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24.1 Introduction

24.1.1 Context

To drive the progress of the miniaturization of electronic circuits, new metrological
issues related to the dimensional and electrical characterization of nanoelectronic
devices must be addressed [1]. In addition, the electrical characterization of high-
impedance 1D or 2D based nanodevices in the microwave regime is still challenging
[2]. A typical high-frequency (HF) device characterization is built up with a
vector network analyzer, a probe station equipped with a pair of microwave GSG
probes aligned manually through a microscope or a camera system onto calibration
substrates and test devices [3, 4]. Conventional HF test structures require probing
pads around 50 x 50 pm? to accommodate the probe tip geometry (center-to-
center pitch of 100 wm, contact area of 20 x 20 wm?). The extrinsic parasitic
capacitance associated with the pad in the range of 50 fF is therefore not compatible
to address the metrology of nanodevices. Furthermore, actual visualization and
displacement/positioning techniques are not accurate enough to ensure a repeatable
contact between the probe tips and the pads at the micro- and nanoscale.

Intensive research has been described in the literature to address RF metrology at
the nanoscale. In 2005, the first measurements of the high-frequency conductance of
a metallic single-walled nanotube (SWNT) with resistance below 200 k€2 inserted
in a coplanar waveguide (CPW) transmission line were performed up to 10 GHz [5].
In 2008, an on-wafer technique and calibration method are developed for broadband
electrical characterization of GaN nanowires up to 40 GHz [6]. In 2010, to improve
the vector network analyzer (VNA) sensitivity, an individual SWNT is inserted in a
specific high impedance Wheatstone bridge helps to reduce the impedance mismatch
between the VNA and the high-impedance nanodevice [7]. Other indirect measure-
ments including nanotube transistors acting as resonators [8] or microwave detectors
[9] have been proposed to demonstrate their GHz operation. Despite these pioneering
works, in the era of shrinking GSG probing structures, a gap between commercially
available probes and those required to characterize nanodevices still remains.

The objective of this work is to develop a new generation of on-wafer
probing instrumentation dedicated to HF quantitative characterization of micro-
and nanodevices. At such scale, visualization, accuracy of alignment, positioning,
and repeatability require suited techniques. In the solution proposed, the probes are
mounted on nanopositioners, and the visualization is ensured by a scanning electron
microscopy (SEM) rather than optics. This method suffers from measurement
repeatability and accuracy issues. Consequently, we have developed a unique
instrument that is a compromise between conventional on-wafer probe station and
microscopy tools. We have fabricated microelectromechanical system (MEMS)
technology-based miniaturized microwave ground-signal-ground (GSG) probes



[10]. In contrast to conventional macroscopic on-wafer probing structures, micromet-
ric CPW test structures have been designed and fabricated to accommodate the minia-
turized probes and to ensure quasi-transverse electromagnetic (quasi-TEM) mode
propagation to the nanoscale devices embedded in the test structures [11]. The probes
are mounted on nanopositioners, and imaging is ensured by an SEM. A detailed study
on the development of the nanorobotic on-wafer probe station is given in [12].

24.1.2 Short Description of the SEM

The SEM [13] (Fig. 24.1) consists of observing the topography of a surface (a
substrate). Its operation relies essentially on the detection of the secondary electrons
(1) emerging from the observed surface (2) under the impact of a primary electron
beam (3) which scans it. The images obtained from the substrate (Fig. 24.2) have a
separating power often less than 5 nm and a great depth of field.

Without going into details of the internal functioning of the SEM, the general idea
of this work consists of positioning a probe consisting of three aligned points on an
element (pattern) of the substrate (Fig. 24.2). It is therefore a system with four degrees
of freedom requiring the control of the displacements of three nanopositioners
SmarAct™ (Fig. 24.3) [14] in X, Y, and Z and the control of one nanopositioner
around an axis of rotation 6.
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Beam
(3) (1)
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Axis

Fig. 24.1 Schematic layout of the SEM
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Fig. 24.2 SEM image of the substrate

Fig. 24.3 (a) SEM image of the probe. (b) Probe nanopositioning platform. (¢) Scanning electron
microscope Tescan Mira XMU. (d) SEM image of the measuring probe which is in contact with a
test structure



24.1.3 Specifications

Our specifications are as follows:

First, we propose to model and control any linear nanopositioners. In this study,
we focus on three linear nanopositioners X, Y, and Z (Sect. 24.2).

Both linear nanopositioners X and Y can be controlled by taking into account a
minimum response time. The linear nanopositioner Z must be controlled without
overshooting the set point (in order to avoid any crashing of the probe tips on the
DUT).

Section 24.3 provides an approach for controlling the nanopositioner in 6 in order
to align the probe on the image.

