which has two pronounced absorption maxima in the near-

UV/Vis region (see Fig. 2): a double maximum centred around 

370 nm and a triple band centred around 445 nm. FADox in 

MmCPDII absorbs up to 500 nm and can hence, in principle, be 

excited anywhere below this wavelength. For our initial 

experiments, we have chosen an excitation wavelength of 

470 nm (provided by a Nd:Yag-pumped optical parametric 

oscillator, OPO; pulse duration of 5 ns) to avoid interference 

with our monitoring light sources and to minimize artifacts due 

to hydrated electrons that are formed upon excitation in the 

UV§.  

Based on our previous experience with other members of 

the PCSf, we have first looked at timescales of a few ns to tens 

of s, where we anticipated to observe formation of an FAD– 

TrpH+ pair, and deprotonation of TrpH+ to Trp. Transient 

absorption changes at representative wavelengths are shown 
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in Fig. 3a, all signals are shown in Fig. S1†. All traces exhibit a 

step-like increase or decrease, the amplitudes of which 

(extrapolated to t = 0) are represented by black squares in 

Fig. 3b. If the anticipated FAD– TrpH+ pair were formed, one 

would expect an absorbance increase below 415 nm and a 

bleaching between 415 and 485 nm (due to the transformation 

of FADox into FAD–) combined with an absorption increase 

between 450 and 650 nm (due to the formation of TrpH+) – 

see red dashed line in Fig. 3b. Surprisingly, the signals at 562 

and 594 nm (close to the absorption maxima of TrpH+) and at 

longer wavelengths exhibited only very small amplitudes 

compared to the bleaching around 450 nm, excluding the 

presence of significant amounts of TrpH+ beyond the given 

instrument response time (5 ns). On the other hand, the 

amplitudes of the absorption changes could be reasonably 

described by a difference spectrum reflecting the formation of 

FAD– and a deprotonated tryptophan radical Trp (see Fig. 3b). 

Assuming the signals are due to 100% FAD– Trp pair, the 

quantum yield of FADox photoreduction in the first 

nanoseconds reaches 55% (see the Experimental section for 

quantum yield determination).  

In order to see if we can detect the FAD– TrpH+ pair 

(precursor of the FAD– Trp pair), we have switched to another 

experimental setup enabling us to access faster timescales.23, 24 

To avoid time limitations due to the 5 ns long excitation pulse 

duration provided by the OPO, we have used a frequency-

tripled Nd:YAG laser at 355 nm with 100 ps pulses. The 

response time of this setup (200 ps) has allowed us to 

observe signals (Fig. 4a and Fig. S2†), the initial amplitudes of 

which were indeed compatible with the presence of an FAD– 

TrpH+ radical pair (Fig. 4b). The initial amplitudes partially 

decayed with a time constant of 350 ps to yield remaining 

amplitudes with a difference spectrum consistent with an 

FAD– Trp radical pair (Fig. 4b). We hence attribute the 350 ps 

phase to deprotonation of TrpH+ to Trp (85%) in 

competition with FAD– TrpH+ recombination (15%; the 

corresponding partial recovery of FADox is well visible, e.g., at 

457 nm). Consistent with our attribution to a deprotonation 

reaction, the kinetics of this phase slows down from 350 ps in 

an H2O buffer to 800 ps in a D2O buffer (Fig. 5), 

corresponding to a kinetic isotope effect (KIE = kH/kD) of 2.3. 

