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A mathematical model is developed to calculate the topography of a mesa obtained by 

evaporation of matter via inclined rotating lift-off shadow masking. Two types of masking 

are considered: a circular mask and a cylindrical mask—the latter involves sidewall 

deposition. The model is able to predict various topographic profiles obtained via the 

evaporative deposition of matter, e.g. metals, when using a physical mask, e.g. a 

photoresist or an electron beam-sensitive resist patterned onto a flat wafer. The model 

predicts a range of profiles, e.g. sharp cones, round-tipped cones, spikes, irregular bumps, 

flat-topped features, ‘bagel-shaped’ features, flat rings, and cylinders (fixed to the wafer 

and releasable)—depending on the aspect ratio of the circular opening, the deposition 

thickness, and the evaporation tilt angle. The ideas are extended to model an idealized 

resist-based lift-off mask involving overhang and undercut features. The model is simple 

to implement and should be of use for predicting the shape of deposited matter when 

using lift-off and stencil procedures—even at sub-micrometre dimensions. Despite its 

simplicity, the model goes some way in helping to understand the sensitivity of the 

various parameters on the final topography of the deposited matter. For example, the tilt 

angle—even when small—has an influence on the curvature radius of cone tips. In this 
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way, the prediction—and even optimization—of the shape of the deposited material is 

possible prior to embarking on time-consuming, and perhaps costly, experimentation. 

I. INTRODUCTION 

The ability to control the shape of small material features at the nanometre scale1 

is important in many areas of technology ranging from transistor technologies2–5 and 

small sharp points6–9 for a variety of near-field microscopies, to arrays of mesas for 

metamaterials and photonics.10–13 The patterning of materials, e.g. a thin film metal, onto 

a flat surface, e.g. a polished semiconductor wafer, is commonly done by physical vapour 

deposition (PVD), e.g. thermal evaporation, via a physical mask.2 This physical mask is 

usually some form of spin-coated polymer thin film—often referred to simply as the 

‘resist’—and patterned using either photolithography or electron beam lithography. The 

resist profile normally involves the formation of an overhanging feature—to achieve a 

shadowing effect—obtained by undercutting the resist during development. Following 

the deposition of the matter, the resist is removed, i.e. the so-called lift-off process,14–18 to 

leave the required material patterns on the wafer surface. In order to control thin film 

uniformity,19 the wafer is often rotated20 and can be inclined during evaporation.21 In the 

lift-off process, the aspect ratio and profile of the resist opening play a key role in 

determining the influence of edge effects, e.g. shadowing, on the final structure—such 

edge effects are critical in the fabrication of modern microelectronics.2,4 If the aspect ratio 

of the resist opening is large, as in the case of tall narrow patterning, then shadowing 

effects will be important. This can result in small, conic-like features being formed after 

lift-off—even if the wafer is not intentionally inclined—due to some lateral deposition 
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closing the resist opening. Determining the topographic profile of the deposition when the 

wafer contains arbitrary geometry, high-aspect-ratio openings, under rotation and 

inclination is not trivial22—with several solutions having been proposed which make use 

of numerical methods.23–33 The main parameters in this process are: the resist thickness, 

the resist opening width, the resist profile, the evaporation angle, the evaporated material 

thickness, the lateral sidewall and vertical evaporation onto the mask itself. 

II. Evaporation via a lift-off or stencil mask 

In order to model the deposition topography resulting from the evaporation, this 

relatively complex situation—due to the variety of practical lift-off profiles—can be 

greatly simplified as either: (i) A mask composed as a circular hole at a distance above 

the wafer [see Fig 1(a)]—as would be, for example, the practical case of a ‘stencil’ 

mask34,35 or (ii) a perfect cylindrical opening [see Fig. 1(b)]—the sidewalls in the latter 

are solid and perfectly vertical—as would be the case of an ideal resist opening. 
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FIG. 1. (Color online) Physical vapour deposition via masking showing the effect of 

shadowing. (a) A circular hole and (b) a cylindrical opening. The evaporated matter (e.g. 

gold) passes through the circular stencil or lift-off masking (blue) and is deposited onto 

the wafer surface (red). In the case of a cylindrical masking, deposition also occurs on the 

sidewalls. The axis of the mask/wafer ensemble rotation is perpendicular to the wafer 

surface (indicated by a black dashed line). 

 

Let us first describe intuitively what is happening as the evaporation proceeds. As 

the tilted wafer is rotated, matter will be deposited onto the exposed wafer surface, the 

top of the mask, and the exposed sidewalls—the latter occurs in the case of the 
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cylindrical opening. During a single revolution, the amount of matter deposited at a single 

point (either on the wafer surface or on the sidewalls) will depend how long that point is 

not in the shadow of the mask. In addition, during the evaporation the surface of the mask 

is also being deposited with matter, its dimensions are thus changing—this too, along 

with the inclined rotation, affects the shadowing as the deposition proceeds. 

In the case of the circular opening, we will try to develop a solution for the 

thickness of deposited matter along the surface of the wafer, in terms of the mask 

dimensions, the evaporation tilt angle, and the total evaporation thickness. In the case of 

the cylindrical opening, we will also try to provide a solution for the thickness of 

deposited matter on the sidewalls, in terms of the mask dimensions, the evaporation tilt 

angle, and the total evaporation thickness. 

