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Polytopal realizations and Hopf algebra structures
for lattice quotients of the weak order

Vincent Pilaud∗

CNRS & LIX, École Polytechnique, Palaiseau, France

Abstract. Noncrossing arc diagrams provide a powerful combinatorial model for the
equivalence classes of the lattice congruences of the weak order on permutations. In
this extended abstract, we use these models to construct geometric and algebraic struc-
tures on weak order quotients. On the geometric side, we construct, for any given con-
gruence, a polytope whose normal fan is the quotient fan obtained by gluing together
the cones of the braid fan that belong to the same congruence class. On the algebraic
side, we define Hopf algebra structures which extend classical structures, including the
Malvenuto–Reutenauer algebra, the Loday–Ronco algebra, and the Cambrian algebra.

Résumé. Les diagrammes d’arcs sans croisements fournissent un modèle combina-
toire efficace pour les classes d’équivalence des congruences de treillis de l’ordre faible
sur les permutations. Dans ce résumé étendu, nous utilisons ces modèles pour constru-
ire des structures algébriques et géométriques sur les quotients de l’ordre faible. Côté
géométrique, nous construisons pour toute congruence un polytope dont l’éventail
normal est l’éventail quotient obtenu en collant ensemble les cônes de l’éventail de
tresses qui appartiennent à une même classe de congruence. Côté algébrique, nous
définissons des structures d’algèbres de Hopf qui généralisent les structures classiques,
notamment les algèbres de Malvenuto–Reutenauer, de Loday–Ronco, et Cambrienne.
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1 Introduction

The weak order is a fundamental lattice structure on the set Sn of permutations of [n],
defined by inclusion of inversion sets: σ ≤ τ if and only if inv(σ) ⊆ inv(τ) where
inv(σ) := {(σ(i), σ(j)) | i < j and σ(i) > σ(j)}. We focus on two of its many properties:
• Its Hasse diagram can be seen geometrically as the graph of the permutahedron
Perm(n) := conv

{(
σ−1(1), . . . , σ−1(n)

) ∣∣ σ ∈ Sn
}

, oriented in a linear direction.
• Its intervals encode the product in C. Malvenuto and C. Reutenauer’s Hopf algebra

on permutations [7].
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The objective of this extended abstract is to present similar polytopal realizations
and Hopf algebra structures for lattice quotients of the weak order on Sn. The funda-
mental example is the Tamari lattice. It can be defined as the transitive closure of right
rotations on binary trees. It can also be interpreted as the quotient of the weak order
by the Sylvester congruence [2] on Sn defined as the transitive closure of the rewrit-
ing rule UacVbW ≡sylv UcaVbW where a < b < c are letters while U, V, W are words
of [n]. Other relevant lattice quotients of the weak order include the (type A) Cambrian
lattices [15, 1], the boolean lattice, the permutree lattices [10], the increasing flip lattice
on acyclic twists [9], the rotation lattice on diagonal rectangulations [4], etc. N. Reading
provided in [16] a powerful combinatorial description of the lattice congruences of the
weak order and of their congruence classes in terms of collections of certain arcs and
noncrossing arc diagrams that we recall in Section 2.

On the geometric side, N. Reading observed that “lattice congruences on the weak or-
der know a lot of combinatorics and geometry” [18, Sect. 10.7]. He proved that each lattice
congruence ≡ of the weak order is realized by the quotient fan F≡, whose maximal
cones are obtained by gluing together the cones of the braid fan corresponding to per-
mutations that belong to the same congruence class of ≡. However, as observed in [14],
“this theorem gives no means of knowing when F≡ is the normal fan of a polytope”. For the
above-mentioned examples of lattice congruences, this problem was settled by specific
constructions of polytopes realizing the quotient fan F≡: J.-L. Loday’s associahedron [5]
for the Tamari lattice, C. Hohlweg and C. Lange’s associahedra [3] for the Cambrian lat-
tices, cubes for the boolean lattices, permutreehedra [10] for the permutree lattices, brick
polytopes [13] for increasing flip lattices on acyclic twists, Minkowski sums of opposite
associahedra for rotation lattices on diagonal rectangulations [4], etc. Reporting on a
joint work with F. Santos [11], we describe in Section 3 a general method to construct a
polytope P≡ whose normal fan is the quotient fan F≡ for any lattice congruence ≡ of
the weak order on Sn.