Within the 80 s experimental time window shown in 

Fig. 3a, one can observe the beginning of a virtually uniform 

decay of the radical pairs. Using a third setup adapted for 

monitoring of processes on milliseconds to seconds timescales, 

we have obtained signals containing the complete decay 

kinetics (Fig. 6a). It turned out that a biexponential decay 

function had to be used in order to obtain a good fit, which 

was an indication of recombination of two distinct pairs of 

radicals.  Global fit of all signals yielded amplitudes for the two 

processes: those attributed to the faster process (with a time 

constant of 225 s and amounting to 70% of the total signal 

amplitude at 450 nm) were indeed consistent with the 

recombination of FAD– Trp pairs but those attributed to the 

slower process (with a time constant of 1.1 ms and 

corresponding to the remaining 30% of A450 nm) exhibited a 

near-zero absorption change at 540 nm, which was 

incompatible with a tryptophan radical being the 

recombination partner of FAD–.  When looking at the 

structure of MmCPDII,4 one can notice a tyrosine residue 

(Tyr345) in the vicinity of the terminal tryptophan of the ET 

chain (3.8 Å edge-to-edge distance from Trp388; Fig. 1). An 

involvement of this tyrosine residue in ET to the excited FADox 

was anticipated, since the mutation of Tyr345 to a red-ox 

inactive phenylalanine was previously shown to slow down the 

rate of FADox photoreduction in a steady-state experiment 

(compared to the WT protein)4. Indeed, the 1.1 ms phase 

nicely fits the difference spectrum for disappearance of an 

FAD– Tyr pair (Fig. 6b).  

Finally, in the absence of external reducing agents, all 

transient species are completely lost due to recombination 

within less than 5 milliseconds in the WT MmCPDII (Fig. 6a) 

and the initial state of the protein with fully oxidized FAD is 

restored.  

In order for the photoactivation reaction to be efficient, 

the FAD– anion radical has to be stabilized by scavenging of its 

recombination partner (be it Trp or Tyr) by extrinsic 

reductants. By adding sufficient amounts of cysteine to reduce 

transiently formed Trp and/or Tyr radicals, we could compete 

against the FAD– Trp/Tyr recombination (Fig. 7; the 

acceleration of the decay of ΔA540nm reflects the reduction of 

Trp by cysteine) and obtain an isolated metastable FAD– 

radical, which got further stabilized by protonation to yield a 

neutral FADH radical (see inset of Fig. 7; formation of FADH 

from FAD– is accompanied by a pronounced absorption 

increase at 610 nm and decrease at 380 nm, see spectra in 

Fig. 2). Under our experimental conditions (0.01 M Tris-HCl 

buffer at pH 8.0, 0.1 M NaCl, 10% (v/v) glycerol, 7°C), this 

protonation occurred with a time constant of 630 ms. 

However, a closer look at the 540 nm signal with the highest 

cysteine concentration (0.3 M cysteine; Fig. 7) suggests that, in 

a small fraction of proteins, FAD– can be protonated at a much 

faster rate, which is reflected by the growth phase (with  

2.2 ms) following the initial decay of the signal. Judging from 

the initial amplitude of the signal at 610 nm in the inset of 

Fig. 7, the fast protonation seems to be possible in 15% of 

proteins (note that only FADH should absorb at 610 nm, 

contributions from FAD– or remaining Trp/Tyr radicals are 

expected to be zero at this wavelength – see Fig. 2). 

 

W388F mutant lacking the 3rd tryptophan of the triad 

In order to find out which of the three tryptophan residues 

undergoes the unusually fast deprotonation in the WT 

MmCPDII (Figs. 4 and 5), we decided to examine the behaviour 

of its W388F mutant, in which the terminal Trp of the triad was 

replaced by a non-reducing phenylalanine. Our structural data 

for this and the Y345F mutant (PDB codes 5O86, 5O8D)28 show 

that there are no compensatory structural changes of residues 

lining the ET pathway, which could complicate the following 
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analysis and interpretation. The transient absorption signals 

obtained for the W388F mutant on the ns/s timescale upon 

excitation by 5 ns pulses at 470 nm (Fig. 8a) exhibit steep 

decays in the first nanoseconds, followed by plateaus, the 

spectral footprint of which corresponds neither to an FAD– 

TrpH+, nor to an FAD– Trp pair, but is compatible with an 

FAD– Tyr pair (Fig. 8b), formed with a quantum yield of mere 

4% (see the Experimental section for quantum yield 

determination). The nearest tyrosine to the 2nd Trp of the triad 

(Trp360), which could serve as electron donor to Trp360H+, is 

Tyr380 (4.6 Å edge-to-edge distance; Fig. 1). Tyr380 is situated in 

the vicinity (4.0 Å) of yet another tyrosine Tyr445, which is more 

exposed to solvent and could hence play the role of the 

terminal electron donor to FAD in the W388F mutant. 

Alternatively, Trp360H+ could also be reduced by Tyr345 (7.1 Å 

edge-to-edge distance), which is involved in ET in the WT 

protein.  