III. A MODEL FOR THE TOPOGRAPHY OF AN 

EVAPORATED MESA ON THE WAFER SURFACE 

A. Basic assumptions 

In order to move forward, we must first make some basic assumptions. We 

assume that the evaporation rotational speed is large enough to allow at least one whole 

revolution of the tilted mask and wafer during the evaporation—in practice, several 

rotations are usually performed during the evaporation of typical thicknesses of matter 

involved i.e. 10 nm to 1000 nm. We assume that the evaporation tilt angle is constant 

during the deposition of the matter and that the mask (circular or cylindrical) rotates 

about the axis of the circle or cylinder.  We assume that the evaporation source-to-wafer 
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distance is much larger than the mask dimensions and the spacing of the features on the 

mask. We assume that the matter is deposited evenly over the patterns.36 We assume that 

the evaporated matter arrives in straight lines from the source. We assume that the 

evaporation rate and deposition rate of the matter are constant during the evaporation. 

Finally, physical issues37,38 such as the material’s granularity39 or migration of species on 

the wafer surface40 are not taken into account. 

B. Development of the model 

The practical masking and setup shown in Fig. 1 can be replaced by simple 

schematic stick figures shown in Fig. 2. 
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FIG. 2. (Color online) A schematic stick diagram showing the effect of tilt angle 𝜑 on the 

deposition of matter using rotated evaporation via a cylindrical mask. (a) Tilt angle 𝜑 =

 0°, and (b) to (f) for tilt angles 𝜑 >  0°. The mask has dimensions height ℎ0 and width 

𝑤0. The top (blue) and bottom (red) of the mask can be seen from a bird’s-eye view in 

Fig. 3. 

 

The mask dimensions are an opening width 𝑤0 and height ℎ0 above the wafer 

surface. The aspect ratio is thus equal to ℎ0 𝑤0⁄ . Intuitively, as the deposition tilt angle 𝜑 

increases the resulting topography of the material deposition will change. At small values 

of 𝜑 one expects the appearance of well-known flat mesas with little sidewall 

deposition—Fig. 2(a). At intermediated angles one expects uneven mesa structures on the 

wafer surface and some sidewall deposition—Figs. 2(b) and (c). At larger angles one 

expects mainly sidewall deposition with little [Fig. 2(d)] or no [Fig. 2(e)] deposition on 

the wafer surface. Increasing the tilt further increases sidewall thickness with a lower 

portion of the sidewall being shadowed by the masking—Figs. 2(f). 

The stick diagrams in Fig. 2—where the resist is effectively transparent to us—

allow one to have bird’s-eye view of what is going on during the deposition and see the 

top and bottom of the opening simultaneously as seen from the point-of-view of the 

evaporation source—this is shown in Fig. 3. Note that the particular case-in-point here 

that of Fig. 2(c). 
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FIG. 3.  (Color online) A bird’s-eye view of the tilted, rotating evaporation using a 

circular or cylindrical shaped mask. (a) Ellipses and (b) circles. (c) and (d) show arc 

lengths to be calculated as 𝑟 is varied. The variable r is the length across the wafer 

surface. The blue ellipse/circle indicates the top of the mask—the other ellipse/circles 

(red, green, purple, and yellow) lie on the wafer surface and indicate different values of 𝑟. 

The case here corresponds to the tilt angle shown Fig. 2(c). 

 

In reality, one would observe tilted circles, i.e. ellipses—see Fig. 3(a), whose 

eccentricity would depend on the tilt angle. If we consider tilted concentric circles on the 

bottom of the opening, i.e. the wafer surface; then as the tilted opening rotates, each point 

lying on an ellipse is deposited with matter when it is not in the shadow of the mask. 
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However, when the point passes into the shadow of the mask, deposition at that point 

ceases. Thus, in order to calculate the amount of matter which is deposited at that point, 

one needs to calculate the ratio of an arc of an ellipse to the perimeter of the ellipse as 𝑟 is 

varied. The length of the arc of the ellipse is given by the intersection points with the top 

ellipse 𝑇. For example, if we consider ellipse 𝐴 intersecting ellipse 𝑇 in Fig. 3(a)—in 

order to calculate the thickness of deposited matter along ellipse 𝐴 we need to calculate 

the length of the arc 𝑎 − 𝑎’ and divide by the length of the perimeter of ellipse 𝐴. 

Likewise, in order to obtain the amount of matter along the perimeter of ellipse 𝐵—one 

has to calculate the length of the arc 𝑏 − 𝑏’ where ellipse 𝐵 intersects ellipse 𝑇 and divide 

this by the length of the perimeter of ellipse 𝐵. It is easy to see that by calculating the 

amount of matter as a function of the ellipse size one can obtain the profile of the 

deposited material at the bottom of the opening. 

In order to obtain an analytical solution to the problem, the ellipses can be 

approximated by circles. The error introduced by this approximation can be evaluated by 

comparing the arc length/perimeter ratio for ellipses of differing eccentricity to that of 

circles—the latter calculation being trivial. In order to calculate the perimeter of an 

ellipse an approximation41 can be used—whereas the arc length of an elliptical sector has 

to be computed numerically.42 The following Table gives the percentage error in the arc 

length/perimeter when using circles rather than ellipses. This error in computed as a 

function of tilt angle 𝜑 and sector angle 𝜃. 