Finally, a simple approach for detecting points of interest (Harris method) allows
determining the set point value of each nanopositioner in X, Y, or Z (Sect. 24.4).

The overall process allows us to position the probe accurately at any point of the
substrate.

24.2 Modeling and Control of a Linear Nanopositioner Using
LabVIEW™

24.2.1 Central Idea of This Study

The main idea of this study is to fully master the nanomanipulator control chain from
two elementary blocks using LabVIEW™ (Fig. 24.4) [15, 16]:

— A set point or control block
— A block for acquiring the actual position of the nanopositioner

These two elements allow a real-time interaction with the nanopositioner
(Fig. 24.5).

So we can use a conventional control loop to control the nanomanipulator
(Fig. 24.6). A HIL (Hardware-In-the-Loop) test is thus carried out.
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Fig. 24.4 Blocks used with LabVIEW™: (a) Set point block. (b) Position acquisition block
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Fig. 24.6 Control loop for the nanopositioner, where e(r) represents the required position of
the nanopositioner—it is the set point; s(f) is its measured/actual position; the PID controller
continuously applies a correction based on proportional, integral, and derivative terms from the

error value e(f) which is the difference between the required position (the set point e(#)) and the
measured/actual position s(7)

E(s) (s) 8(s)

Fig. 24.7 Open-loop transfer function of the nanopositioner, where E(s) is the Laplace transform
of the required (desired) position e(z); S(s) is the Laplace transform of the actual position s(¢); 7(s)
is the transfer function of the nanopositioner. 7'(s) represents the Laplace transform of the impulse
response of the nanopositioner

In order to obtain an accurate control of the nanomanipulator, we must identify
its transfer function. We considered that the system is linear. This assumption is not
contradicted by the experiments.

We propose to identify its linear transfer function using a (or some) basic
identification method(s).

24.2.2 Modeling

After testing two open-loop identification methods, we propose a more accurate
closed-loop identification technique.

24.2.2.1 Identification of the Open-Loop Transfer Function
of the Nanopositioner

First, let us try to identify the open-loop transfer function of the nanopositioner (Fig.
24.7).

For instance, the set point value is fixed at 1000 nm. Figure 24.8 shows the
required position (in red) and the actual position (in blue) of the nanopositioner with
respect to time. For a greater clarity of the curves, the X-axis is graduated in tenths
of a second (1 unit = % s), which represents the sampling period of the measured
position.

The nanopositioner reacts globally as a pure integrator. This property allows us
to assume that the closed-loop permanent error (difference between the output and
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Fig. 24.8 Open-loop response with a set point of 1000 nm of the nanopositioner
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Fig. 24.9 Closed-loop response of the nanopositioner for a set point of 1000 nm

the set point for a constant set point value when t — o0) is zero. This is confirmed
by the actual closed-loop response (Fig. 24.9) without PID controller (or with a
proportional controller with a gain factor equal to 1).

A proportional correction seems sufficient (Fig. 24.10).

The identification of the nanopositioner transfer function can be performed only
by the hypothesis of a mathematical expression.
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Fig. 24.10 A proportional correction of the nanopositioner

First hypothesis
[f we consider that the nanopositioner behaves as a pure integrator, its transfer
function is as follows:

K
T(s) =~ (24.1)

From the identification, we obtain K = 1.05.

However, the closed-loop nanopositioner shows that for some values of K, there
is an overshoot of the set point value (e.g., Fig. 24.9).

Consequently, the first hypothesis must be rejected, in favor of a second-order
model at least.

Second hypothesis
The transfer function is as follows:

K

T(s) = s(1+1ts)

(24.2)

The expression “(1 + 7s)” will have a preponderant role only when #+ — 0 and it
can be considered as a time delay (dead time 7), using the Taylor series expansion:

=TS8 ~ _1
- 14+7s°
From the previous identification, T = 1 unit = 100 ms. The transfer function thus

becomes

1.05

& =a+s

(24.3)

However, the closed-loop responses of the model (Fig. 24.11) and the real system
(Fig. 24.9) are too distinct to consider the model to be correct.