Analogously to the situation in the WT protein, we had to 

use a different experimental setup to resolve the fast process 

preceding the formation of the FAD– Tyr pair. On the ps/ns 

timescale, we were able to resolve signals, which were 

decaying nearly completely with a time constant of 1.2 ns 

(Fig. 9a). The initial amplitudes spectrally fit an FAD– TrpH+ 

pair (Fig. 9b). We tentatively assign the 1.2 ns decay in the 

W388F mutant protein to charge recombination in the pair 

FAD– Trp360H+. This recombination presumably competes with 

a much slower (in the order of 10 to 20 ns) side ET from Tyr380 

(or Tyr445) to Trp360H+, yielding an FAD– Tyr pair with a 

quantum yield of 4%. 

In the absence of extrinsic reducing agents, the FAD– Tyr 

pairs in W388F recombine with a time constant of 2.7 ms 

(Fig. 10), which is 2.5× slower than the FAD– Tyr 

recombination in the WT (the observed Tyr radical is hence 

most probably not Tyr345
 in the W388F mutant MmCPDII). Like 

in the WT, the Tyr radical could be scavenged in the presence 

of cysteine and the resulting metastable FAD– was further 

stabilized by protonation to form FADH (see Fig. S3†) at the 

same rate as in WT MmCPDII under the same conditions (i.e., 

in 630 ms). 

 

 

E387Q mutant: searching for an intra-protein proton acceptor 

According to structural analysis of the environment of the 

distal tryptophan Trp388 in MmCPDII (PDB entry 2XRZ), a 

straight-forward candidate for the intramolecular acceptor of 

the N1 proton from Trp388H+ is deprotonated§§ Glu387 

(see Fig. 12): its carboxylic group is as close as 3.6 Å from the 

N1 atom of Trp388. We therefore prepared a mutant, in which 

the glutamate was replaced by glutamine, which could not 

serve as a proton acceptor. Fig. 11 compares signals recorded 

for the WT protein and the E387Q mutant at 562 nm, which is 

a suitable wavelength for direct monitoring of the 

deprotonation of TrpH+ to Trp (and/or its reduction by a 

tyrosine). The figure clearly shows that the kinetics of TrpH+ 

disappearance was almost as fast as in the WT (500 ps in 

E387Q vs. 350 ps in WT), indicating that Glu387 is not the 

primary proton acceptor. As outlined in the Discussion section, 

we identified a protein-bound water cluster ideally positioned 

to serve as the primary proton acceptor. 

 

Y345F mutant: identification of the tyrosine involved in ET  

As mentioned above, there were indications that the tyrosine 

residue Tyr345 also participates in electron transfer to the 

photoexcited flavin in MmCPDII. We have hence investigated 

the involvement of this residue in ET by direct comparison of 

time-resolved spectroscopic signals of the WT and the Y345F 

mutant MmCPDII. 

Signals in Fig. 13 show a decay of flash-induced absorption 

changes in the Y345F mutant on the millisecond timescale. 

Unlike in the WT protein, the signals decay monoexponentially 

and the slower (1.1 ms) component present in WT (attributed 

to the FAD– Tyr pair and representing approx. 30% of the 

radical pairs present at the beginning of the ms time scale) is 

obviously missing. The decay rate of the remaining faster 

phase ( 250 s) is very close to the value obtained from the 

fit for the faster process in the WT protein. We conclude that 

indeed a fraction (30%) of tyrosine Tyr345 gets oxidized during 

photoactivation of WT MmCPDII and forms the longest-lived 

(1.1 ms) radical pair with FAD–.  

With respect to the kinetics and pathway of formation of 

the tyrosyl radical Tyr345
, we considered two (mutually non-

exclusive) possibilities: (i) fast ET from Tyr345 to Trp388H+ (in 

competition with deprotonation of Trp388H+ in 350 ps) and (ii) 

slow reduction by Tyr345 of the deprotonated Trp388
 radical (by 

proton-coupled ET in competition with recombination of the 

FAD– Trp388
 pair in 225 µs).  The similarity of the initial signal 

amplitude ratios at different wavelengths in the Y345F mutant 

and the WT protein on the ms time scale (compare Figs. 6a and 

13) seems to contradict fast formation of a substantial amount 

of tyrosyl radical in WT. Nevertheless, we have also compared 

the signals at 408 nm (wavelength of Tyr absorption 

maximum) obtained using our fastest experimental setup (Fig. 