 Evaporation tilt angle 𝝋 

Sector angle 𝜽 5° 15° 25° 35° 45° 

10° 99.8% 98.3% 95.1% 89.9% 82.3% 

80° 99.9% 98.8% 96.5% 92.8% 87.2% 
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Table: Percentage error comparing the arc length/perimeter ratio of circles to that of 

ellipses as a function of evaporation tilt angle 𝜑 and geometric sector angle 𝜃 (see Fig. 3). 

  

It can be seen that at a tilt angle of 25°, the largest tilt used here, the maximum 

error of the arc length/perimeter calculation introduced when employing an approximate 

circular model is <5%. As an aside, for a given sector angle 𝜃, it is found that the error 

increases virtually linearly with the square of the tilt angle 𝜑. Finally, one can suggest 

that a full numerical solution based on the ellipses is possible—but beyond the scope of 

the work presented here. 

We can thus confidently derive a solution using arcs and perimeters of 

intersecting circles without introducing a large error. We are going to calculate the 

amount of matter received by each point along the perimeter of a circle—as shown in Fig. 

3(b). In the case of a stencil-type mask [Fig. 1(a)], note that the red circles in Figs. 3(c) 

and 3(d) are not the largest circles that need to be taken into account (see below). At this 

point the importance of the variable 𝑟 should be stated—𝑟 is the distance along the wafer 

surface. 

First, we can consider the intersecting circles shown in Fig. 3(c) and Fig. 3(d). 

When the opening is tilted, the lateral distance between the centre of the top circle 𝑇 (i.e. 

the mask opening) and centre of the projection of this circle onto the wafer surface 𝑑𝑐𝑐 is 

given by: 

𝑑𝑐𝑐 = ℎ tan 𝜑         (1) 
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Also, for the circular ‘stencil mask’ opening, with no sidewalls, the furthest that the 

matter will be evaporated along the wafer surface 𝑑𝑒 will be: 

𝑑𝑒 = ℎ tan 𝜑 +
𝑤

2
        (2) 

Beyond this, the wafer surface will always be in the shadow of the mask as the system 

rotates. With reference to Figs. 3(c) and 3(d), by using rudimentary trigonometry and 

geometry is can be shown that the ratio of an arc 𝐴 of a circle to its perimeter 𝑃 is given 

by the following formula:  

𝐴

𝑃
=

1

𝜋
cos−1 [

4ℎ2 tan 𝜑2+4𝑟2−𝑤2

8ℎ𝑟 tan 𝜑
]      (3) 

where ℎ is the height of the circular opening above the surface, 𝑤 is the width of the 

opening, 𝜑 is the evaporation tilt angle of the surface and mask. Note that the ‘tilt angle’ 

is not the common ‘evaporation angle’ often cited in the literature—here, if 𝜑 = 0 then 

the evaporation angle is equal to 90°. The arc of the circle of radius 𝑟 is defined from 

where the circle of radius 𝑤/2 (i.e. the top or mask circle) intersects that circle at two 

points. Physically, the length of the arc on circle radius 𝑟 between the two points of 

intersection is the portion of that circle that is not in the shadow of the inclined mask as it 

rotates. The other—longer—complementary arc is the portion of the circle radius 𝑟 that is 

in the shadow of the mask at that moment. 

Note that the above Eq. (3) contains ℎ and 𝑤 rather than the mask dimensions ℎ0 

and 𝑤0 as talked about above—the reason for this is as follows. During the deposition of 

the matter, these initial mask dimensions will be modified due to matter depositing onto 
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the mask itself. In a first approximation, the following linear formulae can be used to 

model this: 

𝑤(𝑡) = 𝑤0 − 2𝑘𝑤𝑡        (4) 

ℎ(𝑡) = ℎ0 + 𝑘ℎ𝑡        (5) 

where 𝑤0 and ℎ0 are the mask dimensions prior to deposition, 𝑡 is the thickness of the 

deposited matter, and 𝑘𝑤 and 𝑘ℎ correspond to the lateral and vertical matter deposition 

coefficients. The signs in Eq. (4) and Eq. (5) ensure that ℎ increases and 𝑤 decreases as 

the evaporation proceeds. These coefficients can vary from zero to unity. However, from 

the literature it is possible to estimate the value of 𝑘𝑤, for example in small metallic cone 

formation—at small tilt angles—the value of 𝑘𝑤 is ~0.5.43 The value of 𝑘ℎ is likely to be 

of the order of unity for relatively small tilt angle deposition. 

A subtle point must be understood now concerning material deposition onto the 

mask itself. In order for the model to give a reliable result at the radial limit of the 

evaporation on the wafer surface, i.e. where the evaporated feature’s thickness tends to 

zero, the lateral and vertical deposition coefficients must be such that the following 

inequality is met: tan 𝜑 ≤ 𝑘𝑤 𝑘ℎ⁄ . The reason for this is to ensure that the lower edge of 

the mask is in the shadow of the new upper edge of the mask after a small deposition of 

metal. For example, in the practical case where 𝑘𝑤 = 0.5 and 𝑘ℎ = 1—the maximum tilt 

angle allowed by the model is ~26.5°. At larger tilt angles the shadowing will be due to 

the lower ‘edge’ of the mask [indicated by the white arrow in Fig. 1(a)] and the upper 

edge of the mask [indicated by the red arrow in Fig. 1(a)]—this case, when tan 𝜑 >