On the algebraic side, the search for Hopf algebra structures on congruence classes
of lattice quotients of the weak order was also pioneered by N. Reading. In [14], he
studied Hopf subalgebras of MR generated by sums of permutations over the classes
of a fixed lattice congruence ≡n on each Sn for n ≥ 0. This approach produces rele-
vant Hopf algebras such as C. Malvenuto and C. Reutenauer’s algebra MR on permuta-
tions [7], J.-L. Loday and M. Ronco’s algebra LR on binary trees [6], V. Pilaud’s algebra
on k-twists [9], and N. Reading and S. Law’s algebra on diagonal rectangulations [4]. A
more recent approach, initiated by G. Chatel and V. Pilaud for the Cambrian algebra [1]
and extended by V. Pilaud and V. Pons for the permutree algebra [10], consists of con-
structing subalgebras of decorated versions of the algebra MR studied by J.-C. Novelli
and J.-Y. Thibon in [8]. Reporting on [12], we discuss in Section 4 how this new ap-
proach can be extended to obtain Hopf algebra structures on all lattice congruences of
the weak order.
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2 Lattice quotients of the weak order and arcs diagrams

2.1 Canonical representations and noncrossing arc diagrams

Consider a finite lattice (L,≤,∧,∨). A join representation of x ∈ L is a subset J ⊆ L such
that x =

∨
J. It is irredundant if x 6= ∨

J′ for J′ ( J. Irredundant join representations
of x ∈ L are ordered by J ≤ J′ if and only if for any y ∈ J there exists y′ ∈ J′ with y ≤ y′.
The minimal element of this order, if it exists, is the canonical join representation of x.
The lattice is semidistributive if any element admits canonical join and meet representa-
tions. The weak order on Sn is a semidistributive lattice, whose canonical join and meet
representations were explicitly described by N. Reading in [16]. A descent (resp. ascent)
in σ = σ1 . . . σn ∈ Sn is a position i ∈ [n− 1] such that σi > σi+1 (resp. σi < σi+1). For
a descent i of σ, consider the permutation λ(σ, i) with entries 1, . . . , (σi+1 − 1) followed
by
{

σj
∣∣ j < i, σj ∈ ]σi+1, σi[

}
increasingly, then σiσi+1, then

{
σj
∣∣ j > i + 1, σj ∈ ]σi+1, σi[

}
increasingly, and finally (σi + 1), . . . , n. Define dually λ(σ, i) :=ω◦λ(ω◦σ, i) for each
ascent i of σ, where ω◦ := [n, n− 1, . . . , 2, 1] is the longest permutation of Sn.

Theorem 1 ([16, Thm. 2.4]). The canonical join and meet representations of a permutation
σ = σ1 . . . σn are given by

∨
{λ(σ, i) | σi > σi+1} and

∧ {
λ(σ, i)

∣∣ σi < σi+1
}

.

As observed in [16], the permutation λ(σ, i) is determined by the values σi and σi+1
and by the set

{
σj
∣∣ j < i, σj ∈ ]σi+1, σi[

}
. This data can be recorded in the following

combinatorial gadgets. An arc is a quadruple (a, b, n, S) where 1 ≤ a < b ≤ n are integers
and S ⊆ ]a, b[. Let An := {(a, b, n, S) | 1 ≤ a < b ≤ n and S ⊆ ]a, b[}, and A :=

⊔
n∈NAn.