S5†). If the 30% of Tyr radical were formed directly from 

TrpH+ (in competition with its deprotonation and/or its 

recombination with FAD–), the amplitudes of the 350 ps 

decay in the 408 nm signal would have to be clearly different 

in the WT and in the mutant protein: we would expect that the 

decay due to 15% recombination would be visibly (almost 

fully) compensated by a growth due to the formation of the 

Tyr radical in the WT protein. In the Y345F mutant, on the 

other hand, no Tyr radical can be formed, and the phase 

should hence reflect pure and uncompensated FAD– TrpH+ 

recombination (absorption changes due to TrpH+ 

deprotonation are negligible at 408 nm; see Fig. 2).  Given that 

there is no significant difference in the ps/ns signals for the 

two proteins, we can conclude that most of the Tyr radicals 

are formed later – on the s timescale in competition with the 

recombination of FAD– with neutral Trp. 
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Discussion 

Based on all the data obtained for WT and mutant proteins (in 

the absence of extrinsic reductants), we have constructed a 

reaction model (Scheme 1) of the primary processes following 

FADox photoexcitation in WT MmCPDII.  

We observed formation of an FAD– TrpH+ pair within our 

experimental time resolution of 200 ps, followed by 

deprotonation of TrpH+ in 350 ps, concomitant with 15% 

charge recombination in the FAD– TrpH+ pair (Fig. 4). 

Assuming direct competition between deprotonation and 

charge recombination, the intrinsic time constants would be 

0.4 ns and 2 ns, respectively. We assign the deprotonation 

to Trp388, the third (most distant to FAD) member of the triad 

Trp381–Trp360–Trp388 (Fig. 1), because the deprotonation was 

lost (and replaced by charge recombination in 1.2 ns) in the 

W388F mutant (Fig. 9). 

In analogy to the extensively studied class I CPD photolyase 

from E. coli (EcCPDI), we suppose that ET from Trp388 to *FADox 

occurs by ultrafast hopping along the Trp triad also in 

MmCPDII. Losses may occur due to competition of forward ET 

with charge recombination in the radical pairs. We have 

obtained a quantum yield of 55% for the formation of the 

FAD– Trp388
 pair (see Results and Experimental Section). 

Taking into account charge recombination in competition with 

deprotonation of Trp388H+ (see above), the quantum yield of 

formation of the FAD– Trp388H+ pair should be 65%, i.e., the 

same as for the terminal FAD– TrpH+ pair in EcCPDI,11 but 

substantially higher than in a (6-4) photolyase (30%)10 or in a 

plant cryptochrome (20%)17. The particular Trp triad in 

MmCPDII is hence as efficient in electron transfer as the best 

known “standard” Trp triad. 

Our data (Fig. 13 and Fig. S5†) imply that the tyrosine 

residue Tyr345 (situated 3.8 Å from the third tryptophan of the 

cascade, Trp388) acts as a fourth auxiliary member of the 

electron-transferring chain, though only about 30% of the 

Trp388H+/Trp388
 radicals seem to eventually get reduced by 

Tyr345 under our experimental conditions. Because of spectral 

congestion, we were not able to monitor the kinetics of 

tyrosine oxidation directly, but from the lack of a significant 

effect of the Y345F mutation on the ps/ns signals at 408 nm 

(Fig. S5†) we could conclude that most of Tyr345
 was formed 

on a slower time scale, i.e., after the deprotonation of 

Trp388H+. Direct oxidation of Tyr345 by Trp388


 seems highly 

unlikely because it would imply a hydrogen atom transfer over 

a distance of more than 6 Å. We rather suggest that Tyr345 is 

mostly oxidized by Trp388H+ that is present in a very small 

amount in thermal protonation equilibrium with Trp388


. 

Charge recombination in the FAD– Trp pair may also proceed 

via thermal reprotonation of the tryptophanyl radical. The 

observed biphasic recombination kinetics in WT MmCPDII 

(Fig. 6a) can be described assuming effective time constants of 

300 s and 1 ms for the charge recombination and the 

oxidation of Tyr345, respectively, together with a 1.1 ms 

recombination of the FAD– Tyr345
 pair. The µs/ms charge 

recombination reactions can be blocked (and FAD– hence 

stabilized) by extrinsic electron donors (which are abundant in 

living cells) that scavenge the Trp/Tyr radicals. 