𝑘𝑤 𝑘ℎ⁄ , is not dealt with in the current model. 
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Based on the reasoning here and the assumptions given above, we can now write 

down the equation for the thickness of a small amount of matter ∆𝑡𝑑 deposited along the 

circle radius 𝑟 to the thickness of a small amount of matter ∆𝑡𝑠 evaporated by the 

source—now taking into account the shadowing: 

∆𝑡𝑑

∆𝑡𝑠
=

𝐴

𝑃
cos 𝜑         (6) 

The factor cos 𝜑 takes into account the effect of glancing angle deposition.44 Combining 

Eqs. (3)–(6) gives: 

∆𝑡𝑑(𝑟) =
∆𝑡𝑠cos 𝜑

𝜋
cos−1 [

4(ℎ0+𝑘ℎ∆𝑡𝑠)2 tan 𝜑2+4𝑟2−(𝑤0−2𝑘𝑤∆𝑡𝑠)2

8𝑟(ℎ0+𝑘ℎ∆𝑡𝑠) tan 𝜑
]  (7) 

We can now sum to calculate the total amount of deposited matter 𝑡𝑑(𝑟): 

𝑡𝑑(𝑟) = ∑
∆𝑡𝑠cos 𝜑

𝜋
cos−1 [

4(ℎ0+𝑘ℎ𝑛∆𝑡𝑠)2 tan 𝜑2+4𝑟2−(𝑤0−2𝑘𝑤𝑛∆𝑡𝑠)2

8𝑟(ℎ0+𝑘ℎ𝑛∆𝑡𝑠) tan 𝜑
]𝑛=𝑁

𝑛=1  (8) 

where: 

𝑁 =
𝑡𝑠

∆𝑡𝑠
         (9) 

Despite being a geometric model, 𝑁 can be chosen to give an acceptable 

resolution, e.g. for a thickness of evaporated gold equal to 100 nm choosing 𝑁 = 250 

results in a resolution of ~0.4 nm—i.e. of the order of the lattice constant45 and 

achievable surface roughness.46 Thus, in principle experimental results which deviate 

from the predictions are likely to be due to material issues, e.g. granularity. It is thus a 

relatively simple task to set up the solution for the deposition at the wafer surface. The 

total value of 𝑡𝑑 at a given radius 𝑟 on the wafer surface can be evaluated by summing all 
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the values of ∆𝑡𝑑 as 𝑤 and ℎ vary according to the lateral and vertical deposition 

coefficients—this can be performed using a simple array. 

IV. A MODEL FOR THE TOPOGRAPHY OF MATTER 

DEPOSITED ONTO THE SIDEWALL 

The model for the deposition of matter on the sidewall of a cylindrical mask uses 

a similar approach and reasoning to that given above. Again, one imagines the bird’s-eyes 

view of the projection of the tilted, circular opening onto the sidewall of the cylinder—

see Fig. 4. 

 

FIG. 4.  (Color online) Deposition on the sidewall. The ellipse (shaded grey) is a 

projection of the circular opening of the mask onto the inside of the cylinder (flattened 

out in the Figure). The blue and red lines indicate the top and bottom of the cylinder. The 

projected ellipse has half axes 𝑎 and 𝑏—and contains a chord 𝐶. The perimeter 𝑃 of the 
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cylinder is equal to 𝜋𝑤. The variable 𝑧 is the vertical distance along and down the 

sidewall of the cylinder. 

 

It important to note that a distinction is made between the calculated sidewall 

deposition, in practice this would be the walls of the resist profile shadowed by a pre-

fabricated resist ‘overhang’ feature, and the deposition on the mask—due to 𝑘𝑤 in the 

model—which increases shadowing as the deposition proceeds. Indeed, extensive 

experimental studies, cited above, into the fabrication of sharp points demonstrate that 

these are apparently not the same—the mask accumulating more deposition in the 

absence of shadowing than the shadowed sidewalls. 

In the case of tilted sidewall deposition, one computes the length of the chord C 

of the half ellipse resulting from this projection to the circular perimeter P of the cylinder 

opening, i.e. 𝜋𝑤. This chord is orthogonal to the vertical direction 𝑧 of the opening. We 

can write down the ratio of the chord length 𝐶 at 𝑧 to the perimeter 𝑃 of the inside of the 

cylinder: 

𝐶

𝑃
=

1

2
cos [sin−1 (

𝑧 tan 𝜑

𝑤
)]       (10) 

where 𝑧 is the vertical distance down the side of the inside of the cylinder, and the other 

parameters have their meanings above. 

As above, we can write down the equation for the thickness of matter deposited 

∆𝑡𝑑 along the circle containing the chord—at height 𝑧—to the thickness evaporated by 

the source ∆𝑡𝑠 as: 
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∆𝑡𝑑

∆𝑡𝑠
=

𝐶

𝑃
sin 𝜑         (11) 

Where the factor sin 𝜑 takes into account the glancing angle deposition. 

