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Robust Low-rank Change Detection for Multivariate
SAR Image Time Series

Ammar Mian, Antoine Collas, Arnaud Breloy, Member, IEEE, Guillaume Ginolhac, Senior Member, IEEE,
Jean-Philippe Ovarlez, Member, IEEE.

Abstract—This paper derives a new change detector for mul-
tivariate Synthetic Aperture Radar image time series. Classical
statistical change detection methodologies based on covariance
matrix analysis are usually built upon the Gaussian assumption,
as well as an unstructured signal model. Both of these hypotheses
may be inaccurate for high-dimension/resolution images, where
the noise can be heterogeneous (non-Gaussian) and where the
relevant signals usually lie in a low dimensional subspace (low-
rank structure). These two issues are tackled by proposing a new
Generalized Likelihood Ratio Test based on a robust (compound
Gaussian) low-rank (structured covariance matrix) model. The
interest of the proposed detector is assessed on two Synthetic
Aperture Radar Image Time Series data set from UAVSAR.

Index Terms—Change detection, Synthetic Aperture Radar,
time series, covariance matrix, low-rank, compound Gaussian.

I. INTRODUCTION

The analysis of Synthetic Aperture Radar (SAR) Image
Time Series (ITS) has become a popular topic of research since
it has many practical applications for Earth monitoring, such
as disaster assessment, infrastructure monitoring or land-cover
analysis. Over the past years, SAR-ITS have been made more
widely available thanks to various missions such as Sentinel-1,
TerraSAR-X, or UAVSAR. As a consequence, an active topic
of research addresses the development of reliable automatic
Change Detection (CD) methodologies in order to efficiently
process this large amount of data. The CD problem is indeed
challenging due to the lack of available ground truths, which
does not allow applying supervised methods from the image
processing literature. Moreover, it is well known that SAR
images are subjected to speckle noise, which makes traditional
optical approaches prone to high false alarm rates. In this case,
unsupervised methodologies, often based on statistical tools,
have yield interesting approaches in recent decades [2].

The CD problem can be seen as designing a metric that can
assess for observed changes between pixels representing the
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same location at different times. Among popular methodolo-
gies, Coherent Change Detection (CCD) [3] and the log-ratio
operator [4] have received noticeable attention. However, these
methodologies are limited to pairs of one-dimensional images,
while current data-sets are generally multidimensional (using
e.g., polarimetric or spectro-angular channels [5]), and gather
multiple observation-times of the same scene. Multivariate-
data oriented methodologies, i.e. that exploit the whole diver-
sity, can improve the CD performance in this case. Notably,
the local covariance matrix has been shown to be a relevant
feature in order to assess for changes in multivariate SAR data
[6]–[13].

Testing the similarity of covariances matrices between
groups of observations is a well-established topic in the
statistical literature [14]–[17], which has also been considered
for CD in time-series in, e.g. [18], [19]. More specifically
for SAR-ITS applications, various test statistics based on
covariance matrix equality testing from Gaussian samples have
been proposed within statistical detection framework [6]–[9],
[11], or using information theory [12], [13] . A good review
of these Gaussian detectors can be found in [10]. While these
approaches offer good performance, they can nonetheless suf-
fer from two issues encountered in high-dimension/resolution
images: i) First, the Gaussian model has been shown to be
inaccurate in recent radar clutter analysis due to the inher-
ent heterogeneity of these images. In this case, Compound
Gaussian models have been shown to provide a better fit to
empirical measurements [20], [21], which is interesting to
leverage in SAR images processing (e.g., in [22] for classifica-
tion). In order to account for signals non-Gaussianity in SAR-
ITS, [23]–[25] proposed various Generalized Likelihood Ratio
Tests (GLRTs) assuming a Compound Gaussian distribution.
Specifically, [25] extended the Gaussian GLRT for covariance
equality testing to the case of Compound Gaussian models,
which was shown to yield improvements in terms of CD
performance. ii) Second, the standard detectors are derived
assuming unstructured covariance matrices, while the signal
of interest usually lies in a low-dimensional subspace. This
especially true for multivariate observations arising from radar
systems, where a probabilistic principal component analysis
model [26] can reflect a relevant assumption (see for example
[27] and reference therein). Another example would be the
case where only one polarization channel contains relevant
information for change detection purpose. In this scope, [28]
proposed to extend the GLRT approach to test for the equality
of the parameters of low-rank structured covariance matrices.