In this situation, the isolated FAD– in MmCPDII becomes 

protonated in 630 ms to form a metastable FADH (Fig. 7). This 

rate of protonation is slower than the reported 200 ms in the 

Xenopus laevis (6-4) photolyase10 under similar conditions 

(0.05 M Tris-HCl buffer at pH 8.3, 0.05 M NaCl, 5% (v/v) 

glycerol, 10°C) but faster than the 4 seconds observed in the 

Escherichia coli class I CPD photolyase11 (0.02 M phosphate 

buffer at pH 7.5, 0.2 M NaCl, 20% (v/v) glycerol, 7°C), in spite 

of a higher pH (8.0) used in the present experiment. The 

conversion of FADH to the redox state active in DNA repair, 

i.e., the fully reduced FADH–, can follow directly after the 

absorption of another photon. However, in the presence of 

oxygen (and in the dark), both FADH and FADH– in isolated 

MmCPDII spontaneously revert to FADox (within a few minutes 

in an air-saturated solution). 

It is a matter of controversy29, 30 whether photoactivation 

of DNA photolyases through their respective Trp chains is a 

vital process in vivo or whether the FAD cofactor is naturally 

and always fully reduced in the living cell, but given that at 

least two such ET chains have evolved independently in the 

photolyase-cryptochrome superfamily and survived billions of 

years of evolution, we dare speculate that the efficient 

photoactivation of photolyases through the Trp (or Trp/Tyr) 

chains could be important, especially under intense solar 

irradiation (which causes simultaneously DNA damage and 

oxidative stress that could potentially deactivate DNA repair by 

photolyases by oxidation of their FADH–). In any case, the 

electron transfer cascade of three tryptophans and one 

tyrosine (Trp381–Trp360–Trp388–Tyr345 in MmCPDII) is almost 

strictly conserved within all class II photolyases (Fig. S6†) 

including plant enzymes like OsCPDII from Oryza sativa31 

(Uniprot entry Q0E2Y1; Trp399–Trp378–Trp406–Tyr363), or animal 

orthologs like XlCPDII from Xenopus laevis (Q9I910; Trp470–

Trp449–Trp477–Tyr434). 

 

Previous observations in the context of our new data 

MmCPDII mutant proteins, in which one of the tryptophans of 

the triad was replaced by non-reducing phenylalanines, were 

shown to exhibit slower rates of in vitro FADox photoreduction 

under steady-state irradiation in the presence of 25 mM 

dithiothreitol (DTT) as an extrinsic reducing agent.4 Mutation 

of the first Trp of the triad (W381F) had the strongest 

inhibitive impact and essentially blocked the photoreduction 

of FADox. Mutation of the last Trp of the triad (W388F) had the 

smallest impact, slowing down the FADox photoreduction rate 

by a factor of 2 (with respect to the WT protein under the 

same conditions).4 This could seem to be in discord with the 

quantum yield of the FAD– Tyr radical pair estimated here 

(4%), which is substantially lower than the 55% of the FAD– 

Trp pair  in the WT, but one has to bear in mind that: a) the 

FAD– Tyr pair in W388F is longer lived (2.7 ms) than the 

Page 9 of 30 Chemical Science



Journal Name   ARTICLE 

This journal is © The Royal Society of Chemistry 2017 J. Name., 2017, 00, 1-8 | 7  

Please do not adjust margins 

Please do not adjust margins 

corresponding FAD– Trp and FAD– Tyr pairs in the WT (0.3 

and 1.1 ms, respectively), which compensates for the lower 

yield by giving the extrinsic reducing agents more time to 

scavenge the Tyr radical and stabilize FAD– in the  W388F 

mutant, b) the accessibility of the different radicals to the 

extrinsic reductant and thereby also the efficiency of the 

productive encounter of the redox partners is likely to be 

different, and c) the systems in the steady-state experiment4 

were in dynamic equilibria, as the FADH formed by 

illumination was continuously reoxidized back to FADox by 

molecular oxygen32 present in the air-saturated samples. In 

any case, given the fast forward ET from Trp388H to Trp360H+ in 

WT MmCPDII (<200 ps), the alternative electron transfer 

pathway involving Tyr380 (oxidized by Trp360H+ with an intrinsic 

time constant of 10 - 20 ns; see results on W388F), is 

essentially kinetically switched off and thereby unlikely to play 

any relevant role in the wild-type protein. By contrast and in 

spite of the fact, that it reduces only 30% of the Trp388
 

radicals, the tyrosine Tyr345 could noticeably increase the yield 

of metastable FADH, because the lifetime of FAD– Tyr345
 

(1.1 ms) is almost 5× longer than that of the FAD– Trp388
 pair 

(225 µs), which gives more time to the extrinsic reductants to 

act upon the recombination partner of FAD–, the precursor of 

FADH. 