Let α(i, i + 1, σ) := (σi+1, σi, n,
{

σj
∣∣ j < i and σj ∈ ]σi+1, σi[

}
) denote the arc associated to

a descent i of a permutation σ and δ(σ) := {α(i, i + 1, σ) | σi > σi+1} be the set of arcs
corresponding to all descents of σ. Define α and δ dually for ascents.

An arc (a, b, n, S) is visually represented as an x-monotone continuous curve wiggling
around the horizontal axis, with endpoints a and b, and passing above the points of S and
below the points of ]a, b[rS. With this representation, N. Reading provided a convenient
visual interpretation of δ and δ. For this, represent the permutation σ by its permutation
table (σi, i). Draw arcs between any two consecutive dots (σi, i) and (σi+1, i + 1), colored
green if σi < σi+1 is an ascent and red if σi > σi+1 is a descent. Then move all dots down
to the horizontal axis, allowing the segments to curve, but not to cross each other nor to
pass through any dot. The set of red (resp. green) arcs is then the set δ(σ) (resp. δ(σ))
corresponding to the canonical join (resp. meet) representation of σ. See Figure 1 (left).

Two arcs cross if the interior of the two curves representing these arcs intersect. A
noncrossing arc diagram is a set D of arcs of An such that any two arcs of D do not cross
and have distinct left (resp. right) endpoints. Theorem 1 yields the following.

Theorem 2 ([16, Thm. 3.1]). The maps δ and δ are bijections from permutations of Sn to
noncrossing arc diagrams of An.
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Figure 1: The noncrossing arc diagrams associated to the permutations σ = 2513746,
and τ = 2513476 (left), and the forcing order on arcs of A4 (right).

2.2 Lattice quotients of the weak order and arc ideals

A lattice congruence of L is an equivalence relation on L such that x ≡ x′ and y ≡ y′

implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′. A lattice congruence ≡ defines a lattice quo-
tient L/≡ obtained by contracting the equivalence classes of ≡. We say that an element x
is contracted by ≡ if it is not minimal in its equivalence class of ≡. As each class of ≡ is an
interval of L, it contains a unique uncontracted element, and the quotient L/≡ is isomor-
phic to the subposet of L induced by its uncontracted elements. Moreover, the canonical
join representations in the quotient L/≡ are precisely the canonical join representations
of L that do not involve any contracted join-irreducible. This yields the following.

Theorem 3 ([16, Thm. 4.1]). Consider a lattice congruence ≡ of the weak order on Sn, and
let I≡ denote the arcs corresponding to the join-irreducible permutations not contracted by ≡.

1. A permutation σ is minimal in its ≡-congruence class if and only if δ(σ) ⊆ I≡.
2. Sending a ≡-congruence class with minimal permutation σ to the arc diagram δ(σ) defines

a bijection between the congruence classes of ≡ and the noncrossing arc diagrams in I≡.
3. The congruence ≡ is the transitive closure of the rewriting rule σ → σ · (i i + 1) where i

is a descent of σ such that α(i, i + 1, σ) /∈ I≡.

It remains to characterize the sets of arcs I≡ corresponding to the uncontracted join-
irreducible permutations of a lattice congruence ≡ of the weak order. This is again trans-
parent on the arc representation. An arc α := (a, d, n, S) is forced by an arc β := (b, c, n, T),
denoted α ≺ β, if a ≤ b < c ≤ d and T = S ∩ ]b, c[. Graphically, it means that β is ob-
tained by restricting the arc α to the interval [b, c]. See Figure 1 (right). An arc ideal is
any upper ideal I of the forcing order: (a, d, n, S) ∈ I implies (b, c, n, S ∩ ]b, c[) ∈ I for
all a ≤ b < c ≤ d and S ⊆ ]a, d[. We denote by In the set of arc ideals of An.