To account for both issues, this paper proposes a new CD
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method based on both robust and LR models: we derive a
GLRT for Compound Gaussian distributed observations that
have a low-rank structured covariance matrix. The formulation
of this test involves non-trivial optimization problems for
which we tailor a practical block-coordinate descent algorithm.
The proposed detector is then applied for CD on two SAR-ITS
UAVSAR data set to demonstrate the interest of the approach
for CD in SAR-ITS. This work constitutes an extension of
the IGARSS conference paper [1], which was limited to the
case of two images and did not present fully the algorithm
derivations. The additional contributions are the following:

1) The full derivations for the general case are now pro-
vided.

2) Several side parameters (rank and noise floor variance)
were assumed to be fixed in [1]. This extended version
discusses how to deal with their estimation and presents
experiments to test the robustness of the approach. No-
tably, it is shown that the performance of the proposed
approach does not dramatically deteriorates if a slight
error of the rank estimation is made.

3) Concerning the experiments on real data, we tested the
proposed algorithm on new data sets: i) A time series (4
images) of a scene, where [1] contained an experiment
restricted to two images of this scene; ii) An additional
scene with 2 images.

The rest of the paper is organized as follows: Section II
presents the general notations and the theoretical background
(GLRT and useful distributions). Section III presents existing
GLRTs for CD based on covariance matrix equality testing.
Section IV details the proposed GLRT for CD and derives
algorithms to evaluate it. Section V illustrates the performance
of the proposed method on real data.

Notations: italic type indicates a scalar quantity, lower case
boldface indicates a vector quantity and upper case boldface
a matrix. The transpose conjugate operator is H . Tr{·} and
| · | are respectively the trace and the determinant operators.
etr{·} is the exponential of trace operator. {wn}Nn=1 denotes
the set of elements wn, with n ∈ [[1, N ]]. Definition of needed
eigenvalue decomposition will be through the equality symbol
EVD
= . H++

p denotes the set of p×p Hermitian positive definite
matrices. H++

p,R denotes the set of p × p Hermitian positive
semi-definite matrices of rank R. ∝ stands for “proportional
to”. x ∼ CN (µ,Σ) is a complex-valued random Gaussian
vector of mean µ and CM Σ.

II. BACKGROUND

A. Multivariate SAR-ITS

We consider a multidimensional time-series of T multi-
variate SAR images as described in Figure 1. Each pixel
of a SAR image at a given date t corresponds to a vector
of dimension p, denoted x ∈ Cp . The p channels can
correspond to a polarimetric diversity (p = 3), or to another
kind of diversity such as a spectro-angular one, obtained
through wavelet transforms [5]. The change detection process
is applied using a local window around the pixel of interest,
including K pixels. Locally, the whole data set is denoted
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Fig. 1: Representation of p-variate SAR-ITS data set. The
pixels highlighted in black correspond to the local observation
window (here, K = 9).

{{xtk}Kk=1}Tt=1, which corresponds to the aggregation of all
pixels at spatial indexes k ∈ [[1,K]] and dates t ∈ [[1, T ]].

B. Statistical CD with the GLRT

For a given time t, the local observation {xtk}Kk=1 is
assumed to be distributed according to a fixed parametric
distribution, of parameter θt. The corresponding likelihood is
denoted L

(
{xtk}Kk=1|θt

)
. The parameters {θt} are a feature

that characterizes the local data at each date t: if a local change
occurs, this parameter is expected to vary. The CD problem
can thus be formulated as a binary hypothesis test:{

H0 : θi = θ0, ∀i ∈ [[1, T ]] (no change),
H1 : θi 6= θj , for i 6= j (change). (1)

Notice that we consider an omnibus CD problem, i.e. we do
not test for a change at a specific date. In this work, the
sequential test focusing on the date t0: H0 : θi = θ1, ∀i ∈ [[1, T ]] (no change),

H1 :
θi = θ1, ∀i ∈ [[1, t0 − 1]]
θi = θt0 , ∀i ∈ [[t0, T ]]

(change at t0).

