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This paper derives a new change detector for multivariate Synthetic Aperture Radar image time series. Classical statistical change detection methodologies based on covariance matrix analysis are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resolution images, where the noise can be heterogeneous (non-Gaussian) and where the relevant signals usually lie in a low dimensional subspace (lowrank structure). These two issues are tackled by proposing a new Generalized Likelihood Ratio Test based on a robust (compound Gaussian) low-rank (structured covariance matrix) model. The interest of the proposed detector is assessed on two Synthetic Aperture Radar Image Time Series data set from UAVSAR.

I. INTRODUCTION

The analysis of Synthetic Aperture Radar (SAR) Image Time Series (ITS) has become a popular topic of research since it has many practical applications for Earth monitoring, such as disaster assessment, infrastructure monitoring or land-cover analysis. Over the past years, SAR-ITS have been made more widely available thanks to various missions such as Sentinel-1, TerraSAR-X, or UAVSAR. As a consequence, an active topic of research addresses the development of reliable automatic Change Detection (CD) methodologies in order to efficiently process this large amount of data. The CD problem is indeed challenging due to the lack of available ground truths, which does not allow applying supervised methods from the image processing literature. Moreover, it is well known that SAR images are subjected to speckle noise, which makes traditional optical approaches prone to high false alarm rates. In this case, unsupervised methodologies, often based on statistical tools, have yield interesting approaches in recent decades [START_REF] Hussian | Change detection from remotely sensed images: From pixel-based to objectbased approaches[END_REF].

The CD problem can be seen as designing a metric that can assess for observed changes between pixels representing the Ammar Mian is with Aalto university, Finland (email:ammar.mian@aalto.fi). Antoine Collas and Jean-Philippe Ovarlez are with SONDRA, CentraleSupelec, University of Paris Saclay, France (e-mails : antoine.collas, jean-philippe.ovarlez@centralesupelec.fr). Jean-Philippe Ovarlez is also with DEMR, ONERA, University of Paris Saclay, France (e-mail: jean-philippe.ovarlez@onera.fr). Arnaud Breloy is with LEME (EA4416), University Paris Nanterre, France (e-mail: abreloy@parisnanterre.fr). Guillaume Ginolhac is with LISTIC (EA3703), University Savoie Mont Blanc, France (e-mail: guillaume.ginolhac@univsmb.fr). This work was supported by ANR PHOENIX (ANR-15-CE23-0012) and ANR-ASTRID MARGARITA (ANR-17-ASTR-0015). A part of this work was presented at IGARSS 2019 [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF]. The code and data sets used in this paper are available at https://github.com/AmmarMian/Robust-Low-Rank-CD. same location at different times. Among popular methodologies, Coherent Change Detection (CCD) [START_REF] Preiss | Detecting scene changes using synthetic aperture radar interferometry[END_REF] and the log-ratio operator [START_REF] Bazi | An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[END_REF] have received noticeable attention. However, these methodologies are limited to pairs of one-dimensional images, while current data-sets are generally multidimensional (using e.g., polarimetric or spectro-angular channels [START_REF] Mian | Design of new wavelet packets adapted to high-resolution SAR images with an application to target detection[END_REF]), and gather multiple observation-times of the same scene. Multivariatedata oriented methodologies, i.e. that exploit the whole diversity, can improve the CD performance in this case. Notably, the local covariance matrix has been shown to be a relevant feature in order to assess for changes in multivariate SAR data [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF]- [START_REF] Nascimento | Detecting changes in fully polarimetric sar imagery with statistical information theory[END_REF].