Theorem 4 ([16, Coro. 4.5]). A set of arcs I ⊆ An is the set I≡ for some lattice congruence ≡
of the weak order on Sn if and only if it is an arc ideal of In.
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3 Geometric realizations

3.1 Quotient fan

Consider the braid arrangement Hn := {Hab | 1 ≤ a < b ≤ n} formed by the hyperpla-
nes Hab := {x ∈ Rn | xa = xb}. The closures of the connected components of Rn r

⋃Hn
form a fan, which is complete and simplicial, but not essential. The braid fan Fn is its
intersection with the hyperplane H :=

{
x ∈ Rn | ∑i∈[n] xi = 0

}
. See Figure 2 (left). The

cones of the braid fan Fn are labeled by ordered partitions of [n]: an ordered parti-
tion π = π1|π2| . . . |πk of [n] into k parts corresponds to the (k − 1)-dimensional cone
C(π) :=

{
x ∈ H | xu ≤ xv for all i ≤ j, u ∈ πi and v ∈ πj

}
. In particular, Fn has a maxi-

mal cone C(σ) for each permutation σ ∈ Sn, and a ray C(R) for each subset ∅ 6= R ( [n].
The arcs of Section 2 have geometric counterparts called shards, due to N. Read-

ing [17] (see also his survey chapters [18]). For an arc α := (a, b, n, S) ∈ An, the shard Σ(α)
is the cone Σ(α) := {x ∈ Rn | xa = xb, xa ≥ xk for all k ∈ S, xa ≤ xk for all k ∈ ]a, b[r S}.
The hyperplane Hab is decomposed into the 2b−a−1 shards Σ(a, b, n, S) for all S ⊆ ]a, b[.
The shards are thus pieces of the hyperplanes of the braid arrangement. See Fig-
ure 2 (middle).

Reading proved in [14] that any lattice congruence of the weak order defines a fan
coarsening the braid fan in the following two equivalent ways. See Figure 2 (right).

Theorem 5 ([14]). For any lattice congruence ≡ of the weak order on Sn, the cones obtained by
• gluing together the cones of the braid fan that belong to the same congruence class of ≡,
• keeping the connected components of H r

⋃
α∈I≡ Σ(α),

coincide and define a fan F≡ whose dual graph is the Hasse diagram of the quotient Sn/≡.

x1<x2 x3<x4

x2<x3

x1>x3 x2>x4
x1>x4

4

34

234
24

3134

34213412

4231

4312

24314213

32414132

Figure 2: A stereographic projection of the braid fan F4 (left), the corresponding shards
(middle), and the quotient fan given by the Sylvester congruence ≡sylv (right).
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3.2 Quotientopes

Closing an open question of [14], we now use arcs to construct a polytopal realization of
the quotient fan F≡. A function f : An → R>0 is forcing dominant if f (α) > ∑β≺α f (β)
for any arc α ∈ An. Note that such functions clearly exist since ≺ is a poset, take for
example f (a, b, n, S) = n−(b−a)2

. For an arc α = (a, b, n, S) ∈ An and a subset R ⊆ [n], we
define the contribution γ(α, R) of α to R to be 1 if |R ∩ {a, b}| = 1 and S = R∩ ]a, b[, and 0
otherwise. For a subset R ⊆ [n], we pick a representative vector r(R) = 11k∈R− 11k+1∈R of
the ray C(R), and we define the height h f

≡(R) ∈ R>0 to be h f
≡(R) := ∑α∈I≡ f (α) γ(α, R).

This height function has been chosen to fulfill the following property, proved in [11].

Lemma 6. Let σ, σ′ be two adjacent permutations. Let ∅ 6= R ( [n] (resp. ∅ 6= R′ ( [n]) be
such that r(R) (resp. r(R′)) is the ray of C(σ) not in C(σ′) (resp. of C(σ′) not in C(σ)). Then
• the (unique up to rescaling) linear dependence among the rays of the cones C(σ) and C(σ′)

is r(R) + r(R′) = r(R ∩ R′) + r(R ∪ R′),
• the height function satisfies h f

≡(R) + h f
≡(R′) ≥ h f

≡(R ∩ R′) + h f
≡(R ∪ R′) with equal-

ity if and only if the chambers C(σ) and C(σ′) belongs to the same cone of F≡.