(2)
can be trivially recasted as an omnibus one with T = 2
by re-partitioning the data set. However, this property is not
always true depending on the chosen distribution and set of
parameters.

In order to derive a metric of decision, we consider the
use of GLRT. This test consists in computing the following
quantity:

Λ̂GLRT =

max
{θt}Tt=1

∏T
t=1 LH1

(
{xtk}Kk=1|θt

)
max
θ0

∏T
t=1 LH0

(
{xtk}Kk=1|θ0

) , (3)

where LH1 (resp. LH0 ) denotes the likelihood function and
{θt}Tt=1 (resp. θ0) corresponds to the parameters of the
distribution, both under H1 (resp. H0). Hence, to develop
efficient detectors, the problem remains to select an assumed
distribution (and corresponding parameters) that accurately
reflects the behavior of the data. It is also worth mentioning
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that, depending on the chosen model, the evaluation of the
GLRT may lead to complex optimization problems.

C. Compound Gaussian distributions

The Gaussian assumption is the most widely used in mul-
tivariate SAR image applications. As each pixel value can be
the sum of the contribution of many scatterers, this assumption
is indeed well motivated by the central limit theorem. For SAR
images, the mean is also classically assumed to be zero due
to the multiplicative nature of speckle noise and will be thus
omitted in this work. A complex p-vector x ∈ Cp follows a
zero-mean multivariate circular complex Gaussian distribution,
denoted x ∼ CN (0,Σ), if it has the Probability Density
Function (PDF)

fCNx (x|Σ) = π−p|Σ|−1 exp
(
−xHΣ−1x

)
. (4)

where Σ ∈ H++
p is the covariance matrix, i.e. E

[
xxH

]
= Σ.

A set of observations {xk}Kk=1 has then the likelihood

LCN ({xk}Kk=1|Σ) ∝ |Σ|−Ketr
{
−Σ−1XXH

}
(5)

with X = [x1, . . . ,xK ].
Nevertheless, the Gaussian assumption can be inaccurate

when it comes to model high-resolution images or heteroge-
neous areas. In this case, distributions that can account for
heavy-tails, such as the compound Gaussian ones, offer a
better fit [21]. A vector x ∈ Cp follows a zero-mean mul-
tivariate complex compound Gaussian distribution, denoted
x ∼ CG(0,Σ, fτ ), if it admits the stochastic representation

x
d
=
√
τ n, (6)

with n ∼ CN (0,Σ), and where τ is a positive random scalar,
independent from n, with PDF fτ (.). Compound Gaussian
distributions encompass a large family of standard multivariate
ones, depending on the assumed PDF fτ (.) [21]. In order to
design a process that is robust to all these distributions, we can
assume that {τk} are unknown deterministic variables. For a
data set {xk}, this assumption leads to xk|τk ∼ CN (0, τkΣ),
with the likelihood function

LCG
(
{xk}Kk=1|Σ, {τk}Kk=1

)
∝

K∏
k=1

|τkΣ|−1 exp
(
−xHk (τkΣ)−1xk

)
(7)

III. CD WITH GLRTS BASED ON COVARIANCE MATRIX

For SAR-ITS, the CD problem can be reformulated as a
hypothesis test on equality of the covariance matrices. The
rationale behind this is that a local change is translated by a
change in the second-order statistics of the observations. To
perform this test, the GLRT approach has been successfully
applied in numerous works [6]–[13], [25], [28]. The following
subsections recall existing GLRTs (depending on the assumed
model) that have been applied to CD in SAR-ITS.

