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Abstract. Starting from a locally gentle bound quiver, we define on the one hand
a simplicial complex, called the non-kissing complex. On the other hand, we con-
struct a punctured, marked, oriented surface with boundary, endowed with a pair
of dual dissections. From those geometric data, we define two simplicial complexes:
the accordion complex, and the slalom complex, generalizing work of A. Garver and
T. McConville in the case of a disk. We show that all three complexes are isomorphic.

Résumé. Étant donné un carquois localement aimable, nous définissons d’une part
un complexe simplicial appelé complexe platonique. D’autre part, nous construisons
une surface orientable à bord pointée et marquée, munie d’une paire de dissections
duales. À partir de cette donnée géométrique, nous définissons deux autres complexes
simpliciaux : le complexe d’accordéons et le complexe des slaloms qui généralisent les
travaux de A. Garver et T. McConville dans le cas du disque. Nous montrons que ces
trois complexes sont isomorphes.

Keywords: Gentle algebras, non-kissing complex, non-crossing complex

1 Introduction

This extended abstract reports on [16], where more details and proofs are available. It
shows that two combinatorial objects, the non-kissing complex and the non-crossing complex,
are isomorphic. Both complexes appeared in different works in specific cases: the non-
kissing complex of a grid appeared in [13], while the non-crossing complex of a disk
appeared in [11, 12]. It was shown in [15] that these complexes are special cases of a
more general simplicial complex, defined for any gentle algebra (see also [5]).

In order to unify these two objects, we are led to introduce two generalizations. On
the algebraic side, the non-kissing complex is extended from the class of gentle algebras
to that of locally gentle algebras (which are an infinite-dimensional version of gentle
algebras). On the geometric side, we construct the non-crossing complex of an arbitrary
oriented punctured surface endowed with a pair of dual dissections.
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The two main objects of our study will thus be locally gentle algebras and dissections
of surfaces. Our first result is that these two classes of objects are essentially the same.

Theorem (see Theorem 34). There is an explicit bijection between the set of isomorphism classes
of locally gentle bound quivers and the set of homeomorphism classes of oriented punctured
marked surfaces with boundary endowed with a pair of dual cellular dissections.

On the algebraic side, we extend the study of walks from the gentle case [13, 15] to the
locally gentle case, and define a notion of compatibility called non-kissing (Section 2).
On the geometric side, we extend the study of dissections, accordions and slaloms from
the case of the disk [11, 12] to the case of an arbitrary surface, and define a notion of
compatibility called non-crossing (Section 3). The combinatorial information contained
in these notions is encoded in simplicial complexes: the non-kissing complex Knk(Q̄)
and the non-crossing complex Knc(D, D∗). Our second result is the following.

Theorem (see Theorem 44). The complexes Knk(Q̄) and Knc(D, D∗) are isomorphic.

Let us briefly review the algebraic and geometric objects which appear in this pa-
per. Gentle algebras are a class of finite-dimensional associative algebras over a field,
defined by generators and relations. Their representation theory was first systematically
investigated in [6], and they have been thoroughly studied since. Locally gentle algebras
are obtained by dropping the requirement that gentle algebras be finite-dimensional. It
turns out that their representation theory is also well-behaved [9] and that these algebras
are Koszul [4]. The τ-tilting theory [1] of gentle algebras was recently studied in [15, 5].

Dissections of surfaces, on the other hand, are certain collections of pairwise non-
intersecting curves on an orientable surface. They have been defined and studied in [8,
11, 12] in the case where the surface is an unpunctured disk.

The idea of associating a finite-dimensional algebra to a dissection (or a triangula-
tion) of a surface seems to take its roots in the theory of cluster algebras and cluster
categories. This was first done for triangulations of polygons in [7], and then for any
orientable surface with boundary in [2]. The algebra of a dissection as we shall use it in
this paper has appeared in [10]. In most of the above cases, the algebras obtained are
gentle algebras. It has also been shown in [3] that any gentle algebra is obtained from a
dissection of a surface, and that the module category of the algebra can be interpreted
by using curves on the surface. In the case where the surface is a polygon, the τ-tilting
theory of the algebra of a dissection has been studied in [15].