 

A network of water molecules mediates fast deprotonation of 

Trp388H+ 

Deprotonation of the cation radical of the distal member of 

the Trp triad (Trp388) turned out to be three orders of 

magnitude faster than the corresponding reaction in other 

studied proteins of the PCSf (200 ns in plant cryptochrome,17 

300 ns in EcCPDI,12 2.5 µs in X. laevis (6-4) photolyase10) or in 

the case of free TrpH+ in aqueous solution (700 ns)33 or 

TrpH+ attached to a ruthenium complex (400 ns)34. 

The nearest and most plausible protein-derived candidate 

for the proton acceptor is Glu387, situated 3.6 Å from the 

deprotonating N1 atom of Trp388. Mutation of Glu387 had only a 

minor effect on the deprotonation kinetics, excluding it as the 

direct proton acceptor. A closer look at the crystal structure 

shows that N1 of Trp388 forms an H-bond to the water 

molecule 247 (N1 to O distance: 3.4 Å). This water is ideally 

positioned to function as initial proton acceptor from Trp388H+ 

and it is part of a network of eight water molecules that are 

further coordinated by Tyr380, Lys384, Glu387, Ser342, His356 and 

Asp357 (Fig. 12). This network transfers the proton by a 

Grotthuss-like mechanism to bulk water or a final acceptor, 

the identity of which is yet to be established. 

The superposition of the two available crystal structures of 

class II CPD photolyases, archeal MmCPDII and eukaryotic 

OsCPDII (PDB entries 2XRZ and  3UMV, respectively), revealed 

a similar arrangement of the water network (Fig. S6†). Seven 

water molecules were found close to the distal OsCPDII Trp406 

surrounded by a similar motif (Tyr398, Lys402, Glu405, Glu360, 

His361, His374 and Asp375). This water network and structural 

arrangement seems to be unique to class II CPD photolyases 

and it is absent in known crystal structures of proteins from 

other PCSf sub-families. When analysing the sequence 

divergence of these residues among class II photolyases 

(Fig. S6†), it is appealing that over half of them (Trp388, Tyr380, 

Lys384, Glu387 and Asp357 in MmCPDII numbering) are highly 

conserved. These findings suggest that the unusually fast 

(water cluster-mediated) deprotonation of the terminal 

tryptophan is a general property of all class II CPD photolyases. 

Protein-bound water molecules have been shown to be 

essential for proton transport and biological function of other 

proteins such as bacteriorhodopsins.35 Based on our findings, 

class II photolyases add to biological systems, in which water 

clusters play an important role in proton transfer.   36 17 27, 37, 38 
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§ Hydrated electrons [with max (720 nm) 18 000 M–1cm–1]39 
are formed upon absorption of a second photon of the 
excitation pulse by the rapidly formed FAD– anion radical. 
This artefact is much more pronounced in the fast 
experiments (Figs. 4, 5 and 9) using excitation in the UV 
because the molar absorption coefficient of FAD– at 
355 nm is 15 000 M–1cm–1 (vs. 5 000 M–1cm–1 at 470 
nm). 

§§ In order to be a proton acceptor for Trp388H+, Glu387 would 
have to be deprotonated under the given experimental 
conditions (which is likely at pH 8) and, at the same time, 
have a higher pKa than Trp388H+; note that a typical pKa 
value for a solvent-exposed TrpH+ is 4.37, 40 
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Fig. 1   Superposition of the crystal structures from EcCPDI (PDB entry 1DNP) and MmCPDII (PDB entry 
2XRZ) illustrating the different localization of the tryptophan cascades for electron transfer to FAD. The 

numbers in brackets indicate the shortest edge-to-edge distances in angstroms.  
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Fig. 2  UV-vis spectra of species susceptible to contribute to transient absorption changes following the 
photoexcitation of FADox in MmCPDII. The FADox spectrum was measured in MmCPDII and scaled to ε (at 
λmax) = 11 300 M-1cm-1.36 The FADH● spectrum was constructed as described previously17 using the 