A. Gaussian CD

Assuming Gaussian distributed samples, the CD can be
performed by testing a change in the covariance matrix [6],

[7]. The corresponding GLRT, denoted Λ̂G, corresponds to (1)
and (3) with the following distribution/parameters:

Model: xtk ∼ CN (0,Σt)
Likelihood in (5)

Param.: H0 : θ0 = Σ0

H1 : {θt}Tt=1 = {Σt}Tt=1

(8)

this test has well established statistical properties (cf. eg. [10])
and admits the closed-form expression

Λ̂G =

∣∣∣Σ̂SCM
0

∣∣∣
T∏
t=1

|Σ̂SCM
t |1/T

, (9)

involving the following Sample Covariance Matrices (SCM)

Σ̂SCM
0 =

1

TK

∑
t,k

xtk(xtk)H , Σ̂SCM
t =

1

K

∑
k

xtk(xtk)H .

B. Compound Gaussian CD

As stated previously, the Gaussian assumption is no longer
valid for high-resolution, or heterogeneous SAR images [20].
This mismodeling induces a strong reduction of the CD perfor-
mance when using Λ̂G, notably caused by the inaccuracy of the
SCM computed from non-Gaussian observations. This issue
can be alleviated by assuming a compound Gaussian model, as
described in section II-C. Under this assumption, the CD can
be performed by testing a change in both the covariance matrix
and the texture parameters [25]. The corresponding GLRT,
denoted Λ̂CG, corresponds to (1) and (3) with the following
distribution/parameters:

Model: xtk ∼ CN (0, τ tkΣt)
Likelihood in (7)

Param.: H0 : θ0 =
{
Σ0, {τ0

k}Kk=1

}
H1 : {θt}Tt=1 =

{
Σt, {τ tk}Kk=1

}T
t=1

(10)

The evaluation of the quantity Λ̂CG involves fixed-point
equations that can be computed numerically. A study and
generalizations (testing for textures or covariance matrices
individually) of this approach can be found in [25].

C. Low-rank Gaussian CD

The performance of the aforementioned CD methods is
tightly linked to the accuracy of the covariance matrix esti-
mation. The general rule-of-thumb requires K > 2p samples
in order to obtain a correct estimation [29]. In order to
lower K (i.e., reduce the local window size), some prior
knowledge on the covariance structure can be leveraged to
reduce the dimension of the estimation problem [30]–[33].
Due to signals lying in a lower dimensional subspace, a very
common structure in radar applications is the low-rank one,
i.e.

Σ = ΣR + σ2 I (11)

where ΣR belongs to the set of Hermitian positive semi-
definite matrices of rank R, denoted H+

p,R. A Gaussian GLRT
that accounts for this prior knowledge (with known σ2),
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denoted Λ̂LRG, can be formulated according to (1) and (3)
with the following distribution/parameters:

Model: xtk ∼ CN
(
0,Σt

R + σ2 I
)

Likelihood in (5)

Param.: H0 : θ0 = {Σ0
R}

H1 : {θt}Tt=1 = {Σt
R}Tt=1

(12)

Several generalizations (testing for specific parameters indi-
vidually) of this approach, and algorithms to compute the
corresponding quantities, can be found in [28], [34]. When
compared to Λ̂G, Λ̂LRG offers a gain in terms of performance
and spatial resolution. However, the robustness properties of
Λ̂CG are lost, that motivates the present work.

IV. PROPOSED DETECTOR

A. Low-rank compound Gaussian CD

In this paper, we propose to combine the advantages of
both the low-rank structure and the CG distribution. Thus,
we consider a model of CG distributed samples (cf. Section
II-C) with a LR structured covariance matrix as in (11). The
corresponding GLRT for CD, denoted Λ̂LRCG, corresponds to
(1) and (3) with the following distribution/parameters:

Model: xtk ∼ CN
(
0, τ tk

(
Σt
R + σ2

t I
))

Likelihood in (7)

Param.: H0 : θ0 =
{
Σ0
R, σ

2
0 , {τ0

k}Kk=1

}
H1 : {θt}Tt=1 =

{
Σt
R, σ

2
t , {τ tk}Kk=1

}T
t=1

(13)

Here, the test accounts for a possible change of both the
covariance matrix and the textures between acquisitions, as
it was shown to be the most relevant approach for SAR-ITS
[25]. Also note that we consider a more general model than
(12), where the variance σ2

t is unknown and can change at
each date t.