Conversely, the construction of a surface associated to a gentle algebra has appeared
in [14]. We give a different construction of the same surface in this paper, which is
obtained by “gluing” quadrilaterals to the arrows of the blossoming quiver (as defined
in [15], and called “fringed quiver” in [5]). Our construction has the advantage that it
easily yields the two dual dissections of the surface at the same time (the dissection and
dual lamination of [14]). Note that our dissections are always cellular, while those in [3]
can be arbitrary.
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2 Non-kissing complex

2.1 Locally gentle bound quivers and their blossoming quivers

We consider a bound quiver Q̄ = (Q, I), formed by a finite quiver Q = (Q0, Q1, s, t)
and an ideal I of the path algebra kQ (the k-vector space generated by all paths in Q,
including vertices as paths of length zero, with multiplication induced by concatenation
of paths) such that I is generated by linear combinations of paths of length at least
two. Note that we do not require that the quotient algebra kQ/I be finite dimensional.
The following definition is adapted from [6]. We note that it is customary to consider
non-finite dimensional gentle algebras in the literature, see e.g. [17].

Definition 1. A locally gentle bound quiver Q̄ := (Q, I) is a (finite) bound quiver where
(i) each vertex a ∈ Q0 has at most two incoming and two outgoing arrows,

(ii) the ideal I is generated by paths of length exactly two,
(iii) for any arrow β ∈ Q1, there is at most one arrow α ∈ Q1 with t(α) = s(β) and αβ /∈ I

(resp. αβ ∈ I) and at most one arrow γ ∈ Q1 with t(β) = s(γ) and βγ /∈ I (resp. βγ ∈ I).
The algebra kQ/I is called a locally gentle algebra. A gentle bound quiver is a locally gentle
bound quiver Q̄ such that the algebra kQ/I is finite-dimensional; kQ/I is then a gentle algebra.

Definition 2. A locally gentle bound quiver Q̄ is complete if any vertex a ∈ Q0 is incident
to either one (a is a leaf) or four arrows (a is an internal vertex). The pruned subquiver of a
quiver Q̄ is the locally gentle quiver obtained by deleting all leaves of Q̄ (degree one vertices) and
their incident arrows. The blossoming quiver of a locally gentle bound quiver Q̄ is the complete
locally gentle bound quiver Q̄` whose pruned subquiver is Q̄. The vertices of Q`

0 r Q0 are called
blossom vertices, and the arrows in Q`

1 r Q1 are called blossom arrows. See Figure 1.

Remark 3. Note that Q̄` has 2|Q0| − |Q1| incoming blossom arrows and 2|Q0| − |Q1| outgoing
blossom arrows. Therefore, it has |Q`

0 | = |Q0| + 2(2|Q0| − |Q1|) = 5|Q0| − 2|Q1| vertices
and |Q`

1 | = |Q1|+ 2(2|Q0| − |Q1|) = 4|Q0| − |Q1| arrows.

1 21

1 21

1

1

1 2

1 21

1

Figure 1: Some locally gentle quivers (top) and their blossoming quivers (bottom).
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2.2 Strings and walks

The non-kissing complex is constructed using the combinatorics of strings and walks in
the quiver Q̄, whose definitions are now briefly recalled. The terminology and notations
in the following definitions is borrowed from [6, 9].

For any arrow α of Q, define a formal inverse α−1 with the properties that s(α−1) = t(α),
t(α−1) = s(α), α−1α = εt(α) and αα−1 = εs(α), where εv is the path of length zero starting
and ending at the vertex v ∈ Q0.

Definition 4. Let Q̄ = (Q, I) be a locally gentle bound quiver. A finite string in Q̄ is a word of
the form ρ = αε1

1 αε2
2 · · · α

ε`
` , where

(i) αi ∈ Q1 and εi ∈ {−1, 1} for all i ∈ [`],
(ii) t(αεi

i ) = s(αεi+1
i+1 ) for all i ∈ [`− 1],

(iii) there is no path π ∈ I such that π or π−1 appears as a factor of ρ, and
(iv) ρ is reduced, in the sense that no factor αα−1 or α−1α appears in ρ, for α ∈ Q1.

The integer ` is called the length of the string ρ. We let s(ρ) := s(αε1
1 ) and t(ρ) := t(αε`

` ) denote
the source and target of ρ. For each vertex a ∈ Q0, there is also a string of length zero, denoted
by εa, that starts and ends at a.

If c is an oriented cycle in Q such that c, c2 /∈ I, we write c∞ for the infinite word ccc · · · ,
∞c for the infinite word · · · ccc, and ∞c∞ for the bi-infinite word ∞cc∞. We also de-
fine −∞c := ∞(c−1) = (c∞)−1 and similarly c−∞ := (c−1)∞ = (∞c)−1.

