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Uniform observability of the one-dimensional wave equation for
non-cylindrical domains.

Application to the control’s support optimization.

ARTHUR BoOTTOIS NicoLAE CINDEA ARNAUD MUNCH*

November 4, 2019

Abstract

This work is concerned with the controllability of the one-dimensional wave equation
with controls distributed over non-cylindrical domains. The controllability in that case has
been obtained in [Castro-Cindea-Miinch, Controllability of the linear one-dimensional wave
equation with inner moving forces, SIAM J. Control Optim 201/] for domains satisfying the
usual geometric optics condition. In the present work, we first show that the corresponding
observability property holds true uniformly in a precise class of non-cylindrical domains.
Within this class, we then consider, for a given initial datum, the problem of the optimiza-
tion of the control support and prove its well-posedness. Numerical experiments are then
discussed and highlight the influence of the initial condition on the optimal domain.

1 Introduction

This work is concerned with the distributed controllability of the one-dimensional wave equation.
We define the space domain 2 = (0, 1), the controllability time 7" > 0 and the space-time domain
Qr = 2% (0,T), with ©7 = 9Q x (0, T'). Moreover, in the sequel we shall denote by L = 97 — 9>
the one-dimensional wave operator.

The controllability problem for the one-dimensional wave equation reads as follows: for a
given control domain ¢ C Qr, for every initial datum (yo,y1) € V = H}(Q) x L*(Q), find a
control v € L?(q) such that the corresponding solution of the wave equation

Ly = U]]'q in QT7
y=20 on Y, (1)
(Y, y¢)(+,0) = (yo,y1) in Q

satisfies
The application 1, denotes the characteristic function of q. We recall that for every (yo,y1) € V

and v € L?(q), there exists a unique solution y to (1) with the regularity y € C([0, T]; HE(Q2)) N
CY([0,T]; L?(£2)) (see for instance [14]).
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In the cylindrical case, i.e. when ¢ = w x (0,7, with w C £ an open non empty interval,
the exact controllability of holds for controllability time T greater than a critical time 7™,
related to the measure of the set 2\ @. In the non-cylindrical case, the controllability of
has been established in [3] if the control domain ¢ satisfies the usual geometric optics condition
(we also refer to [I3], 22] for results in any dimension). We recall that a domain ¢ verifies such
condition if every characteristic line of the wave equation, starting from a point of Q x {0} and
following the laws of geometric optics when reflected on the boundary Y7, meets the domain q.

In both cylindrical and non-cylindrical cases, the controllability of can be proven by the
Hilbert uniqueness method (HUM) introduced by J.-L. Lions [14]. The main idea of this method
is to obtain the controllability as a consequence of an observability inequality for the adjoint
problem associated to : there exists a constant Cyps(q) > 0 such that

100, 1) 3w < Cobs(@1@ll72(g), Vw0, p1) € W = L*(Q) x H™H(€), 3)

where ¢ is the solution of the following homogeneous wave equation

Lo=0 in Qr,
=0 on X, (4)

(¢, 06)(+,0) = (w0, p1) in €.

We recall that for every (po,¢1) € W, there exists a unique solution ¢ to (defined in the
sense of transposition) with the regularity ¢ € C([0,T]; L?(2)) N C1([0,T); H1(2)) (see, for
instance, [14]). We emphasize that the observability constant Cyps appearing in depends on
the observation domain q.

According to the HUM method, the control of minimal L?(q)-norm is obtained as the re-
striction to ¢ of the solution ¢ of (4]) corresponding to the initial datum (g, 1) which minimize
the functional

. 1
T (w0, 91) = 5 // 0 = (1,900 1@, i) T (w0, U r2@)  V(po, 1) € W. (5)
q

The existence and uniqueness of the minimum of the functional J* over the space W are mainly
consequences of the observability inequality .