B. Computation of ΛLRCG

Evaluating ΛLRCG according to the generic equation (3)
requires to compute:

Λ̂LRCG =
LH1

LRCG

({
{xtk}Kk=1

}T
t=1
|θ̂

H1

LRCG

)
LH0

LRCG

({
{xtk}Kk=1

}T
t=1
|θ̂

H0

LRCG

) , (14)

where LH0

LRCG and LH1

LRCG are the likelihood (derived from
(7)) under H0 and H1, and where

θ̂
H0

LRCG =
{

Σ̂0
R, σ̂

2
0 , {τ̂0

k}Kk=1

}
,

θ̂
H1

LRCG =
{

Σ̂t
R, σ̂

2
t , {τ̂ tk}Kk=1

}T
t=1

(15)

are the maximum likelihood estimators under H0 and H1,
respectively.

1) Maximum likelihood under H1: Under H1, the likelihood
is separable in t. For a fixed t, the maximum likelihood

Algorithm 1: MLE under H1 and fixed t.
Input: R, t, {xt

k}
K
k=1

while (convergence criterion not met) do
Update textures with (17)
Update covariance matrix parameters with (19)-(20)

return Σ̂t
R, σ̂

2
t , {τ̂ tk}

K
k=1

estimation of the unknown parameters
{

Σ̂t
R, σ̂

2
t , {τ̂ tk}Kk=1

}
consists in solving the problem

maximize
{τt

k,Σ
t
k}Kk=1

,Σt
R,σ

2
t

K∑
k=1

log(LtH1

(
xtk|Σt

k)
)

subject to Σt
k = τ tk

(
Σt
R + σ2

t I
)

Σt
R < 0, and rank(Σt

R) = R
σ2
t > 0, and τ tk > 0,∀k

(16)

where LtH1
(xtk|Σk) reads directly from (4). The solution to

this problem can not be obtained in closed form, but the
following sections derive practical block-coordinate descent
algorithm in order to evaluate it. The algorithm is summed up
in the box Algorithm 1.

• Update of the textures (H1): Assuming a fixed covariance
matrix Σt

R + σ2
t I, the maximum likelihood estimator of the

texture parameters is obtained in closed form [35], with

τ̂ tk =
1

p
(xtk)H

(
Σt
R + σ2

t I
)−1

xtk (17)

• Update of the covariance matrix parameters (H1): Assuming
fixed textures {τ tk}Kk=1, the problem (16) can be re-expressed
as:

minimize
Σt,Σt

R,σ
2
t

log|Σt|+ Tr
{

S̃tΣ
−1
t

}
subject to Σt = Σt

R + σ2
t I

Σt
R < 0, and rank(Σt

R) = R
σ2
t > 0

(18)

with S̃t = (1/K)
∑K
k=1 xtk(xtk)H/τ tk. The solution is given

in [26], and leads to the update

Σt = U diag(d̃) UH ∆
= TR(S̃t) (19)

defined through the operator TR, with

S̃t
EVD
= U diag(d) UH

d = [d1, . . . , dR, dR+1, . . . , dp]

d̃ =
[
d1, . . . , dR, σ̂

2
t , . . . , σ̂

2
t

]
σ̂2
t =

1

p−R

p∑
r=R+1

dr .

(20)

Remark: If the noise variance is assumed to be known and
equal to σ2, the solution of the modified problem (with
constraint rank(Σt

R) ≤ R) is given in [27], and consists in
replacing d̃ by

d̄ =
[
max(d1, σ

2), . . . ,max(dR, σ
2), σ2, . . . , σ2

]
. (21)
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Algorithm 2: MLE under H0.