Definition 5. An eventually cyclic string for Q̄ is a word ρ of the form ∞(cε1
1 )σ(cε2

2 )∞, where
c1, c2 are oriented cycles in Q̄ (possibly of length zero) and ε1, ε2 are signs in {±1} such that
c2ε1

1 σc2ε2
2 is a finite string in Q̄.

Definition 6. A string for Q̄ is a word which is either a finite string or an eventually cyclic
infinite string. We often implicitly identify the strings ρ and ρ−1, and call it an undirected string.

To avoid distinguishing between finite and (bi-)infinite words, we denote strings as
products ρ = ∏i<`<j α

ε`
` where i < j ∈ Z∪{±∞}, ε` ∈ {±1} and α` ∈ Q1 for all i < ` < j.

Definition 7. A walk of a locally gentle quiver Q̄ is a maximal string of its blossoming quiver Q̄`

(meaning that at each end it either reaches a blossom vertex of Q̄` or enters an infinite oriented
cycle). We implicitly identify the walks ω and ω−1, and call it an undirected walk.

Definition 8. A substring of a walk ω = ∏i<`<j α
ε`
` of Q̄ is a string σ = ∏i′<`<j′ α

ε`
` of Q̄

for some i ≤ i′ < j′ ≤ j, where the inequality i ≤ i′ (resp. j′ ≤ j) is strict when i 6= −∞
(resp. j 6= ∞). In other words, σ is a factor of ω such that
• the endpoints of σ are not allowed to be the possible blossom endpoints of ω,
• the position of σ as a factor of ω matters.

Note that the string εa is a substring of ω for each occurrence of a as a vertex of ω. We denote
by Σ(ω) the set of substrings of ω. We use the same notation for undirected walks.
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Definition 9. We say that the substring σ = ∏i′<`<j′ α
ε`
` is at the bottom (resp. on top) of the

walk ω = ∏i<`<j α
ε`
` if i′ = −∞ or εi′ = 1 and j′ = +∞ or ε j′ = −1 (resp. if i′ = −∞

or εi′ = −1 and j′ = ∞ or ε j′ = 1). In other words the (at most) two arrows of ω incident to the
endpoints of σ point towards σ (resp. outwards from σ). We denote by Σbot(ω) and Σtop(ω) the
sets of bottom and top substrings of ω. We use the same notations for undirected walks.

Definition 10. A walk ω is straight if ω or ω−1 is a path in Q̄`, and bending otherwise.

2.3 Non-kissing complex

We can now define the non-kissing complex of a locally gentle bound quiver follow-
ing [13, 15, 5]. We start with the kissing relation for walks.

Definition 11. Let ω and ω′ be two undirected walks on Q̄.
We say that ω kisses ω′ if Σtop(ω) ∩ Σbot(ω

′) contains a finite
substring. We say that ω and ω′ are kissing if ω kisses ω′ or ω′

kisses ω (or both). We allow the situation where the common
finite substring is reduced to a vertex a, meaning that a is a peak of ω and a deep of ω′. Note also
that ω can kiss ω′ several times, that ω and ω′ can mutually kiss, and that ω can kiss itself.

Definition 12. The non-kissing complex of Q̄ is the simplicial complex Knk(Q̄) whose faces are
the sets of pairwise non-kissing walks of Q̄. Note that self-kissing walks are excluded from the
vertex set of this complex.

3 Accordions, slaloms, and non-crossing complex

3.1 Dual dissections of a surface

Before defining accordions and slaloms, we need a strong notion of pairs of dual dis-
sections of an orientable surface. We first review classical definitions of curves, arcs and
dissections of a surface adapting it to our setting.

Definition 13. A marked surface S̄ := (S , M) is an orientable surface S with boundaries, to-
gether with a set M of marked points which can be on the boundary of S or not. For V ⊂ S ,

(i) a V-arc on S̄ is a curve on S connecting two points of V and whose interior is disjoint
from M and the boundary of S .

(ii) a V-curve on S̄ is a curve on S which at each end either reaches a point of V or infinitely
circles around and finally reaches a puncture of M, and whose interior is disjoint from M
and the boundary of S .