Assuming that 𝑤 and ℎ vary as above in Eq. (4) and Eq. (5)—due to deposition on the 

mask opening—we can combine these with Eq. (10) and Eq. (11) to give: 

∆𝑡𝑑(𝑧) =
∆𝑡𝑠 sin 𝜑

2
cos [sin−1 (

(𝑧+𝑘ℎ∆𝑡𝑠) tan 𝜑

𝑤0−2𝑘𝑤∆𝑡𝑠
)]    (12) 

Note that the factor 𝑧 + 𝑘ℎ∆𝑡𝑠 accounts for the deposition of matter on top of the 

mask in the case of sidewall deposition—effectively leading to the projected half-ellipse 

being shifted up as the deposition proceeds. As above, we can now sum to calculate the 

thickness of the deposited matter on the sidewalls 𝑡𝑑(𝑧): 

𝑡𝑑(𝑧) = ∑
∆𝑡𝑠 sin 𝜑

2
cos [sin−1 (

(𝑧+𝑘ℎ𝑛∆𝑡𝑠) tan 𝜑

𝑤0−2𝑘𝑤𝑛∆𝑡𝑠
)]𝑛=𝑁

𝑛=1     (13) 

where: 

𝑁 =
𝑡𝑠

∆𝑡𝑠
         (14) 

Again, it is a relatively simple task to set up the solution. The total value of 𝑡𝑑 at a 

given height on the cylinder at 𝑧 can be evaluated by summing all the values of ∆𝑡𝑑 as 𝑤 

and ℎ vary according to the lateral and vertical deposition coefficients—this can also be 

performed using a simple array. Note in this case that the lateral deposition coefficient 

applies only to the mask opening as it is not shadowed—as explained above. And let us 

recall again the condition tan 𝜑 ≤ 𝑘𝑤 𝑘ℎ⁄  must be satisfied. Finally, note that in both 

cases above, the quotient of the inverse trigonometric functions, i.e. cos-1 or sin-1, in Eq. 
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(8) and Eq. (13) needs to be checked to be in the range ±1. If they fall outside this value, 

the physical interpretation of this is that either there is no shadowing during rotation or 

total shadowing. 

V. SOME PRACTICAL PREDICTIONS OF THE MODEL 

Figs. 5 and 6 show some predictions of the modelling when changing the tilt angle 

𝜑 and the aspect ratio ℎ0 𝑤0⁄  of the masking. 
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FIG. 5.  (Color online) Cross-sectional topography of deposited matter on the wafer 

surface for a stencil mask as a function of tilt angle and mask opening. The deposition tilt 

angle 𝜑 is (a) 0.5°, (b) 5°, (c) 10°, (d) 15°, (e) 20°, and (f) 25°. At each tilt angle the 

masking aspect ratio ℎ0/𝑤0 is 1 (gold curves), 2 (violet curves), 5 (green curves), and 10 



19 
 

(blue curves).  Total evaporated matter thickness 𝑡 = 200nm and the deposition 

coefficients 𝑘𝑤 and 𝑘ℎ are 0.5 and 1 respectively. ℎ0 = 500 𝑛𝑚. 

 

FIG. 6. (Color online) Cross-sectional topography of deposited matter on the sidewall of a 

cylindrical mask as a function of tilt angle and mask opening. The deposition tilt angle 𝜑 

is (a) 5°, (b) 10°, (c) 15°, and (d) 20°. At each tilt angle the masking aspect ratio ℎ0/𝑤0 is 

1 (gold curves), 2 (violet curves), 5 (green curves), and 10 (blue curves).  Total 

evaporated matter thickness 𝑡 = 200nm and the deposition coefficients 𝑘𝑤 and 𝑘ℎ are 0.5 

and 1 respectively. ℎ0 = 500 𝑛𝑚. 

 

In order to produce these plots some realistic practical numbers have been used. 

First, the mask dimensions have been chosen to reflect those commonly used in electron 
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beam (ebeam) lithographic processes. The value of ℎ0 is 500 nm and the values of 𝑤0 is 

varied from 50 nm to 500 nm—i.e. an aspect ratio (ℎ0 𝑤0⁄ ) varying from 10 down to 1. 

The values of 𝑘𝑤 and 𝑘ℎ are taken to be 0.5 and 1—it should be noted that these 

parameters are likely to be depended on the tilt angle, but this is not considered in the 

current approximation. The values of 𝑘𝑤 and 𝑘ℎ imply that the maximum tilt angle is 

about 26.5°. A deposition thickness of 200 nm is used. Fig. 5 plots the mesa topography 

using a circular stencil mask [see Fig. 1(a)] whilst Fig. 6 plots the expected sidewall 

deposition using a cylindrical mask [see Fig. 1(b)]. 

Let us first consider Fig. 5. First, in the case of small tilt angle and large aspect 

ratio [Fig. 5(a)] we find square-cornered mesa structures (gold curve). As the aspect ratio 

is increased, we see the appearance of small cone-like structures (green and blue 

curves)—the height of the cones decreasing with increasing aspect ratio. As the 

deposition tilt angle is gradually increased [Fig. 5(b) to Fig. 5(f)] interesting mesa 

topographies become apparent. At a tilt angle of 5° [Fig. 5(b)] and a relatively large 

aspect ratio (ℎ0 𝑤0⁄ = 5), a mesa having a dip in the centre appears [green curve in Fig. 