Input: R,
{
{xt

k}
K
k=1

}T

t=1
while (convergence criterion not met) do

Update textures with (23)
Update covariance matrix parameters with (19)-(20) applied to

(24)

return Σ̂0
R, σ̂

2
0 , {τ̂0k}

K
k=1

2) Maximum likelihood under H0:

maximize
{τ0

k ,Σ
0
k}Kk=1

,Σ0
R,σ

2
0

T∑
t=1

K∑
k=1

log
(
LtH0

(xtk|Σ0
k)
)

subject to Σ0
k = τ0

k

(
Σ0
R + σ2

0I
)

Σ0
R < 0, and rank(Σ0

R) = R
σ2

0 > 0, and τ0
k > 0,∀k

(22)

This problem can be solved as the one in (16), with some
modifications due to the likelihood function. The differences
are detailed below and summed up in the box algorithm 2.
• Update of the textures (H0): Assuming a fixed covariance
matrix Σ0 = Σ0

R + σ2
0 I, the maximum likelihood estimator

of the texture parameters is obtained in closed form [25], with

τ̂0
k =

1

Tp

T∑
t=1

(xtk)H
(
Σ0
R + σ2

0 I
)−1

xtk (23)

• Update of the covariance matrix parameters (H0): Assuming
fixed textures, the update problem can be reformulated as in
(18), using

S̃0 =
1

KT

T∑
t=1

K∑
k=1

xtk(xtk)H

τ0
k

(24)

instead of S̃t. The solution is then obtained as in (19) and
(20), and yields Σ0

∆
= TR(S̃0).

3) Note on the convergence: Both algorithms 1 and 2
appear as technical variations around the one of [32, Sec.
V.A.], which derives a Majorization-Minimization algorithm
for an objective that corresponds to the concentrated likelihood
(substituting the maximum likelihood estimates of {τk}Kk=1)
under H1. Some convergence properties can thus be deduced
from [32]. The proposed algorithms are block-coordinates
descent with a unique global solution at each step. Since
the problem is not convex, this does not offer a theoretical
guarantee on the convergence in terms of variables (though it
is experienced in practice). However, it ensures a monotonic
increment of the likelihood and, thus a convergence in terms of
objective value. This property is essential since we are mostly
interested in the evaluation of (14).

C. Selecting the rank R

The proposed detector requires to assume a rank R. In
practice, this rank can be pre-estimated (either globally or
locally) by using rank estimation methods from the literature,
such as information theory-based ones [36]. In this paper,
we consider a simple approach, i.e. fixing a global rank by
analyzing the eigenvalues of the total sample covariance over
the ITS. We will also test the robustness of the approach to
the choice of R.

V. NUMERICAL SIMULATIONS

The performance of the proposed change detector ΛLRCG

is tested on a SAR ITS dataset, and assessed with ROC curves
(displaying the probability of detection versus the false alarm
rate). As a mean to assess the effectiveness of combining LR
structure with a robust model, it is compared to the following
detectors: i) the classic Gaussian detector proposed in [6], [10],
denoted Λ̂G; ii) the LR Gaussian detector of [28], denoted
Λ̂LRG; iii) the compound Gaussian detector proposed in [25],
denoted Λ̂CG.

A. Datasets description

The SAR ITS data set is taken from UAVSAR (courtesy
of NASA/JPL-Caltech). Two scenes with respectively 4 and 2
images are used1. They are displayed in Figure 2 for the scene
1 (4 images) and 3 for the scene 2 (2 images). The CD ground
truths are collected from [12], [37] and are shown in figures 4.
Table I gives an overall perspective of the scenes used in the
study. The SAR images correspond to full-polarization data
with a resolution of 1.67m in range and 0.6m in azimuth.
Since the scatterers present in this scene exhibit an interesting
spectro-angular behavior, each polarization of these images
has been subjected to the wavelet transform presented in [5],
allowing to obtain images of dimension p = 12.

The rank R is chosen according to Figure 5, which displays
the eigenvalues of the total sample covariance matrix. For this
data set, R = 3 appears to be an interesting value to separate
signal from noise components. Notably, this rank gathers 81%
of the total variance.