As usual, curves and arcs are considered up to homotopy relative to their endpoints in S r M,
and curves homotopic to a boundary are not allowed.
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Figure 2: Some pairs (D, D∗) of dual cellular dissections on different surfaces. The
dissection D is in green while its dual dissection D∗ is in red. The boundaries of the
surfaces are shaded, and the glue symbols indicate how to identify edges.

Definition 14. Two curves or arcs cross when they intersect in their interior. We will always
assume that collections of arcs on a surface are in minimal position, in the sense that they cross
each other transversely, and the number of crossings is minimal.

Definition 15. A dissection of S̄ is a collection D of pairwise non-crossing arcs on S̄ . The edges
of D are its arcs together with the boundary arcs of S̄ . The faces of D are the connected components
of the complement of the union of the edges of D in the surface S . We denote by V(D), E(D)
and F (D) the sets of vertices, edges and faces of D respectively. The dissection D is cellular if all
its faces are topological disks. For V ⊆ M, a V-dissection is a dissection with only V-arcs.

Convention 16. All throughout the paper, all dissections are considered cellular.

Definition 17. Consider a marked surface S̄ = (S , V t V∗), where V and V∗ are two disjoint
sets of marked points so that the points of V and V∗ that are on the boundary of S alternate.
A cellular V-dissection D of S̄ and a cellular V∗-dissection D∗ of S̄ are dual cellular dissections
if there are pairs of mutually inverse bijections V∗ ↔ F (D) and V ↔ F (D∗), both denoted ∗

in both directions, such that D has an edge joining its vertices u, v ∈ V and separating its
faces f , g ∈ F (D) if and only if D∗ has an edge joining its vertices f ∗, g∗ ∈ V∗ and separating
its faces u∗, v∗ ∈ F (D∗).

Some examples of dual cellular dissections on different surfaces are represented in
Figure 2. Note that contrarily to the usual conventions, the dual vertex f ∗ of a face f of D
is not always in the interior of the face f . More precisely, each face f has either no or
exactly one edge on the boundary of S . Its dual vertex f ∗ then lies in the interior of f and
is a puncture of S̄ in the former case, and on the boundary edge of f in the latter case.

Definition 18. We consider a set B of points on the boundary of the surface S such that B
and V ∪V∗ alternate along the boundary of S . The points of B are called the blossom points. See
e.g. Figures 3 and 4 where the blossom points appear as white hollow vertices.
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3.2 Accordion complex and slalom complex

Let S̄ = (S , V tV∗) be a surface with two disjoint sets V and V∗ of marked points, and
let B be the corresponding blossom points on the boundary of S . Consider two dual
cellular dissections D and D∗ of S̄ . The next definition generalises the one of [12] for the
case where S̄ is a disk.

Definition 19. A D-accordion is a B-curve α of S̄ such that whenever α meets a face f of D,
(i) it enters crossing an edge a of f and leaves crossing an edge b of f (in other words, α is not

allowed to circle around f ∗ when f ∗ is a puncture),
(ii) the two edges a and b of f crossed by α are consecutive along the boundary of f ,

(iii) α, a and b bound a disk inside f that does not contain f ∗.
By convention, we also consider that the punctures of V are D-accordions.

Figure 3 illustrates some D-accordions for the dissections D of Figure 2.

Figure 3: Some D-accordions (in blue) for the dissections D of Figure 2 (in green).

Remark 20. In Definition 19, observe that
• the edges of a and b of f crossed by α might coincide, see the second example in Figure 3.
• the first condition is automatically satisfied if f ∗ is not a puncture.

Definition 21. The D-accordion complex Kacc(D) is the simplicial complex whose faces are the
sets of pairwise non-crossing D-accordions. Note that self-crossing accordions are excluded from
the vertex set of this complex.

The following definition generalizes the one from [11] for the case where S̄ is a disk.

Definition 22. A D∗-slalom is a B-curve α of S̄ such that, whenever α crosses an edge a∗ of D∗

contained in two faces f ∗, g∗ of D∗, the marked points f and g lie on opposite sides of α in the
union of f ∗ and g∗ glued along a∗. Here, we consider that f lies on the right (resp. left) of α

when α circles clockwise (resp. counterclockwise) around f . By convention, we also consider that
the punctures of V are D∗-slaloms.

Figure 4 illustrates some D∗-slaloms for the dual dissections D∗ of Figure 2.