In the first part of this work, we provide a class of observation domains, based on the
geometric condition considered in [3, Proposition 2.1], for which the observability constant Cypg
in is uniformly bounded. More precisely, for every € > 0 small enough, we define the e-interior
of ¢ by

¢ ={@heq d1),00)> e}, (6)

and the admissible set of control domains by
Q:q={¢C Qr; qopen and ¢° verifies the geometric optics condition}. (7)

We prove the following uniform observability inequality: there exists a constant C¢,  such that
for every q € QZ;,
1o e1)lRv < Copsllelaggy: V(w0 01) € W, (8)

where ¢ is the solution of associated to the initial datum (¢o, ¢1).
This uniform property then allows, in a second part, to analyze the problem of the optimal
distribution of the control domain ¢. Precisely, we consider controls acting on a horizontal



neighborhood of a regular curve: for a given half-weight §yp > 0, we define the domain associated
to the curve v : (0,7) — Q by

¢y ={(z,1) € Qr; |z —~(t)| < do}. 9)
The curves « are chosen in the following set
Gad = {7 € WH(0,T); |V llzeory S M, G0 <7 <1—do} (10)

consisting of uniformly Lipschitz functions of fixed constant M > 0. For T' > 2 and £ > 0 small
enough, the class {gy; 7 € Gaa} is a subset of Q7 ;. The optimization problem we shall consider
reads as follows: for a given initial datum (yg,y1) € V, solve

: 2
vle%fad 101172, (11)

where v is the control of minimal L?(g,)-norm distributed over ¢, C Qr-.

Controllability of partial differential equations by means of moving controls, although less
studied than the cylindrical case, becomes more and more popular in the literature. One of the
first contributions for the wave equation is due to Khapalov [I2]. The author proved an ob-
servability inequality for the one-dimensional wave equation with moving pointwise observation.
This time-dependent observation allows to avoid the issue of strategic observation points and to
get uniform controllability. More recently, the works [2, [7, 8] addressed the controllability for
the one-dimensional case. The controllability of the one-dimensional wave equation is proved for
controls acting on an interior curve and on a moving boundary, by using d’Alembert’s formula
and the multiplier method respectively. For the N-dimensional case, in [I5] the authors employ
the multiplier method to prove that the wave equation is controllable using a control acting on a
time-dependent domain ¢, under the hypothesis that this domain covers the whole space domain
before the control time T'. Under similar hypotheses, we also mention the work [I6] where the
control of the damped wave equation ¥ — Yzz — E¥tze = 0 defined on the 1D torus is obtained in
a non-cylindrical case. Because of the presence of an essential spectrum, such property does not
hold true in the cylindrical case. Moreover, assuming the standard geometric optics condition,
the observability inequality has been obtained in [3] in dimension one by way of d’Alembert’s
formula, and extended in [I3] to the multi-dimensional case using microlocal analysis. It is also
worth mentioning the obtention of Carleman type inequality for general hyperbolic equations
in [22].

On the other hand, in the cylindrical situation, the uniform observability property for the
wave equation with respect to the observation domain is addressed in [2I]. For T' > 2, the
author proves, using Fourier series, a uniform observability inequality for domains of the form
qg=w x (0,7), with w C 2 an open set of fixed length. The uniform property is then employed
to analyze the optimal position of the support of the corresponding null control. This problem
of the optimal shape and position of the support is also numerically investigated in [I8] [19] for
the one and two dimensional wave equation. In a similar context, we also mention [I1] and the
references therein.

This paper is organized as follows. In Section [2] we prove the uniform observability inequal-
ity on QF, and its variant on the subset G,q. This is achieved by defining an appropriate
decomposition of the observation domains in QF ;, and by using d’Alembert’s formula. The proof
also relies on arguments from graph theory. Then, in Section following arguments from [10} 21],
we analyze a variant of the extremal problem . Introducing a Cl-regularization of the
support g, we prove that the underlying cost is continuous over G,q for the L*(0,7")-norm,



and admits at least one local minimum. Section 4| is concerned with numerical experiments.
Minimization sequence for the regularized cost are constructed using a gradient method: each
iteration requires the computation of a null control, performed using the space-time formulation
developed in [5] and used in [3], and well-suited to the description of the non-cylindrical domains,
where the control acts.

2 Uniform observability with respect to the domain of observa-
tion

We prove in this section the uniform observability inequality with respect to the domain of
observation. Precisely, we prove the following equivalent result for regular data in V.

Theorem 1. Let T' > 0 and let € > 0 be a small enough fized parameter such that the set QF ,
defined by is non-empty. There exists a constant C%, . > 0 such that for every q € QF ,, the

obs

following inequality holds

10, eIV < Consllenlliaggys (w0, 1) €V, (12)
where @ is the solution of the wave equation associated to the initial datum (¢o, ¢1).

In the remaining part of this section, we assume that the hypotheses of Theorem [I] are
satisfied.