This property is a standard characterization of polytopality of fans, see [11, Prop. 3].
The resulting realizations of F≡, called quotientopes, are illustrated in Figure 3.

Theorem 7 ([11, Thm. 2 & Coro. 10]). For any lattice congruence ≡ of the weak order on Sn,
and any forcing dominant function f : An → R>0, the quotient fan F≡ is the normal fan of the
polytope P f

≡ :=
{

x ∈ Rn | 〈 r(R) | x 〉 ≤ h f
≡(R) for all ∅ 6= R ( [n]

}
.

4 Hopf algebra structures

4.1 Malvenuto–Reutenauer Hopf algebra on permutations

A combinatorial Hopf algebra is a combinatorial vector space A endowed with an asso-
ciative product · : A⊗A → A and a coassociative coproduct 4 : A → A⊗A, subject
to the compatibility relation 4(a · b) = 4(a) · 4(b), where the right hand side product
has to be understood componentwise. We now recall the fundamental example of [7].

The standardization of a word w ∈ Nq with distinct entries is the permutation std(w)
of [q] whose entries are in the same relative order as the entries of w. For a permuta-
tion ρ ∈ Sp and a subset R = {r1 < · · · < rq} ⊆ [p], we define stdp(ρ, R) (resp. stdv(ρ, R))
as the standardization of the word obtained by deleting from ρ the entries whose posi-
tions (resp. values) are not in R. For two permutations σ ∈ Sm and τ ∈ Sn, define the
shifted shuffle σ �̄ τ and the convolution σ ? τ by

σ �̄ τ := {ρ ∈ Sm+n | stdv(ρ, [m]) = σ and stdv(ρ, [m + n]r [m]) = τ}
and σ ? τ := {ρ ∈ Sm+n | stdp(ρ, [m]) = σ and stdp(ρ, [m + n]r [m]) = τ} .
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Figure 3: The quotientope lattice for n = 4: all quotientopes ordered by inclusion
(which corresponds to refinement of the lattice congruences). We only consider lattice
congruences whose arcs include all basic arcs (i, i + 1, 4,∅), since otherwise their fan
is not essential. We have highlighted in red the cube (bottom), J.-L. Loday’s associa-
hedron [5], C. Hohlweg and C. Lange’s associahedron [3], the diagonal rectangulation
polytope [4], and the permutahedron (top).
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E.g., 12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.

Let S :=
⊔

n∈N Sn be the set of all permutations (any size) and kS its k-vector span.

Theorem 8 (Malvenuto–Reutenauer [7]). The vector space kS with basis (Fσ)σ∈S endowed
with the product Fσ ·Fτ = ∑

ρ∈σ �̄ τ
Fρ and the coproduct4Fρ = ∑

ρ∈σ?τ
Fσ⊗Fτ is a Hopf algebra.

The product in kS behaves nicely with the weak order on Sn. For two permuta-
tions σ ∈ Sm and τ ∈ Sn, consider the permutations σ\τ and τ/σ of Sm+n defined by

σ\τ(i) =
{

µ(i) if i ∈ [m]

m + τ(i−m) otherwise
and τ/σ(i) =

{
m + τ(i) if i ∈ [n]
σ(i− n) otherwise.

The shifted shuffle σ �̄ τ is then precisely given by the weak order interval between σ\τ
and σ/τ in the weak order on Sm+n. This extends to a product of weak order intervals.

Proposition 9. A product of weak order intervals in kS is a weak order interval: for two weak
order intervals [µ, ν] ⊆ Sm and [λ, ω] ⊆ Sn, we have ∑

µ≤σ≤ν
Fσ · ∑

λ≤τ≤ω
Fτ = ∑

µ\λ≤ρ≤ω/ν

Fρ.