We can conclude that the method used to identify the open-loop transfer function
is not accurate, given the sampling period of 100 ms. We have therefore chosen to
identify the parameters K and t differently using an identification of the closed-loop
transfer function.
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Fig. 24.11 Closed-loop response of the model (Eq. 24.3) for a set point of 1000 nm

24.2.2.2 Nanopositioning in Closed Loop

Taking into account the second hypothesis for the open-loop transfer function 7' (s) =
S(l—im) a‘nd a prop(?rtional controller with a gain factor equal to K¢, the closed-loop
transfer function of the nanopositioner is as follows:

SGs) 1

H(s) = =
E(s) 1+K+<Cs+,(+(cs2

(24.4)

We can rely on the well-known equations of the automatic control of a linear
system:

— The canonical form of a second-order transfer function

O K

H(s) = =
E) 1+Zs+14s2

(24.5)

where K is the gain, z is the damping factor, and w, is the undamped natural
frequency.
— The first overshoot with respect to the damping factor

D = eV1-2 (24.6)



— The period of the pseudo-oscillation with respect to the damping factor and the
undamped natural frequency

21
T (24.7)
wpV 1 — 72

From Egs. (24.4)—(24.7), the parameters t and K can be determined as functions

of T and D.
Comparing Egs. (24.4) and (24.5), we obtain

P K.K. 1 e
=1L o= I :
i t ' ‘T o/iKkK.

By multiplying w, by z, we get t, that is,

1

= 24.9
’ 2.w4.2 ( )
From Egs. (24.7) and (24.9), we obtain
1
T = 5 5 : (24.10)
T/1-22
And using Eq. (24.6),
-T
T= (24.11)
4.In D
The above equation allows determining t.
By dividing w, by z from Eq. (24.8),
Wn
K.K.=— (24.12)
2:Z
From Eq. (24.7), &, = Tj’]’__z and from Eq. (24.6), z = —1v/1 —z2In D. So
we get
2.12
e N N— (24.13)
z T.(1-z%).In D
From Eq. (24.6), we also have
In D)
2__ WD) (24.14)

N ol
72+ (In D)2
1



Substituting z> in Eq. (24.13),

2.(z* 4+ (In D)
oy _ _2\e"+{b DY) (24.15)
z T.In D
And therefore, from Eq. (24.12)
2 2
In D
K.Kc:_w (24.16)
T.InD

In conclusion, Eqs. (24.11) and (24.16) can be used to determine the parameters
K and 7 from:

— The identification of the parameters 7" and D of the step response of the closed-
loop nanopositioner
— The knowledge of K of the controller fixed by the user

Experimentally, the closed-loop nanopositioner is subject to a gain K, = 1.
We identified the following parameters: an overshoot D of 25% and a period of
oscillations T = 800 ms (i.e., 8 units). From Egs. (24.11) and (24.16), we get

T = 1.443 units = 144.3 ms and K = 1.0632 24.17)

The transfer function of the open-loop nanopositioner is thus

1.0632

T = S0 1.243%)

(24.18)

Finally, the closed-loop responses of the model (Fig. 24.12) and the real
nanopositioner (Fig. 24.9) are strictly identical.

24.2.3 Control with LabVIEW ™

For all tested values of K., the closed-loop responses of the model and the
nanopositioner are strictly identical.
Some values of K, are as follows:

— For K. = 0.33, the nanopositioner has a minimal response time, that is, the
damping factor of the closed-loop nanopositioner is z = % (Fig. 24.13a)

— For K. = 0.163, there is no overshoot of the nanopositioner, that is, z = 1 (Fig.
24.13b)

Whatever the set point and gain K¢, in the physical limits of the nanopositioner,
the closed-loop responses of the real nanopositioner (Fig. 24.14a) and the model
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Fig. 24.12 Closed-loop response of the model (Eq. 24.18) for a set point of 1000 nm
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Fig. 24.13 Control of the nanopositioner: (a) K, = 0.33; (b) K. = 0.163

(Fig. 24.14b) are strictly identical. As an example, the responses to a set point of
2000 nm and K = 1 are given below.

We can conclude that the nanopositioner has been correctly modeled. The minimal
response time of this one is obtained for K, = 0.33.

Depending on the Z axis, the nanopositioner must not overshoot the set point
value, otherwise the probe may be crushed (thus breaking) onto the substrate. Just
set K. = 0.163. The controls in X and Y can be realized in minimal response time
(K: =0.33).
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Fig. 24.15 Principle of alignment of probe tips with the patterns

24.3 Angular Control: Feasibility Study with Matlab™

In this section, we propose to determine a simple real-time method for aligning the
substrate patterns on an imaginary line (blue line in Fig. 24.15) through the three
probe tips, by using an angle control of the sample holder.

This feasibility study is based on simple and efficient image processing, which
can be performed under Matlab™.

Figure 24.15 shows a depth image whose pixels are gray levels (0 for black,
corresponding to a distant pixel; 255 for white, corresponding to the closest pixel).

An exhaustive solution consists of scanning all the possible rotations of the image
(function imrotate (image, theta) under Matlab™) and retaining the one for
which the sum of the gray levels on the imaginary blue line is maximum. There is
thus a maximum of white pixels on this line (Fig. 24.16).