Testing the similarity of covariances matrices between groups of observations is a well-established topic in the statistical literature [START_REF] Nagao | On some test criteria for covariance matrix[END_REF]- [START_REF] Hallin | Optimal tests for homogeneity of covariance, scale, and shape[END_REF], which has also been considered for CD in time-series in, e.g. [START_REF] Galeano | Covariance changes detection in multivariate time series[END_REF], [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF]. More specifically for SAR-ITS applications, various test statistics based on covariance matrix equality testing from Gaussian samples have been proposed within statistical detection framework [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF]- [START_REF] Carotenuto | Unstructured versus structured GLRT for multipolarization SAR change detection[END_REF], [START_REF] De Maio | A multifamily GLRT for oil spill detection[END_REF], or using information theory [START_REF] Ratha | Change detection in polarimetric SAR images using a geodesic distance between scattering mechanisms[END_REF], [START_REF] Nascimento | Detecting changes in fully polarimetric sar imagery with statistical information theory[END_REF] . A good review of these Gaussian detectors can be found in [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF]. While these approaches offer good performance, they can nonetheless suffer from two issues encountered in high-dimension/resolution images: i) First, the Gaussian model has been shown to be inaccurate in recent radar clutter analysis due to the inherent heterogeneity of these images. In this case, Compound Gaussian models have been shown to provide a better fit to empirical measurements [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF], [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF], which is interesting to leverage in SAR images processing (e.g., in [START_REF] Formont | Statistical classification for heterogeneous polarimetric SAR images[END_REF] for classification). In order to account for signals non-Gaussianity in SAR-ITS, [START_REF] Liu | Change detection in urban areas of high-resolution polarization SAR images using heterogeneous clutter models[END_REF]- [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF] proposed various Generalized Likelihood Ratio Tests (GLRTs) assuming a Compound Gaussian distribution. Specifically, [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF] extended the Gaussian GLRT for covariance equality testing to the case of Compound Gaussian models, which was shown to yield improvements in terms of CD performance. ii) Second, the standard detectors are derived assuming unstructured covariance matrices, while the signal of interest usually lies in a low-dimensional subspace. This especially true for multivariate observations arising from radar systems, where a probabilistic principal component analysis model [START_REF] Tipping | Probabilistic principal component analysis[END_REF] can reflect a relevant assumption (see for example [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF] and reference therein). Another example would be the case where only one polarization channel contains relevant information for change detection purpose. In this scope, [START_REF] Ben Abdallah | Detection methods based on structured covariance matrices for multi-variate SAR images processing[END_REF] proposed to extend the GLRT approach to test for the equality of the parameters of low-rank structured covariance matrices.

To account for both issues, this paper proposes a new CD method based on both robust and LR models: we derive a GLRT for Compound Gaussian distributed observations that have a low-rank structured covariance matrix. The formulation of this test involves non-trivial optimization problems for which we tailor a practical block-coordinate descent algorithm. The proposed detector is then applied for CD on two SAR-ITS UAVSAR data set to demonstrate the interest of the approach for CD in SAR-ITS. This work constitutes an extension of the IGARSS conference paper [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF], which was limited to the case of two images and did not present fully the algorithm derivations. The additional contributions are the following:

1) The full derivations for the general case are now provided. 2) Several side parameters (rank and noise floor variance) were assumed to be fixed in [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF]. This extended version discusses how to deal with their estimation and presents experiments to test the robustness of the approach. Notably, it is shown that the performance of the proposed approach does not dramatically deteriorates if a slight error of the rank estimation is made. 3) Concerning the experiments on real data, we tested the proposed algorithm on new data sets: i) A time series (4 images) of a scene, where [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF] contained an experiment restricted to two images of this scene; ii) An additional scene with 2 images. The rest of the paper is organized as follows: Section II presents the general notations and the theoretical background (GLRT and useful distributions). Section III presents existing GLRTs for CD based on covariance matrix equality testing. Section IV details the proposed GLRT for CD and derives algorithms to evaluate it. Section V illustrates the performance of the proposed method on real data.

Notations: italic type indicates a scalar quantity, lower case boldface indicates a vector quantity and upper case boldface a matrix. The transpose conjugate operator is H . Tr{•} and | • | are respectively the trace and the determinant operators. etr{•} is the exponential of trace operator. {w n } N n=1 denotes the set of elements w n , with n ∈ [ [1, N ]]. Definition of needed eigenvalue decomposition will be through the equality symbol EVD = . H ++ p denotes the set of p × p Hermitian positive definite matrices. H ++ p,R denotes the set of p × p Hermitian positive semi-definite matrices of rank R. ∝ stands for "proportional to". x ∼ CN (µ, Σ) is a complex-valued random Gaussian vector of mean µ and CM Σ.

II. BACKGROUND

A. Multivariate SAR-ITS

We consider a multidimensional time-series of T multivariate SAR images as described in Figure 1. Each pixel of a SAR image at a given date t corresponds to a vector of dimension p, denoted x ∈ C p . The p channels can correspond to a polarimetric diversity (p = 3), or to another kind of diversity such as a spectro-angular one, obtained through wavelet transforms [START_REF] Mian | Design of new wavelet packets adapted to high-resolution SAR images with an application to target detection[END_REF]. The change detection process is applied using a local window around the pixel of interest, including K pixels. Locally, the whole data set is denoted 

{{x t k } K k=1 } T t=1 , which corresponds to the aggregation of all pixels at spatial indexes k ∈ [[1, K]] and dates t ∈ [[1, T ]].