MmCPDII FADox spectrum and that of a mixture of FADox and FADH● in the same sample (obtained by partial 
photoreduction). The FAD●− spectrum (from an insect cryptochrome) and spectra of Trp and Tyr radicals are 

taken from the literature.27, 37, 38  
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Fig. 3 (a) Flash-induced absorption changes on a ns/µs time scale for 40 µM WT MmCPDII at seven 
characteristic wavelengths (see Fig. S1† for signals at all measured wavelengths). (b) Signal amplitudes at t 

→ 0 compared to difference spectra for the formation of FAD●– + Trp● (black solid line) and of FAD●– + 

TrpH●+ (red dashed line). The sample was excited at 470 nm by a 5 ns pulse of an energy E ∼5 mJ per cm2. 

Individual traces are averages of four single flash signals spaced by ∼1 minute.  
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Fig. 4 (a) Flash-induced absorption changes on a ps/ns time scale for 64 µM WT MmCPDII at five selected 
wavelengths (see Fig. S2† for all measured wavelengths). (b) Initial (extrapolated to t = 0) and final 

amplitudes for all measured signals compared to difference spectra for the formation of FAD●– + TrpH●+ and 

FAD●– + Trp●, respectively, and containing small amounts (7 and 4%, respectively) of hydrated electrons e–

aq (see note § for more details). The sample was excited at 355 nm by a 100 ps pulse of E ∼5 mJ per cm2. 

The traces are averages of 16 to 64 signals recorded with a repetition rate of 1 Hz.  
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Fig. 5   Flash-induced absorption changes at 562 nm showing TrpH●+ deprotonation in 64 µM WT MmCPDII 
in H2O and 51 µM WT MmCPDII in D2O (normalized to the amplitude of the signal in H2O). Samples were 

excited at 355 nm by a 100 ps pulse of E ∼2.5 mJ per cm2. The traces are averages of 512 signals recorded 

with a repetition rate of 1 Hz.  
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Fig. 6 (a) Flash-induced absorption changes on a µs/ms time scale for 44 µM WT MmCPDII. (b) Amplitudes 
of the two kinetic phases (from a global fit at all four wavelengths) reflecting recombination of the 

photoinduced radical pairs compared to difference spectra for the formation of FAD●– + Trp● and FAD●– + 

Tyr●, respectively, scaled to the respective amplitudes of the 450 nm signal. The sample was excited at 470 
nm by a 5 ns pulse of E ∼10 mJ per cm2. The signals are results of single-flash experiments.  
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Fig. 7   Flash-induced absorption changes at 540 nm (mainly due to Trp●) on a µs/ms time scale for WT 
MmCPDII (44.0 µM before dilution by buffer containing cysteine) in the absence and in the presence of 

cysteine as reducing agent (signals of samples with cysteine are normalized to the amplitude of the 
cysteine-free sample at t → 0 for better visualization of the effect of cysteine on the kinetics of Trp● 

reduction). Reduction of Trp● (and Tyr●) radical(s) by cysteine stabilizes the FAD●– anion radical, most of 
which is then protonated to FADH● with a time constant of 630 ms. Inset: the disappearance of FAD●– was 

observed at 380 nm and the corresponding formation of FADH● at 610 nm. Samples were excited at 470 nm 
by 5 ns pulses of E ∼2 mJ per cm2. Except for the 610 nm trace in the inset, which is an average of 3 

signals, all other traces are results of single-flash experiments.  
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Fig. 8   (a) Flash-induced absorption changes on a ns/µs time scale for 38.5 µM W388F mutant MmCPDII at 
seven characteristic wavelengths. (b) Signal amplitudes at t = 1.5 µs are compared to the difference 

spectrum for the formation of FAD●– + Tyr●. The sample was excited at 470 nm by a 5 ns pulse of E ∼5 mJ 

per cm2. The traces are averages of 8, 16 or 32 signals recorded with a repetition rate of 1 Hz.  
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Fig. 9   (a) Flash-induced absorption changes on a ps/ns time scale for 55.5 µM W388F mutant MmCPDII at 
seven characteristic wavelengths. (b) Initial amplitudes (at t ∼200 ps) of the signals are compared to the 

difference spectrum for the formation of FAD●– + TrpH●+ and a small amount (7%) of hydrated electrons e–
aq 