Definition 23. The D∗-slalom complex Ksla(D∗) is the simplicial complex whose faces are the
sets of pairwise non-crossing D∗-slaloms. Note that self-crossing slaloms are forbidden.
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Figure 4: Some D∗-slaloms (in blue) for the dual dissections D∗ of Figure 2 (in red).

3.3 Accordions versus slaloms and the non-crossing complex

Proposition 24. For two dual cellular dissections D and D∗, the D-accordions are precisely the
D∗-slaloms and the D-accordion complex coincides with the D∗-slalom complex. See Figures 3
and 4.

Definition 25. The non-crossing complex of the pair of dual cellular dissections (D, D∗) is the
simplicial complex Knc(D, D∗) :=Kacc(D) = Ksla(D∗).

4 Non-kissing versus non-crossing

4.1 The bound quiver of a dissection

We first associate a quiver to a pair of dual dissections (D, D∗).

Definition 26. The quiver of the dissection D is the quiver Q̄D = (QD, ID) defined by:
(i) the set of vertices of QD is the set of edges of D;

(ii) there is an arrow from a to b for each common endpoint v of a and b such that b comes
immediately after a in the counterclockwise order around v;

(iii) the ideal ID is generated by the paths of length two in QD obtained by composing arrows
which correspond to triples of consecutive edges in a face of D.

The bound quiver of the dissection D∗ is the bound quiver Q̄D∗ = (QD∗ , ID∗) defined by replac-
ing D by D∗ in the above. See Figure 5.

Remark 27. The blossoming quiver Q̄`
D of the quiver Q̄D is obtained with the same procedure by

considering additional blossom vertices along the boundary of the surface. See Figure 5.

Lemma 28. The bound quiver Q̄D = (QD, ID) is a locally gentle bound quiver.

Definition 29. The Koszul dual of a locally gentle bound quiver Q̄ = (Q, I) is the bound
quiver Q̄! = (Q!, I !) defined as follows:

(i) the quiver Q! is equal to the opposite quiver of Q (obtained from Q by reversing all arrows);
(ii) the ideal I ! is generated by the opposites of the paths of length two in Q that are not in I.

Proposition 30 ([14, Prop. 1.25]). Let D and D∗ be two dual cellular dissections of a marked
surface (S , V tV∗). The bound quivers Q̄D and Q̄D∗ are Koszul dual to each other. See Figure 5.
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Figure 5: The quivers associated to the dissections of Figure 2.

4.2 The surface of a locally gentle bound quiver

We now associate a surface to a locally gentle bound quiver. This construction yields the
same surface as the one constructed in [14].

Definition 31. The surface SQ̄ of a locally gentle bound quiver Q̄ = (Q, I) is the surface
obtained from the blossoming quiver Q̄` as follows:

s(α) t(α)

v(α)

f ∗(α)

α

Es
nr(α) Et

nr(α)

Es
r(α) Et

r(α)

(i) for each arrow α ∈ Q`
1 , consider a lozenge L(α) with sides

Es
nr(α) = [v(α), s(α)] Et

nr(α) = [v(α), t(α)] (green)
Es

r(α) = [ f ∗(α), s(α)] Et
r(α) = [ f ∗(α), t(α)] (red)

(ii) for any α, β ∈ Q`
1 with t(α) = s(β), identify:

• Et
r(α) with Es

r(β) if αβ ∈ I,
• Et

nr(α) with Es
nr(β) if αβ /∈ I.

The orientations on the edges are only used for identifications and can be immediately forgotten.

Definition 31 constructs an orientable surface SQ̄ with boundaries. Figure 6 illustrates
this construction for the quivers of Figure 1.

Definition 32. The surface SQ̄ is endowed with
• the set VQ̄ of points v(α) for α ∈ Q`

1 after the identifications given by (ii),
• the VQ̄-dissection DQ̄ given by all sides Es

nr(α) and Et
nr(α) for α ∈ Q`

1 after the identifica-
tions given by (ii).

The set V∗Q̄ and the V∗Q̄-dissection D∗Q̄ are defined similarly by using f ∗(α), Es
r(α) and Et

r(α).
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Figure 6: The surface SQ̄ for the quivers Q̄ of Figure 1.

Proposition 33. Let Q̄ be a locally gentle bound quiver. Then the dissections DQ̄ and D∗Q̄ are
cellular and dual to each other.

Theorem 34. Up to isomorphism, the constructions of Definitions 26 and 31 are inverse to each
other. They induce a bijection between the set of isomorphism classes of locally gentle bound
quivers and the set of homeomorphism classes of marked surfaces with a pair of dual cellular
dissections.