B. Statistical CD with the GLRT

For a given time t, the local observation {x t k } K k=1 is assumed to be distributed according to a fixed parametric distribution, of parameter θ t . The corresponding likelihood is denoted L {x t k } K k=1 |θ t . The parameters {θ t } are a feature that characterizes the local data at each date t: if a local change occurs, this parameter is expected to vary. The CD problem can thus be formulated as a binary hypothesis test:

H 0 : θ i = θ 0 , ∀i ∈ [[1, T ]] (no change), H 1 : θ i = θ j , for i = j (change). (1) 
Notice that we consider an omnibus CD problem, i.e. we do not test for a change at a specific date. In this work, the sequential test focusing on the date t 0 :

   H 0 : θ i = θ 1 , ∀i ∈ [[1, T ]] (no change), H 1 : θ i = θ 1 , ∀i ∈ [[1, t 0 -1]] θ i = θ t0 , ∀i ∈ [[t 0 , T ]] (change at t 0 ).
(2) can be trivially recasted as an omnibus one with T = 2 by re-partitioning the data set. However, this property is not always true depending on the chosen distribution and set of parameters.

In order to derive a metric of decision, we consider the use of GLRT. This test consists in computing the following quantity:

ΛGLRT = max {θt} T t=1 T t=1 L H1 {x t k } K k=1 |θ t max θ0 T t=1 L H0 {x t k } K k=1 |θ 0 , (3) 
where L H1 (resp. L H0 ) denotes the likelihood function and {θ t } T t=1 (resp. θ 0 ) corresponds to the parameters of the distribution, both under H 1 (resp. H 0 ). Hence, to develop efficient detectors, the problem remains to select an assumed distribution (and corresponding parameters) that accurately reflects the behavior of the data. It is also worth mentioning that, depending on the chosen model, the evaluation of the GLRT may lead to complex optimization problems.

C. Compound Gaussian distributions

The Gaussian assumption is the most widely used in multivariate SAR image applications. As each pixel value can be the sum of the contribution of many scatterers, this assumption is indeed well motivated by the central limit theorem. For SAR images, the mean is also classically assumed to be zero due to the multiplicative nature of speckle noise and will be thus omitted in this work. A complex p-vector x ∈ C p follows a zero-mean multivariate circular complex Gaussian distribution, denoted x ∼ CN (0, Σ), if it has the Probability Density Function (PDF)

f CN x (x|Σ) = π -p |Σ| -1 exp -x H Σ -1 x . ( 4 
)
where

Σ ∈ H ++ p is the covariance matrix, i.e. E xx H = Σ. A set of observations {x k } K k=1 has then the likelihood L CN ({x k } K k=1 |Σ) ∝ |Σ| -K etr -Σ -1 XX H (5) with X = [x 1 , . . . , x K ].
Nevertheless, the Gaussian assumption can be inaccurate when it comes to model high-resolution images or heterogeneous areas. In this case, distributions that can account for heavy-tails, such as the compound Gaussian ones, offer a better fit [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. A vector x ∈ C p follows a zero-mean multivariate complex compound Gaussian distribution, denoted x ∼ CG(0, Σ, f τ ), if it admits the stochastic representation

x d = √ τ n, (6) 
with n ∼ CN (0, Σ), and where τ is a positive random scalar, independent from n, with PDF f τ (.). Compound Gaussian distributions encompass a large family of standard multivariate ones, depending on the assumed PDF f τ (.) [START_REF] Ollila | Complex elliptically symmetric distributions: Survey, new results and applications[END_REF]. In order to design a process that is robust to all these distributions, we can assume that {τ k } are unknown deterministic variables. For a data set {x k }, this assumption leads to x k |τ k ∼ CN (0, τ k Σ), with the likelihood function

L CG {x k } K k=1 |Σ, {τ k } K k=1 ∝ K k=1 |τ k Σ| -1 exp -x H k (τ k Σ) -1 x k (7) 

III. CD WITH GLRTS BASED ON COVARIANCE MATRIX

For SAR-ITS, the CD problem can be reformulated as a hypothesis test on equality of the covariance matrices. The rationale behind this is that a local change is translated by a change in the second-order statistics of the observations. To perform this test, the GLRT approach has been successfully applied in numerous works [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF]- [START_REF] Nascimento | Detecting changes in fully polarimetric sar imagery with statistical information theory[END_REF], [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF], [START_REF] Ben Abdallah | Detection methods based on structured covariance matrices for multi-variate SAR images processing[END_REF]. The following subsections recall existing GLRTs (depending on the assumed model) that have been applied to CD in SAR-ITS.