Fig. 24.16 Alignment of
probe tips with the patterns

Another solution would be to use the gradient method to obtain a local maximum
that corresponds to a locally optimal angle. The general idea of this method is to
perform a rotation as long as the sum of the gray levels is higher than in the previous
iteration.

The implementation of these solutions (exhaustive method and gradient method)
is not problematic and will allow one to control the sample holder in real time.

24.4 Determining Set Points of the Nanopositioners on X, Y,
and Z Axes

In this section, we propose a simple image processing allowing the detection of
forms on the one hand, and the detection of points of interest on the other hand. The
coordinates of these points of interest will represent the set point values of the three
linear nanopositioners X, Y, and Z.

24.4.1 Detecting the Patterns

The general idea is to transform a grayscale image into a binary image. A threshold
of the gray levels allows to obtain a black and white image. This threshold can be
determined as the median of the gray levels of the initial image.

If the resulting binary image is too noisy, a filtering can be carried out by
neglecting, for instance, all solid forms made up of fewer than P pixels (function
bwareaopen (bw_image, P) under Matlab™).

P is a parameter that must be much smaller than the size (number of pixels) of
the patterns, so that they are not removed in this filtering operation. P must also be
large enough to provide efficient filtering.



Fig. 24.17 Detection of the
patterns
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Figure 24.17 shows the result obtained by this simple method from the image of
Fig. 24.16.

24.4.2 Detecting a Point to Reach

In order to detect areas of interest in the grayscale image, a Harris method can
easily be used [17, 18] (e.g., function corner (bw_image,Nb corners) under
Matlab™).

This method is used, for instance, to extract the corners of the contours. It is based
on the derivative of the gray levels to locate the points where the intensity varies
strongly in one or more directions.

For a given pixel (u, v), let us consider

— Its pixel intensity /(u, v)

— Its neighborhood w(u, v)—Harris and Stephens propose the use of a smooth
25
-)

£ ; AT )

circular window as a Gaussian filier w(u, v) = exp (—(u2 +v)i2o
The average change of intensity for a small displacement (x, y) is

E(x,y) = Zw (u,v).(I (x+u,y+v)—1I(u, v))2 (24.19)

u,v

Consider the Taylor expansion of the intensity function / over the area (u, v)

81 81 2
1(x+u,y+v):I(u,v)—}—x——l—y——i—o(x,y) (24.20)
ox Sy

where g—f and g—; are the partial derivatives of /.



We obtain the following relation:

Ny = o, ol > 2\
E(x,>)—Zw(u,v).<x5x+y8y+o(x,y)) (24.21)

u,v
By neglecting the term o(x?, y?) for small displacements, E(x, y) can be expressed
in the form

E (x,y) = Ax*> 4+ 2Cxy + By? (24.22)

. 2 D . .
with A = % ® w; B = 2—5, ®w; C = (%%) ® w, where ® is the convolution
function.

E(x,y) can also be expressed in the form

E(x,y)=(x,y)M(x,y) (24.23)

AC

ith M =
. <CB

). M is called the structure tensor. It is a symmetrical and positive

matrix.

The matrix M characterizes the local behavior of the function E.

Indeed, the eigenvalues of this matrix correspond to the principal curvatures
associated with E:

— If the two eigenvalues are large, then the intensity varies strongly in all directions.
We have a corner.

— If the two eigenvalues are small, then the region under consideration has an
approximately constant intensity. We have a homogeneous area.

— If the two eigenvalues are very different, we are in the presence of an outline.

Instead of using eigenvalues, Harris and Stephen propose to detect corners based
on the following formula:

R = Det(M) — k.trace(M)? = AAa — k(A1 + A2)> (24.24)

where Det(M) = A. B — C? and trace(M) = A + B.

k is an empirically determined constant; k € [0.04; 0.06].

The values of R are positive close to a corner, negative near a contour, and weak
in an area of constant intensity.

The search for corners in an image therefore consists of finding the local maxima
of R.

This approach gives excellent results on the SEM images (Fig. 24.18).

The coordinates of these points of interest represent the X, Y, and Z set point
values of the nanopositioners.
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Fig. 24.18 Detecting the points to reach

24.5 Conclusions

This chapter presented an interdisciplinary approach to the control of nanomanipu-
lators. First, we used classical automatic linear tools to identify the transfer function
of a system of three nanopositioners along the X, Y, and Z axes. This part allows the
precise control of any nanomanipulator in LabVIEW™, with overshoot (according
to a minimal response time in X and Y) or without overshoot (in order to avoid
crushing of the probe tips on the substrate in Z) of the required set point. Second,
we designed an angular control methodology (under Matlab™) to align the probe
tips with the component. Finally, the detection of points of interest (use of the Harris
detector) makes it possible to fix the set point value of each nanopositioner in X, Y,
and Z.
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