4.2 Decorated permutations

The Cambrian and permutree Hopf algebras [1, 10] were constructed as subalgebras of
generalizations of the Malvenuto–Reutenauer algebra to signed or decorated permuta-
tions [8]. Following this prototype, we will obtain Hopf algebras on noncrossing arc
diagrams from algebras on permutations decorated with more complicated structures.

Definition 10. A decoration set is a graded set X :=
⊔

n≥0 Xn endowed with
• a concatenation conc : Xm ×Xn −→ Xm+n for all m, n ∈N,
• a selection sel : Xm × ([m]

k ) −→ Xk for all m, k ∈N,
such that

1. conc(X , conc(Y ,Z)) = conc(conc(X ,Y),Z) for any X ,Y ,Z ∈ X,
2. sel(sel(X , R), S) = sel(X , {rs | s ∈ S}) for any X ∈ Xp, R={r1, . . . , rq} ⊆ [p], S ⊆ [q],
3. conc(sel(X , R), sel(Y , S)) = sel(conc(X ,Y), R ∪ S→m) for any X ∈ Xm, Y ∈ Xn, and

any R ⊆ [m], S ⊆ [n], where S→m := {s + m | s ∈ S}.

Example 11. A typical decoration set is the set of words A∗ on a finite alphabet A, graded by
length, with the concatenation of words conc(u1 . . . um, v1 . . . vn) = u1 . . . umv1 . . . vn and the
selection defined by subwords sel(w1 . . . wp, {r1, . . . , rq}) = wr1 . . . wrq .

For n ≥ 0, we denote by Pn the set of X-decorated permutations of size n, i.e. of
pairs (σ,X ) with σ ∈ Sn and X ∈ Xn. We consider the graded set P :=

⊔
n≥0 Pn
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and the graded vector space kP :=
⊕

n≥0 kPn, where kPn is a vector space with ba-
sis (F(σ,X ))(σ,X )∈Pn indexed by X-decorated permutations of size n. For two decorated
permutations (σ,X ) and (τ,Y), we define the product F(σ,X ) ·F(τ,Y) by

F(σ,X ) ·F(τ,Y) := ∑
ρ∈σ �̄ τ

F(ρ,conc(X ,Y)).

Proposition 12 ([12, Prop. 11]). The product · defines an associative algebra on kP.

Let the standardization of a decorated permutation (ρ,Z) ∈ Pp at a subset R ⊆ [p] be

std((ρ,Z), R) :=
(
stdp(ρ, R), sel(Z , ρ−1(R))

)
,

where stdp(ρ, R) is the position standardization on S and sel(Z , ρ−1(R)) is the selection
on X. For a decorated permutation (ρ,Z) ∈ Pp, we define the coproduct 4F(ρ,Z) by

4F(ρ,Z) := ∑p
k=0 Fstd((ρ,Z),[k]) ⊗Fstd((ρ,Z),[p]r[k]).

Proposition 13 ([12, Prop. 12]). The coproduct 4 defines a coassociative coalgebra on kP.

Theorem 14 ([12, Thm. 13]). (kP, ·,4) defines a combinatorial Hopf algebra.

Example 15. When X is the set of words A∗ on a finite alphabet A as in Example 11, the Hopf
algebra of decorated permutations was studied in detail by J.-C. Novelli and J.-Y. Thibon in [8].
In particular, if X = {•}∗, then kP is just the Malvenuto–Reutenauer algebra.

4.3 Decorated noncrossing arc diagrams

We now use our Hopf algebra on decorated permutations to construct Hopf algebras
on decorated noncrossing arc diagrams. As in the previous section, we consider a dec-
oration set (X, conc, sel) and the corresponding Hopf algebra (kP, · ,4) on X-decorated
permutations. Recall from Section 2.2 that In denotes the set of arc ideals of An.