A. Gaussian CD

Assuming Gaussian distributed samples, the CD can be performed by testing a change in the covariance matrix [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF], [START_REF] Novak | Coherent change detection for multi-polarization SAR[END_REF]. The corresponding GLRT, denoted ΛG , corresponds to (1) and (3) with the following distribution/parameters:

Model: x t k ∼ CN (0, Σ t ) Likelihood in (5) Param.: H 0 : θ 0 = Σ 0 H 1 : {θ t } T t=1 = {Σ t } T t=1 (8) 
this test has well established statistical properties (cf. eg. [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF]) and admits the closed-form expression

ΛG = ΣSCM 0 T t=1 | ΣSCM t | 1/T , (9) 
involving the following Sample Covariance Matrices (SCM)

ΣSCM 0 = 1 T K t,k x t k (x t k ) H , ΣSCM t = 1 K k x t k (x t k ) H .

B. Compound Gaussian CD

As stated previously, the Gaussian assumption is no longer valid for high-resolution, or heterogeneous SAR images [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF]. This mismodeling induces a strong reduction of the CD performance when using ΛG , notably caused by the inaccuracy of the SCM computed from non-Gaussian observations. This issue can be alleviated by assuming a compound Gaussian model, as described in section II-C. Under this assumption, the CD can be performed by testing a change in both the covariance matrix and the texture parameters [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF]. The corresponding GLRT, denoted ΛCG , corresponds to (1) and (3) with the following distribution/parameters: [START_REF] Novak | Coherent change detection for multi-polarization SAR[END_REF] Param.:

Model: x t k ∼ CN (0, τ t k Σ t ) Likelihood in
H 0 : θ 0 = Σ 0 , {τ 0 k } K k=1 H 1 : {θ t } T t=1 = Σ t , {τ t k } K k=1 T t=1 (10) 
The evaluation of the quantity ΛCG involves fixed-point equations that can be computed numerically. A study and generalizations (testing for textures or covariance matrices individually) of this approach can be found in [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF].

C. Low-rank Gaussian CD

The performance of the aforementioned CD methods is tightly linked to the accuracy of the covariance matrix estimation. The general rule-of-thumb requires K > 2p samples in order to obtain a correct estimation [START_REF] Reed | Rapid convergence rate in adaptive arrays[END_REF]. In order to lower K (i.e., reduce the local window size), some prior knowledge on the covariance structure can be leveraged to reduce the dimension of the estimation problem [START_REF] Breloy | Clutter subspace estimation in low rank heterogeneous noise context[END_REF]- [START_REF] Sun | Low-complexity algorithms for low rank clutter parameters estimation in radar systems[END_REF]. Due to signals lying in a lower dimensional subspace, a very common structure in radar applications is the low-rank one, i.e.

Σ = Σ R + σ 2 I ( 11 
)
where Σ R belongs to the set of Hermitian positive semidefinite matrices of rank R, denoted H + p,R . A Gaussian GLRT that accounts for this prior knowledge (with known σ 2 ), denoted ΛLRG , can be formulated according to [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF] and [START_REF] Preiss | Detecting scene changes using synthetic aperture radar interferometry[END_REF] with the following distribution/parameters:

Model: x t k ∼ CN 0, Σ t R + σ 2 I Likelihood in (5) Param.: H 0 : θ 0 = {Σ 0 R } H 1 : {θ t } T t=1 = {Σ t R } T t=1 (12) 
Several generalizations (testing for specific parameters individually) of this approach, and algorithms to compute the corresponding quantities, can be found in [START_REF] Ben Abdallah | Detection methods based on structured covariance matrices for multi-variate SAR images processing[END_REF], [START_REF] Abdallah | Signal subspace change detection in structured covariance matrices[END_REF]. When compared to ΛG , ΛLRG offers a gain in terms of performance and spatial resolution. However, the robustness properties of ΛCG are lost, that motivates the present work.