5(b)]. Increasing the aspect ratio to 10 results in the formation of a ring-like structure 

resembling a cut bagel. At a tilt angle equal to 10° [Fig. 5(c)], an aspect ratio of unity 

results in a large quasi-conic structure [gold curve in Fig. 5(c)]. Increasing the aspect 

ratio leads to the formation of a mesa having a small ‘bump’ in the centre [violet curve in 

Fig. 5(c)], followed by ring-like structures at higher aspect ratio [green and blue curves in 

Fig. 5(c)]. At a tilt angle of 15° [Fig. 5(d)] and an aspect ratio of unity (gold curve) a 

large, more pointed mesa structure is expected. At higher aspect ratios ring formation 

begins at lower aspect ratio—with thicker ‘half-bagel’ rings being formed. At the two 
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highest tilt angles [Fig. 5(e) and 5(f)] very different mesa structures are predicted at unity 

aspect ratio to that when the tilt angle tends to zero. Here we find an irregular bump [gold 

curve in Fig. 5(e)] and a ring-like structure which is not open [gold curve in Fig. 5(f)]. 

Increasing the aspect ratio in both cases leads to ring formation—wider rings being 

formed at higher tilt angles. 

Fig. 6 show the predictions of the model concerning sidewall deposition when 

using a cylindrical mask as described in Fig. 1(b). When the tilt angle is low (𝜑 <5°), 

there is a very thin uniform film deposited over the whole of the sidewall. This film 

thickness corresponds to <1 nm for an evaporation of 200 nm (not shown here). As the 

tilt angle is increased beyond 5° the film thickness becomes greater and deposition 

uniformity remains relatively constant for small aspect ratios (gold curves). At the two 

higher tilt angles [Figs. 6(c) and 6(d)] the sidewall deposition at unity aspect ratio starts 

to becomes non-uniform—but is still present over the whole of the sidewall. As we 

increase the aspect ratio of the mask and increase the tilt angle two effects become 

apparent. First, the sidewall film thickness become non-uniform, and second, in some 

cases the film does not extend to the bottom of the sidewall. For example, at a tilt angle 

of 20° [Fig. 6(d)] and an aspect ratio of 5 (brown curve), the film thickness varies from 

28 nm down to 4 nm in a relatively linear fashion. However, at larger aspect ratios, i.e. 

when 𝜑 > 𝜑𝑐 where 𝜑𝑐 = tan−1 𝑤0 ℎ0⁄ —this is a critical tilt angle, there is no sidewall 

deposition over the whole of the side. In this case the sidewall deposition would form 

cylindrical structures of a non-uniform thickness on the sidewalls of the cylindrical 

mask—see larger aspect ratios in Figs. 6(b) to 6(d). On a practical note, at the larger tilt 

angles the film thickness becomes a non-negligible proportion of the evaporated matter 
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thickness ~20%. Up to the critical tilt angle 𝜑𝑐, this film—depending on its mechanical 

robustness—may ‘survive’ the lift-off process and form a cylinder/mesa feature. It should 

be noted that if—for whatever reason—a liquid suspension of solid cylindrical features of 

certain dimensions were required, then rotated evaporation using a large tilt angle and a 

large aspect ratio—followed by a lift-off process—would enable this practically. 

Now let us investigate how the model predicts the formation of cones (Fig. 7), 

spikes (Fig. 8), and rings (Fig. 9). 

 

FIG. 7. (Color online) Cone formation at small deposition angles. (a) An example of the 

evolution of a cone’s topography as a function of deposition angle 𝜑 from 0.1° to 3° The 

aspect ratio (ℎ0/𝑤0) of the masking is 5, and the total deposited material thickness is 300 

nm. (b) The variation of the cone’s tip radius of curvature (red circles) and the aspect 

ratio of the cone (height/base width)—blue circles. The values of the deposition 

coefficients 𝑘𝑤 and 𝑘ℎ are equal to 0.5 and 1 respectively. 
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FIG. 8. (Color online) Spike formation as a function of total deposited matter thickness 𝑡𝑠. 

For (a) a deposition angle 𝜑 = 10° and an aspect ratio ℎ0 𝑤0⁄ = 2, (b) a deposition angle 

𝜑 = 8° and an aspect ratio ℎ0 𝑤0⁄ = 5, and (c) a deposition angle 𝜑 = 2° and an aspect 

ratio ℎ0 𝑤0⁄ = 10. (d) A plot of the calculated spike height (red circles) and the spike 

aspect ratio—spike height/spike base width—(blue circles). The values of the deposition 

coefficients 𝑘𝑤 and 𝑘ℎ are equal to 0.5 and 1 respectively. 
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FIG. 9. (Color online) Ring formation at large deposition angles. (a) the evolution of rings 

topography as a function of deposition angle 𝜑 from 10° to 25° The aspect ratio (ℎ0/𝑤0) 

of the masking is 3.3, and the total deposited material thickness is 300 nm. (b) the 

evolution of rings topography as a function of deposition angle 𝜑 from 4° to 25° The 

aspect ratio (ℎ0/𝑤0) of the masking is 1, and the total deposited material thickness is 300 

nm. (c) Variation of the ring’s outside radius as a function of tilt angle and masking 

aspect ratio. (d) Variation of the ring’s maximum height as a function of tilt angle and 

masking aspect ratio. 