For an arc α = (a, b, m, S) and n ∈ N, define the augmented arc α+n := (a, b, m + n, S)
and the shifted arc α→n := (a + n, b + n, m + n, {s + n | s ∈ S}). Graphically, the arc α+n

(resp. α→n) is obtained from the arc α by adding n points to its right (resp. to its left).
For I ⊆ Am and n ∈N, define I+n := {α+n | α ∈ I} and I→n := {α→n | α ∈ I}.

Definition 16. A graded function Ψ : X =
⊔

n≥0 Xn −→ I =
⊔

n≥0 In is conservative if
1. Ψ(X )+n and Ψ(Y)→m are both subsets of Ψ(conc(X ,Y)) for any X ∈ Xm, Y ∈ Xn,
2. (ra, rb, p, S) ∈ Ψ(Z) implies (a, b, q, {c ∈ [q] | rc ∈ S}) ∈ Ψ(sel(Z , R)) for any Z ∈ Xp,

any R = {r1 < · · · < rq} ⊆ [p], any 1 ≤ a < b ≤ q and any S ⊆ ]ra, rb[.

Example 17. If X = {•}∗ is the decoration set of words on a one element alphabet, then the
maps •n 7→ An and •n 7→ A∅

n := {(a, b, n,∅) | 1 ≤ a < b ≤ n} are both conservative.
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From now on, we assume that we are given a conservative function Ψ : X −→ I.
For n ≥ 0, we denote by Dn the set of X-decorated noncrossing arc diagrams of size n, i.e. of
pairs (D,X ) where X ∈ Xn and D is a noncrossing arc diagram contained in Ψ(X ).

We now define a Hopf algebra on X-decorated noncrossing arc diagrams. By The-
orem 4, any lattice congruence ≡ of the weak order on Sn corresponds to an arc
ideal I≡ ∈ In. We consider the map ηI≡

: Sn → I≡ which associates to any per-
mutation τ ∈ Sn the noncrossing arc diagram of I≡ corresponding to the ≡-congruence
class of τ. By Theorem 3, ηI≡

(τ) = δ(σ) where σ is the minimal permutation in the
≡-congruence class of τ. We denote by kD :=

⊕
n≥0 kDn the graded vector subspace

of kP generated by the elements

P(D,X ) := ∑
σ∈S

ηΨ(X )(σ)=D

F(σ,X ),

for all X-decorated noncrossing arc diagrams (D,X ). Our main result is the following.

Theorem 18 ([12, Thm. 17]). The subspace kD is a Hopf subalgebra of kP.

Example 19. Let X = {•}∗, so that kP is the Malvenuto–Reutenauer algebra by Example 15
and consider the two conservative functions of Example 17. If Ψ(•n) = An, then kD = kP
is also the Malvenuto–Reutenauer algebra. If Ψ(•n) = A∅

n , then kD is the Loday–Ronco al-
gebra [6] (as noncrossing arc diagrams in A∅

n are just noncrossing partitions, in bijection with
binary trees).

We now state an analogue of Proposition 9 for decorated noncrossing arc diagrams.

Proposition 20 ([12, Prop. 18]). Consider two X-decorated noncrossing arc diagrams (D,X )
and (E ,Y), and their weak order intervals [µ, ν] := η−1

Ψ(X )
(D) and [λ, ω] := η−1

Ψ(Y)(E). Then

P(D,X ) ·P(E ,Y) = ∑F P(F ,conc(X ,Y)),

where F ranges in the interval from D\E := η
Ψ(conc(X ,Y))(µ\λ) to E/D := η

Ψ(conc(X ,Y))(ω/ν)

in the lattice of noncrossing arc diagrams in Ψ(conc(X ,Y)) (see 2 in Theorem 3).

4.4 Two applications

We conclude with two applications of Sections 4.2 and 4.3 that produce relevant Hopf al-
gebras on noncrossing arc diagrams. An additional application appears in [12, Sect. 4.2].