(see note § for more details). Signals at all wavelengths decay uniformly with a time constant of 1.2 ns. The 
sample was excited at 355 nm by a 100 ps pulse of E ∼6 mJ per cm2. The signals are averages of 16 to 64 

signals recorded with a repetition rate of 2 Hz.  
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Fig. 10   (a) Flash-induced absorption changes on a ms time scale for 21.3 µM W388F mutant MmCPDII at 
selected wavelengths (for all measured signals, see Fig. S4†). The beginning of some of the signals is 

distorted by a fluorescence artifact. (b) Signal amplitudes at t = 1 ms (i.e., after the end of the fluorescence 

artifact) are compared with the difference spectrum for the formation of FAD●– + Tyr●.  All signals exhibit a 
monoexponential decay with a time constant of 2.7 ms. Sample was excited at 470 nm by a 5 ns pulse of E 

∼10 mJ per cm2. The signals are averages of three single-flash experiments spaced by ∼1 minute.  
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Fig. 11   Flash-induced absorption changes at 562 nm showing TrpH●+ deprotonation in 130 µM E387Q 
mutant MmCPDII in comparison with the WT protein from Fig. 5 (normalized to the amplitude of E387Q). 

Fitting by a monoexponential decay function gives lifetimes of ∼350 ps for WT and ∼500 ps for E387Q. Both 

samples were excited at 355 nm by a 100 ps pulse of E ∼2.5 mJ per cm2; the traces are averages of 64 

(E387Q) or 512 (WT) signals recorded with a repetition rate of 1 Hz.  
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Fig. 12   A network of eight water molecules is coordinated by tryptophan 388 and surrounding residues in 
MmCPDII (PDB entry 2XRZ). The water molecule 247 is directly coordinated by the amide group of the 

tryptophan residue.  
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Fig. 13   Flash-induced absorption changes on a ms time scale for 70 µM Y345F mutant MmCPDII at 
selected wavelengths. Unlike in the WT protein (dotted line at 450 nm shown for comparison), signals 

exhibit a monoexponential decay with a time constant of ∼250 µs. Sample was excited at 470 nm by a 5 ns 

pulse of E ∼6 mJ per cm2. The signals are averages of four single-flash experiments spaced by ∼1 minute.  
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Scheme 1   Mechanism of FADox photoreduction in the wild-type MmCPDII photolyase inferred from our 
data. Time constants observed directly are shown in red, time constants in grey are obtained indirectly from 

branching ratios or estimated (see text).  
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Fig. S1   Flash-induced absorption changes on a ns/s time scale for WT MmCPDII at all measured 

wavelengths. Experimental conditions are described in the legend of Fig. 3. 
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Fig. S2   Flash-induced absorption changes on a ps/ns time scale for WT MmCPDII at all measured 

wavelengths. Experimental conditions are described in the legend of Fig. 4. 

 

 

 

 

 

 

 
 

Fig. S3   Flash-induced absorption changes on a seconds time scale for 20.9 M W388F mutant 

MmCPDII (in the presence of 10 mM cysteine) reflecting the slow (630 ms) protonation of FAD– to 

FADH. The sample was excited at 470 nm by a 5 ns pulse of E 10.0 mJ per cm2. The signals are 

averages of three single-flash experiments spaced by 1 minute.  
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Fig. S4   Flash-induced absorption changes on a ms time scale for W388F mutant MmCPDII at all 

measured wavelengths. Experimental conditions are described in the legend of Fig. 10. 

 

 

 

 

 

 

               
 

Fig. S5   Comparison of the flash-induced absorption changes on a ps/ns time scale for a) WT 

MmCPDII (64 M) and b) its Y345F mutant (69 M). The samples were excited at 355 nm by 100 ps 

pulses of E 5 mJ per cm2 (WT) or 4 mJ per cm2 (Y345F).  
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Fig. S6   The immediate environment of the terminal tryptophan and the water network participating 

in its deprotonation during photoactivation: superposition of two crystal structures of class II CPD 

photolyases from the archaeon Methanosarcina mazei (PDB entry 2XRZ)1 and the plant Oryza sativa 

(PDB entry 3UMV)2. The degree of conservation of the individual amino acids determined from 451 

non-redundant class II photolyase sequences is proportional to the height of the corresponding 

symbols (W360, W381 and W388 are strictly conserved). 
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