IV. PROPOSED DETECTOR

A. Low-rank compound Gaussian CD

In this paper, we propose to combine the advantages of both the low-rank structure and the CG distribution. Thus, we consider a model of CG distributed samples (cf. Section II-C) with a LR structured covariance matrix as in [START_REF] De Maio | A multifamily GLRT for oil spill detection[END_REF]. The corresponding GLRT for CD, denoted ΛLRCG , corresponds to (1) and ( 3) with the following distribution/parameters:

Model: x t k ∼ CN 0, τ t k Σ t R + σ 2 t I Likelihood in (7) Param.: H 0 : θ 0 = Σ 0 R , σ 2 0 , {τ 0 k } K k=1 H 1 : {θ t } T t=1 = Σ t R , σ 2 t , {τ t k } K k=1 T t=1 (13) 
Here, the test accounts for a possible change of both the covariance matrix and the textures between acquisitions, as it was shown to be the most relevant approach for SAR-ITS [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF]. Also note that we consider a more general model than [START_REF] Ratha | Change detection in polarimetric SAR images using a geodesic distance between scattering mechanisms[END_REF], where the variance σ 2 t is unknown and can change at each date t.

B. Computation of Λ LRCG

Evaluating Λ LRCG according to the generic equation (3) requires to compute:

ΛLRCG = L H1 LRCG {x t k } K k=1 T t=1 | θH1 LRCG L H0 LRCG {x t k } K k=1 T t=1 | θH0 LRCG , (14) 
where L H0 LRCG and L H1 LRCG are the likelihood (derived from [START_REF] Novak | Coherent change detection for multi-polarization SAR[END_REF]) under H 0 and H 1 , and where 

θH0 LRCG = Σ0 R , σ2 0 , {τ 0 k } K k=1 , θH1 LRCG = Σt R , σ2 t , {τ t k } K k=1 T t=1 (15) 
maximize {τ t k ,Σ t k } K k=1 ,Σ t R ,σ 2 t K k=1 log(L t H1 x t k |Σ t k ) subject to Σ t k = τ t k Σ t R + σ 2 t I Σ t R 0, and rank(Σ t R ) = R σ 2 t > 0, and τ t k > 0, ∀k (16) 
where L t H1 (x t k |Σ k ) reads directly from [START_REF] Bazi | An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images[END_REF]. The solution to this problem can not be obtained in closed form, but the following sections derive practical block-coordinate descent algorithm in order to evaluate it. The algorithm is summed up in the box Algorithm 1.

• Update of the textures (H 1 ): Assuming a fixed covariance matrix Σ t R + σ 2 t I, the maximum likelihood estimator of the texture parameters is obtained in closed form [START_REF] Pascal | Covariance structure maximum-likelihood estimates in compound Gaussian noise: Existence and algorithm analysis[END_REF], with

τ t k = 1 p (x t k ) H Σ t R + σ 2 t I -1 x t k (17) 
• Update of the covariance matrix parameters (H 1 ): Assuming fixed textures {τ t k } K k=1 , the problem ( 16) can be re-expressed as:

minimize Σt,Σ t R ,σ 2 t log|Σ t | + Tr St Σ -1 t subject to Σ t = Σ t R + σ 2 t I Σ t R 0, and rank(Σ t R ) = R σ 2 t > 0 (18) with St = (1/K) K k=1 x t k (x t k ) H /τ t k .
The solution is given in [START_REF] Tipping | Probabilistic principal component analysis[END_REF], and leads to the update

Σ t = U diag( d) U H ∆ = T R ( St ) (19) 
defined through the operator T R , with

St EVD = U diag(d) U H d = [d 1 , . . . , d R , d R+1 , . . . , d p ] d = d 1 , . . . , d R , σ2 t , . . . , σ2 t σ2 t = 1 p -R p r=R+1 d r . ( 20 
)
Remark: If the noise variance is assumed to be known and equal to σ 2 , the solution of the modified problem (with constraint rank(Σ t R ) ≤ R) is given in [START_REF] Kang | Rank-constrained maximum likelihood estimation of structured covariance matrices[END_REF], and consists in replacing d by 

d = max(d 1 , σ 2 ), . . . , max(d R , σ 2 ), σ 2 , . . . ,
return Σ0 R , σ2 0 , {τ 0 k } K k=1
2) Maximum likelihood under H 0 :

maximize {τ 0 k ,Σ 0 k } K k=1 ,Σ 0 R ,σ 2 0 T t=1 K k=1 log L t H0 (x t k |Σ 0 k ) subject to Σ 0 k = τ 0 k Σ 0 R + σ 2 0 I Σ 0 R 0, and rank(Σ 0 R ) = R σ 2 0 > 0, and τ 0 k > 0, ∀k (22) 
This problem can be solved as the one in ( 16), with some modifications due to the likelihood function. The differences are detailed below and summed up in the box algorithm 2.