Insertional, translational, and Hopf families of congruences. For all n ∈ N, fix a
lattice congruence ≡n of the weak order on Sn, with arc ideal In. As a first applica-
tion of Theorem 18, we obtain sufficient conditions for the family (≡n)n∈N to define a
Hopf subalgebra of kS, which essentially coincide with the translational and insertional
conditions given by N. Reading in [14, Thm. 1.2 & 1.3]. Note that this situation covers
various families of lattice congruences, producing Hopf algebra on permutations [7], on
binary trees [6, 2], on diagonal quadragulations [4], on k-twists [9], etc.



Polytopal realizations and Hopf algebra structures for lattice quotients of the weak order 11

Corollary 21 ([14, Thm. 1.2 & 1.3]). For all n ∈ N, consider a lattice congruence ≡n of the
weak order on Sn, with arc ideal In. If
• both I+n

m and I→m
n are contained in Im+n for all m, n ∈N,

• (ra, rb, p, S) ∈ Ip implies (a, b, q, {c ∈ [q] | rc ∈ S}) ∈ Iq for any 1 ≤ a < b ≤ q,
any R = {r1 < · · · < rq} ⊆ [p], and any S ⊆ ]ra, rb[,

then the subvector space of kS generated by the sums ∑σ Fσ over the classes of the congru-
ences ≡n is a Hopf subalgebra of the Malvenuto–Reutenauer algebra kS.

All arc diagrams. To conclude, we define a Hopf algebra kD? simultaneously involving
the classes of all lattice congruences of the weak order, and containing the permutree
algebra. An extended arc is a quadruple (a, b, n, S) with integers 0 ≤ a < b ≤ n + 1,
and S ⊆ ]a, b[. We denote by A?

n the set of all extended arcs. The representation of arcs,
the notions of crossing and forcing, as well as the operations α+n and α→n, are defined
as for classical arcs. We denote by I?n the set of extended arc ideals (i.e. upper ideals of
the forcing order ≺ on A?

n).
The juxtaposition αβ of two extended arcs α := (a, b, p, R) and β := (c, d, p, S) is the

set αβ := {(a, d, p, R ∪ S)} if b = c + 1, and ∅ otherwise. For I ,J ⊆ A?
p, we define the

juxtaposition IJ by IJ := I ∪ J ∪⋃α∈I ,β∈J αβ. As illustrated in Figure 4, we define the
concatenation of two extended arc ideals I ⊆ A?

m and J ⊆ A?
n by conc(I ,J ) := I+nJ→m.

Consider an extended arc ideal K ⊆ A?
p and a subset X := {x1 < · · · < xq} of [p].

Define by convention x0 := 0 and xq+1 := p + 1. As illustrated in Figure 4, we define the
selection sel(K, X) as the set of all arcs (a, b, q, S) such that there exist
• positions y0 < · · · < yr ∈ [p] with xa = y0 and xb = yr while y1, . . . , yr−1 /∈ X, and
• arcs (y0, y1, p, S1), . . . , (yr−1, yr, p, Sr) ∈ K such that S = {` ∈ [q] | x` ∈

⋃
Sk}.

=conc ,( ) sel ,( ){1,3,6} =

Figure 4: The concatenation and selection for extended arc ideals.

Proposition 22 ([12, Coro. 28]). The set I? :=
⊔

n∈N I?n of all extended arcs ideals, endowed
with the concatenation conc and selection sel, is a decoration set.

We now consider the map Ψ : I? → I which sends an extended arc ideal to the arc
ideal of its strict arcs (not starting at 0 or ending at n+ 1). It is clearly conservative so that
we obtain a Hopf algebra kD? on pairs (D, I), where I is any extended arc ideal and
D is a noncrossing arc diagram containing only strict arcs of I . The Hopf algebra kD?

involves the classes of all lattice congruences of the weak order, and the concatenation
and selection on extended arc diagrams was chosen to fulfill the following statement.

Proposition 23 ([12, Prop. 29]). The permutree Hopf algebra [10] is a Hopf subalgebra of kD?.
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