 

First, in terms of cone-like feature formation [Fig.7(a)], it can be seen that 

increasing the tilt angle increases the radius of curvature of the tip of the cone [Fig. 
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7(b)]—the tip radius increasing approximately linearly with tilt angle. The aspect ratio of 

the cone decreases with increasing tilt angle. Fig. 8 shows the formation of ‘spikes’ 

sitting on a flat mesa. For a given tilt angle 𝜑 and masking aspect ratio ℎ0 𝑤0⁄  a sharp 

spike appears at a critical deposition thickness 𝑡𝑐—green curves in Figs. 8(a)–(c). If 𝑡 >

𝑡𝑐 bumps are formed (gold curves), if 𝑡 < 𝑡𝑐 then flat-topped mesa structures are formed 

(blue curves). The aspect ratio of the spike is largest at lower tilt angle—see Fig. 8(d). 

Fig. 9 shows the effect of tilt angle and masking aspect ratio on the formation of ‘bagel’ 

type rings. First, it can be seen that the tilt angle 𝜑, the masking aspect ratio ℎ0 𝑤0⁄ , and 

the deposited thickness 𝑡 can be set to determine a unique bagel-type ring structure 

having a well-defined inner and outer radius, and a maximum ring thickness. The ring 

width is equal to 𝑤0, and the ring outer radius is equal to ℎ0 tan 𝜑 + 𝑤0 2⁄ . The 

maximum ring height ℎ𝑚𝑎𝑥, which diminishes with increasing tilt angle 𝜑 and increasing 

masking aspect ratio ℎ0 𝑤0⁄ , must be calculated from the model follow a power law. 

Finally, Fig. 10 shows a summary of some of the topographies which are 

predicted using the model. 
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FIG. 10. A schematic diagram showing some of the topologies (cross-section) predicted 

by the modelling. (i) sharp-tipped cones, (ii) round-tipped ‘blunt’ cones, (iii) square 

mesa, (iv) flat-topped mesa, (v) bottle-necked mesa, (vi) rounded mesa, (vii) spiked-

mesa, (viii) bump type 1, (ix) bump type 2, (x) closed-centre ring (xi) thick ‘half bagel-

type’ ring, (xii) flat ring, (xiii) tall thin cylinder connected to the wafer surface, (xiv) a 

short thick cylinder not connected to the wafer surface, and (xv) a short uniform-

thickness cylinder attached to the wafer surface. 

 

One can identify at least 15 distant forms which could—in principle—be 

fabricated on the sub-micrometre scale using tilted rotated evaporation via an ebeam 

mask. The identified topologies are (i) sharp-tipped cones, (ii) round-tipped ‘blunt’ cones, 

(iii) square mesa, (iv) flat-topped mesa, (v) bottle-necked mesa, (vi) rounded mesa, (vii) 

spiked-mesa, (viii) bump type 1, (ix) bump type 2, (x) closed-centre ring (xi) thick ‘half 

bagel-type’ ring, and (xii) flat ring, (xiii) tall thin cylinder connected to the wafer surface, 

(xiv) a short thick cylinder not connected to the wafer surface, and (xv) a short uniform-

thickness cylinder attached to the wafer surface. Inclined rotating evaporation via a mask 

under the conditions given in the paper should result in nanostructure forms resembling 

these. 

VI. Application of the ideas to an idealized circular 

‘resist-based’ lift-off mask 
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By extending the above ideas it is possible develop a model for deposition using 

an ‘idealized circular lift-off mask’—shown in Fig. 11. Despite being an approximation of 

a ‘real’ resist lift-off profile—it should, at least in principle, be of help to the process 

engineer to enable him or her to predict structuration resulting from inclined rotated 

evaporation using a practical mask. Fig. 11(a) shows the idealized circular resist-based 

lift-off mask considered her. 

 

FIG. 11. (Color online) A schematic diagram of an idealized circular lift-off mask at (a) 𝜑 

= 0° showing relevant dimension, and inclined (b) where 𝜑 > 0°. The overhang features 

(blue) have length ∆ and are considered infinitely thin, meaning that the undercut 

sidewalls (green) width is 𝑤0 + 2∆ and its height is ℎ0. Depending on the dimensions and 

the tilt angle 𝜑, the deposition can occur on the wafer surface (red) and on the undercut 

sidewalls (green). The dashed black line in (b) indicates the axis of rotation during 

deposition. 
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The two main features of such as mask are the well-known ‘overhang’ and an 

‘undercut’. These features are there for good reason—to , and in practice are achieved 

either by surface modification prior to resist development14,15—the latter often 

emphasized, or using single16 or bilayers47 where resit solubility in the vertical direction 

is modified by ebeam exposure. Such lift-off masks can have sub-10 nm openings. 

In the idealized theoretical case here, the overhang feature has a length equal to ∆ 

and zero width. The undercut sidewalls are considered to be vertical, having height ℎ0. 

The resist mask opening is 𝑤0—meaning that the width of the undercut is 𝑤0 + 2∆ [see 

Fig.11(a)].  When this mask is inclined for evaporation there are two points to note which 

differ from the cases discussed above. First, as the undercut features extend to the bottom 

of the wafer the deposition on the wafer surface stops at 𝑤0 2⁄ + ∆. Thus, for this 

idealized lift-off mask Eq. (8) can be used by truncating deposition beyond the limit 𝑟 >

𝑤0 2⁄ + ∆ on the wafer surface. 

An approximate solution for the sidewall deposition when overhang features are 

involved can be explained using Fig. 12. 
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FIG. 12.  (Color online) Deposition on the sidewalls when using an idealized lift-off mask. 