B. Results

1) Comparison between four methods: Figure 6 displays
the outputs of the 4 detectors applied to scene 1. From visual
inspection, the levels of the false alarms appear lower for
the low-rank based detectors. Figure 7 confirms this insight,
and also assesses that the proposed method achieves the best
performance in terms of probability of detection versus false
alarm rate. For the scene 2, the same conclusions can be drawn
from Figure 9 (detectors output) and Figure 10 (ROC curves).
Finally, Figures 8 and 11 display the thresholded detection
maps of each scene so that the probability of false alarm is
identical for all detectors (set to 10%). These confirm the
previous conclusions by showing that the proposed method
improves the detection results at the edge of several zones
(circled in red in the figure of Λ̂LRCG).

2) Robustness to rank selection: Figure 12 displays the
ROC curves of ΛLRCG on the scene 1 for three different values
of the rank R. It is interesting to notice that these curves do
not vary significantly with respect to this parameter. Therefore,
we can expect that a slight error in the rank estimation will
not lead to a significant drop in CD performance.

1The scene 1 reduced to T = 2 is studied in [1]
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TABLE I: Description of SAR data used

Dataset Url Resolution Scene p T Size
Coordinates
(top-left px)

UAVSAR
SanAnd 26524 03 Segment 4
April 23, 2009 - May 15, 2011

https://uavsar.jpl.nasa.gov
Rg: 1.67m
Az: 0.6m Scene 1 12 4 2360× 600 px

[Rg, Az] =
[2891, 28891]

Scene 2 12 2 2300× 600 px
[Rg, Az] =
[3236,25601]

(a) t=1 (b) t=2

(c) t=3 (d) t=4

Fig. 2: UAVSAR Dataset used in this study for the scene 1. Four dates are available between April 23, 2009 and May 15,
2011.

(a) t=1 (b) t=2

Fig. 3: UAVSAR Dataset used in this study for the scene 2. Four dates are available between April 23, 2009 and May 15,
2011.
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(a) Scene 1 (b) Scene 2

Fig. 4: Ground truth for scenes 1 and 2

Fig. 5: Repartition of eigenvalues mean over the ITS for the
scene 1.

3) Influence of the estimation of σ2: In [1], the noise
variance σ2 is pre-estimated locally with the mean of the
(p−R) lowest eigenvalues of the sample covariance matrix of
all samples in the patch. This value is then used as a known
parameter in the detector (cf. (21)). Figure 13 compares this
method with the fully adaptive one (proposed in this paper). It
shows that the parameter σ2 can be left as a degree of freedom
at each t without losing in terms of CD performance.

VI. CONCLUSION

This paper derived a new GLRT based on covariance matrix
equality testing. This GLRT was derived assuming that the
samples follow a compound Gaussian distribution with a
low-rank structured covariance matrix. Experiments on two
UAVSAR scenes showed the interest of combining both the
non-Gaussian approach and the structure prior information for
CD in SAR-ITS. In this work, the rank of the model is assumed
to be fixed and estimated at a previous stage. The robustness of
the proposed detector to this rank selection was also illustrated
in the experiments. A potential extension of this work would
be to investigate the change of the rank within such a CD
process.
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sur-Yvette, France. His research interests include
statistical signal processing, Riemannian geometry
and machine learning.

PLACE
PHOTO
HERE

Arnaud Breloy (S’14–M’16) received the graduate
degree from Ecole Centrale Marseille, Marseille,
France, the master’s degree in signal and image
processing from the University of Aix-Marseille,
Provence, France, in 2012–2013 and the Ph.D.
degree in signal processing from the University
of Paris-Saclay, Saint-Aubin, France, in 2015. The
thesis was done in collaboration between SATIE
(ENS Cachan) and SONDRA (CentraleSupélec) lab-
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Fig. 9: Outputs of the 4 methods for the scene 2: Gaussian, Low Rank Gaussian, Compound Gaussian (CG) and Low Rank
Compound Gaussian (LRCG). Rank is fixed as 3, the window size is 7× 7 and σ2 is assumed unknown for low rank models.
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Fig. 11: Thresholded outputs of the 4 methods for the scene 1 for a fixed probability of false alarm (10%): true detection in
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