• Update of the textures (H 0 ): Assuming a fixed covariance matrix Σ 0 = Σ 0 R + σ2 0 I, the maximum likelihood estimator of the texture parameters is obtained in closed form [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF], with

τ 0 k = 1 T p T t=1 (x t k ) H Σ 0 R + σ 2 0 I -1 x t k (23) 
• Update of the covariance matrix parameters (H 0 ): Assuming fixed textures, the update problem can be reformulated as in [START_REF] Galeano | Covariance changes detection in multivariate time series[END_REF], using

S0 = 1 KT T t=1 K k=1 x t k (x t k ) H τ 0 k (24)
instead of St . The solution is then obtained as in [START_REF] Aue | Break detection in the covariance structure of multivariate time series models[END_REF] and [START_REF] Greco | Statistical analysis of high-resolution SAR ground clutter data[END_REF], and yields Σ 0 ∆ = T R ( S0 ).

3) Note on the convergence: Both algorithms 1 and 2 appear as technical variations around the one of [32, Sec. V.A.], which derives a Majorization-Minimization algorithm for an objective that corresponds to the concentrated likelihood (substituting the maximum likelihood estimates of {τ k } K k=1 ) under H 1 . Some convergence properties can thus be deduced from [START_REF] Sun | Robust estimation of structured covariance matrix for heavy-tailed elliptical distributions[END_REF]. The proposed algorithms are block-coordinates descent with a unique global solution at each step. Since the problem is not convex, this does not offer a theoretical guarantee on the convergence in terms of variables (though it is experienced in practice). However, it ensures a monotonic increment of the likelihood and, thus a convergence in terms of objective value. This property is essential since we are mostly interested in the evaluation of [START_REF] Nagao | On some test criteria for covariance matrix[END_REF].

C. Selecting the rank R

The proposed detector requires to assume a rank R. In practice, this rank can be pre-estimated (either globally or locally) by using rank estimation methods from the literature, such as information theory-based ones [START_REF] Stoica | Model-order selection: a review of information criterion rules[END_REF]. In this paper, we consider a simple approach, i.e. fixing a global rank by analyzing the eigenvalues of the total sample covariance over the ITS. We will also test the robustness of the approach to the choice of R.

V. NUMERICAL SIMULATIONS

The performance of the proposed change detector Λ LRCG is tested on a SAR ITS dataset, and assessed with ROC curves (displaying the probability of detection versus the false alarm rate). As a mean to assess the effectiveness of combining LR structure with a robust model, it is compared to the following detectors: i) the classic Gaussian detector proposed in [START_REF] Conradsen | A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data[END_REF], [START_REF] Ciuonzo | On multiple covariance equality testing with application to SAR change detection[END_REF], denoted ΛG ; ii) the LR Gaussian detector of [START_REF] Ben Abdallah | Detection methods based on structured covariance matrices for multi-variate SAR images processing[END_REF], denoted ΛLRG ; iii) the compound Gaussian detector proposed in [START_REF] Mian | New robust statistics for change detection in time series of multivariate SAR images[END_REF], denoted ΛCG .

A. Datasets description

The SAR ITS data set is taken from UAVSAR (courtesy of NASA/JPL-Caltech). Two scenes with respectively 4 and 2 images are used 1 . They are displayed in Figure 2 for the scene 1 (4 images) and 3 for the scene 2 (2 images). The CD ground truths are collected from [START_REF] Ratha | Change detection in polarimetric SAR images using a geodesic distance between scattering mechanisms[END_REF], [START_REF] Nascimento | Detecting changes in fully polarimetric sar imagery with statistical information theory[END_REF] and are shown in figures 4. Table I gives an overall perspective of the scenes used in the study. The SAR images correspond to full-polarization data with a resolution of 1.67m in range and 0.6m in azimuth. Since the scatterers present in this scene exhibit an interesting spectro-angular behavior, each polarization of these images has been subjected to the wavelet transform presented in [START_REF] Mian | Design of new wavelet packets adapted to high-resolution SAR images with an application to target detection[END_REF], allowing to obtain images of dimension p = 12.