Remark 35. The following observations are useful for the computation of examples.
(i) The set VQ̄ has one vertex for each straight walk in Q̄ (equivalently, for each maximal path

in Q̄). Finite straight walks yield vertices on the boundary of SQ̄, while infinite cyclic
straight walks in Q̄ yield punctures of SQ̄ in VQ̄. We denote by p the number of infinite
cyclic straight walks in Q̄.

(ii) The dissection DQ̄ has one edge for each vertex a ∈ Q̄0, obtained by concatenation of the
sides Et

nr(α) = Es
nr(β) and Et

nr(α
′) = Es

nr(β′) where a = t(α) = s(β) = t(α′) = s(β′),
αβ /∈ I and α′β′ /∈ I. We denote by ε(a) the edge of DQ̄ corresponding to a.

(iii) The dissection DQ̄ has one `-cell for each straight walk of length ` in Q̄!.
(iv) Similar statements hold dually for V∗Q̄ and D∗Q̄, and we define p∗ and ε∗(a) similarly.
(v) The number of punctures of SQ̄ is the number p+ p∗ of infinite straight walks in Q̄ and Q̄!.

(vi) The number b of boundary components of SQ̄ can be computed as follows. There are two
natural perfect matchings whose vertices are the blossom vertices of Q̄: one is obtained by
joining the endpoints of each finite straight walk of Q̄, and the other is obtained similarly
from Q̄!. Let G be the superposition of these two perfect matchings. Then the number b of
boundary components of SQ̄ is the number of connected components of G.

(vii) The genus of the surface SQ̄ is g = (|Q1| − |Q0| − b − p − p∗ + 2)/2, where b is the
number of boundary components (see above for a way to compute b) and p + p∗ the number
of punctures (i.e. infinite straight walks in Q̄ and in Q̄!).

Proposition 36. For any gentle bound quiver Q̄ with Koszul dual Q̄!, the surfaces SQ̄ and SQ̄!

coincide, but DQ̄! = D∗Q̄ and D∗Q̄! = DQ̄.

Example 37. Consider the family of cycle quivers indicated in Figure 7. We apply Remark 35 to
understand the corresponding surfaces. The corresponding perfect matchings (see Remark 35 (vi))
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Figure 7: The surface SQ̄ for the cycle quivers with 3, 4, 5 vertices.

form a cycle with green and red arrows alternating. Moreover, Q̄ has 1 infinite straight walk,
while Q̄! has none. Since |Q1| = |Q0|, the corresponding surfaces are punctured disks (1 bound-
ary component, 1 puncture and genus 0). See Figure 7.

4.3 Non-crossing and non-kissing complexes coincide

Let Q̄ be a locally gentle bound quiver. For each edge of the dissection DQ̄ on SQ̄, we
fix a point on the interior of this edge, which we call its “middle point” (this is the black
vertex on the pictures). To each walk on Q̄, we will now associate a DQ̄-accordion.

Definition 38. For any arrow α on Q̄`, let γ(α) be the curve on SQ̄ which goes from the middle
point of the edge of D corresponding to s(α) to the middle point of the edge of D corresponding
to t(α) by following the angle corresponding to α. Define γ(α−1) to be γ(α)−1.

Definition 39. Let ω = ∏i<`<j α
ε`
` be a (possibly infinite) walk on Q̄. Define the curve γ(ω)

to be the concatenation of the curves γ(αε`
` ) of Definition 38.

In practice, we will represent γ(ω) by a curve which intersects itself only transversely,
and such that if it circles infinitely around a puncture, then it spirals towards it.

Lemma 40. Let ω be a walk on Q̄. Then γ(ω) is a DQ̄-accordion.

Lemma 41. Let γ be a DQ̄-accordion. There exists a unique undirected walk ω(γ) such that we
have γ(ω(γ)) = γ.

Proposition 42. The maps γ(−) and ω(−) induce mutually inverse bijections between the set
of undirected walks on Q̄ and the set of DQ̄-accordions on SQ̄.

Lemma 43. Two undirected walks ω1 and ω2 on Q̄ are non-kissing if and only if the correspond-
ing DQ̄-accordions γ(ω1) and γ(ω2) are non-crossing on SQ̄.

Theorem 44. The non-kissing complex and the non-crossing complex are isomorphic.
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