The ellipse (shaded grey) is a projection of the circular opening of the mask onto the 

inside of the cylinder (flattened out in the Figure). The blue and red lines indicate the top 

and bottom of the cylinder. The projected ellipse has half axes 𝑎 and 𝑏—and contains a 

chord 𝐶. The perimeter 𝑃 of the cylinder is equal to 𝜋(𝑤 + 2∆). A masked region exists 

which is shadowed by the overhangs—this has a width 𝑠 of ∆ tan 𝜑⁄ . 

 

Fig. 12 shows the lengths of the half axes 𝑎 and 𝑏 of the projected ellipse of the 

opening in the presence of the overhang feature. When an overhang feature is present, the 

projection of the opening will be a full ellipse onto the sidewall of the resist profile—cf. 

Fig. 4. With reference to Fig. 12, again by using basic trigonometry it can be shown that 

the ratio of the chord 𝐶 to the perimeter 𝑃 is given by: 

𝐶

𝑃
=

1

𝜋
[

𝜋

2
− cos−1 (

𝑤

𝑤+2∆
)] cos [sin−1 (

2𝑧 tan 𝜑

𝑤
)]    (15) 
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Following the same steps as above, we can now write down the approximate 

expression for the deposition on the sidewall 𝑡𝑑(𝑧) as: 

𝑡𝑑(𝑧) = ∑
∆𝑡𝑠 sin 𝜑

𝜋
[

𝜋

2
− cos−1 (

𝑤0−2𝑘𝑤𝑛∆𝑡𝑠

𝑤0−2(𝑘𝑤𝑛∆𝑡𝑠−∆)
)] cos [sin−1 (

2(𝑧+𝑘ℎ𝑛∆𝑡𝑠) tan 𝜑

𝑤0−2𝑘𝑤𝑛∆𝑡𝑠
)]𝑛=𝑁

𝑛=1  (16) 

where the symbols have the same meaning as above. 

Although being an idealized lift-off resist profile, by using some reasonable 

practical values used currently in ebeam processing18 one can make some predictions 

using truncated Eq. (8) and Eq. (16). Let us take the overhang length ∆ to be 25 nm, the 

resist height ℎ0 to be 300 nm, and the resist opening 𝑤0 to be 100 nm. Let the total 

evaporated thickness 𝑡𝑠 be 300 nm. The predicted nanostructuration on the wafer surface 

and on the undercut sidewalls can be plotted as a function of deposition tilt angle 𝜑—this 

is shown in Fig. 13. 

 

FIG. 13. (Color online) Plots of the predicted nanostructuration topography using the 

idealized circular resist-based lift-off model. (a) Deposition on the wafer surface. (b) 

Deposition on the undercut sidewalls. The deposition tilt angle 𝜑 is varied from 0.5° to 
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25°. The values of the deposition coefficients 𝑘𝑤 and 𝑘ℎ are equal to 0.5 and 0.5 

respectively. 

 

First, considering Fig. 13(a) one can still observe the evolution of the deposition 

on the wafer surface from conic mesa structures (gold, brown and green) to rings (violet 

and light blue). Second, considering Fig. 13(b) one can observe the influence of the 

overhang feature on the deposition. First, small flat cylinders will be formed at a low tilt 

angles (<10°—not shown)—indeed, cylinder formation begins at a critical angle 𝜑 =

tan−1 ∆ ℎ0⁄ —about 4.8° here. From 𝜑 = 10° thicker, taller cylinders are formed (violet, 

light blue, and dark blue curves) which become thicker and less uniform as the tilt angle 

is increased. Above a critical angle 𝜑 = tan−1 𝑤0 + ∆ ℎ0⁄ , the cylinders deposited onto 

the sidewall become detached from the surface (light brown curve). In principle—at 

least—cylinder formation continues up to 𝜑 = 90°, with thicker narrow bands being 

formed. The height of the cylinders which are attached to the surface is given by 

ℎ𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = ℎ0 − ∆ tan 𝜑⁄ . 

VII. SUMMARY AND CONCLUSIONS 

Using some approximations and assumptions a simple analytical model can be 

derived which can be used to predict the shape of a small material feature resulting from 

the rotating inclined evaporation process using small circular and cylindrical openings 

obtained using a typical microelectronics resist on a flat wafer surface. Both the material 

topography of the resulting mesa on the wafer surface, and the deposition on the 

sidewalls of a cylindrical-shaped opening mask, can be predicted using the model. The 



32 
 

predictions of the modelling are extensive. Depending on whether the mask if circular or 

cylindrical, of high aspect ratio, a high tilt angle, and the total evaporated matter—the 

resulting material topography can be in the form of sharp-tipped cones, round-tipped 

cones, spikes, bumps, flat-topped mesas, bagel-shaped rings, flat rings, and vertical 

cylinders attached to the surface/or mesa or free-standing. The ideas are extended to 

model an idealized ‘resist-based’ lift-off mask comprising overhang features and an 

undercut—this should be useful for the process engineer as it approximates a practical 

resist profile. Despite its simplicity, and being an approximation, the model should help 

to understand the sensitivity of the final topography of the PVD deposited matter on the 

various parameters. Thus, the prediction—and indeed optimization—of the shape of 

deposited material in a small mask opening is possible prior to embarking on time-

consuming, and perhaps costly, extensive experimentation. 
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