The rank R is chosen according to Figure 5, which displays the eigenvalues of the total sample covariance matrix. For this data set, R = 3 appears to be an interesting value to separate signal from noise components. Notably, this rank gathers 81% of the total variance.

B. Results

1)

Comparison between four methods: Figure 6 displays the outputs of the 4 detectors applied to scene 1. From visual inspection, the levels of the false alarms appear lower for the low-rank based detectors. Figure 7 confirms this insight, and also assesses that the proposed method achieves the best performance in terms of probability of detection versus false alarm rate. For the scene 2, the same conclusions can be drawn from Figure 9 (detectors output) and Figure 10 (ROC curves). Finally, Figures 8 and11 display the thresholded detection maps of each scene so that the probability of false alarm is identical for all detectors (set to 10%). These confirm the previous conclusions by showing that the proposed method improves the detection results at the edge of several zones (circled in red in the figure of ΛLRCG ).

2) Robustness to rank selection: Figure 12 displays the ROC curves of Λ LRCG on the scene 1 for three different values of the rank R. It is interesting to notice that these curves do not vary significantly with respect to this parameter. Therefore, we can expect that a slight error in the rank estimation will not lead to a significant drop in CD performance. 3) Influence of the estimation of σ 2 : In [START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF], the noise variance σ 2 is pre-estimated locally with the mean of the (p -R) lowest eigenvalues of the sample covariance matrix of all samples in the patch. This value is then used as a known parameter in the detector (cf. ( 21)). Figure 13 compares this method with the fully adaptive one (proposed in this paper). It shows that the parameter σ 2 can be left as a degree of freedom at each t without losing in terms of CD performance.

VI. CONCLUSION

This paper derived a new GLRT based on covariance matrix equality testing. This GLRT was derived assuming that the samples follow a compound Gaussian distribution with a low-rank structured covariance matrix. Experiments on two UAVSAR scenes showed the interest of combining both the non-Gaussian approach and the structure prior information for CD in SAR-ITS. In this work, the rank of the model is assumed to be fixed and estimated at a previous stage. The robustness of the proposed detector to this rank selection was also illustrated in the experiments. A potential extension of this work would be to investigate the change of the rank within such a CD process. 

Fig. 1 :

 1 Fig. 1: Representation of p-variate SAR-ITS data set. The pixels highlighted in black correspond to the local observation window (here, K = 9).
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 23425 Fig. 2: UAVSAR Dataset used in this study for the scene 1. Four dates are available between April 23, 2009 and May 15, 2011.
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 678910111213 Fig.6: Outputs of the 4 methods for the scene 1: Gaussian, Low Rank Gaussian, Compound Gaussian (CG) and Low Rank Compound Gaussian (LRCG). Rank is fixed as 3, the window size is × 7 and σ 2 is assumed unknown for low rank models.

  MLE under H 1 and fixed t.

	Input: R, t, {x t k } K k=1 while (convergence criterion not met) do
	Update textures with (17)
	Update covariance matrix parameters with (19)-(20)
	return Σt R , σ2 t , {τ t k } K k=1
	estimation of the unknown parameters Σt R , σ2 t , {τ t k } K k=1
	consists in solving the problem

are the maximum likelihood estimators under H 0 and H 1 , respectively.

1) Maximum likelihood under H 1 : Under H 1 , the likelihood is separable in t. For a fixed t, the maximum likelihood Algorithm 1:

  σ 2 . (21)Algorithm 2: MLE under H 0 .

	Input: R, {x t k } K k=1 while (convergence criterion not met) do T t=1
	Update textures with (23)
	Update covariance matrix parameters with (19)-(20) applied to
	(24)

TABLE I :

 I Description of SAR data used

	Dataset	Url	Resolution Scene	p	T Size	Coordinates (top-left px)
	UAVSAR SanAnd 26524 03 Segment 4 April 23, 2009 -May 15, 2011	https://uavsar.jpl.nasa.gov	Rg: 1.67m Az: 0.6m	Scene 1 12 4 2360 × 600 px	[Rg, Az] = [2891, 28891]
				Scene 2 12 2 2300 × 600 px	[Rg, Az] = [3236,25601]

The scene 1 reduced to T =

is studied in[START_REF] Mian | Robust low-rank change detection for SAR image time series[END_REF]