2.1 Some notations and technical lemmas

We first introduce some notations and state some preliminary lemmas.

Let N > 0 be an integer and xy = 1/N. We denote Sy = (z¥)o<i<n a regular subdivision
of Q in N intervals, i.e. for every i € {0,..., N}, we set ¥ = i/N. Associated to the functions
wo € HY(Q) and ¢ € L%(2), we define the continuous function ¢) affine on intervals [z |, 2]
of the subdivision Sy and the function go{v constant on intervals of Sy:

N > Ny E =y N & -
o (2) = 221 po(z; )T + eo(it1) . ]l[fo_l,gi](fU% (13)
1=
N 1 e
N N . N i
o) = AUy o) with 5 = - [ o (14)
We also denote by (o)) € L?(Q2) the “derivative” of @}
Ny/ . N . N _ po(a@) = po(zly)
(@)@ =Y oMy y(@), witha) = i), (15)
i=1
Using that ¢ € H(Q2), we then easily check that
1 1 X N
ot 17 @) = w5 22 el e = 5 2_(6Y)° and ) ai’ =0. (16)
o) N & @~ N & —
1= 1= 1=

In order to use d’Alembert’s formula for the solution of the wave equation associated to
initial datum (), ¢1’) of the form (I3)-(T4), we need to extend these functions to odd functions
to [~1,1] and then by 2-periodicity to R. In this respect, we first extend the definition of z¥



to i € Z by putting Y = i/N for every i € Z, and then denote by I}V for every i € Z* the
following interval:

aclN :va if i >0,
N EASTEA a7
[z, 2lN,] ifi<O.
Similarly, we extend aN and BZN for every i € Z* as follows: if i € {—N,...,—1}, we set
al =a¥, and BN = —BN; if |i| > N, the definitions of a¥ and ¥ are a little more complex:
N_ N
Qi = YnG) B ’BJN(
with jy(7) defined for every integer i > 1 by
vy =1 mod @N)+1 i (i=1) mod (2N) <N, 18)
W= (—=1) mod 2N) —2N if (i—1) mod (2N) > N,

and jny (i) = —jn(—1) if i < —1. Remark that for every i € Z*, we have jy (i) € Iy with the set
Ix given by
In={-N,...,—-1,1,...,N}. (19)

For 4,5 € Iy, we also define
7 o=al + 8. (20)

We extend the functions goév and ¢} to odd functions on [—1, 1] and by 2-periodicity to R.
Then, using the notations above, we obtain

= Z OézN]ljiN(x)v W{V(x) = Z 51']\]]112!\’(95)7 Vz € R. (21)
i€z icz*
Furthermore, from d’Alembert’s formula, the solution ¢V of associated to the initial datum
(", V) is given as follows:

1 T+t

2 (piv7 V(.CU,ZL/) € QT' (22)

N t) = = (@t t)+ el @ —0) +

2

Taking the derivative with respect to t and replacing the expressions in the above equation,
we deduce that for all (z,t) € Qr, we have

ot = (@Y @+~ @@ -0+ ol @41+ o @ 1)

13 (@ 4 B @+ ) — 0 = BV (@~ )

1EL*

52 > @+ 8 — o + B (@ + Oy (2 1), (23)

1€L* JEL*
Using the properties of the function jy defined in , we deduce that for i, j € Z*,
N N _ N N
a + B - a + 6 JN(Z + BJN(Z — Gy T 5jN(j)
— N N
= (3@ T Bive) — (@S0 + BS540
_ N N
= TinG) T T=inG): (24)

In view of the expression , we introduce the following definition.



Definition 1. For every i,j € Z*, the elementary square of indices (i,j) associated to the
subdivision Sy is defined as the following closed set of R:

Cl;y={(x.,t) e R? such that v + t € I and z —t € I}'}, (25)

where for every i € Z*, the interval I}V is given by (I7). We denote by Cn = {C(Jl\.[j); i,j €Z*}
the set of all the elementary squares associated to the subdivision Sy of 2. It is easy to see that
R? = Uijezs Cigy-

Figure [1f illustrates the way the elementary squares are indexed, using elementary squares
associated to the subdivision Sy of €.

T=2 T=2
t t
q
— Rs(q)
0 0
0 3” 1
Figure 1: Some elementary squares in Cy. Figure 2: Cover Rg(q) of ¢°, for ¢ = 0.15.

Remark 1. For every i,j € Z*, the coordinates of the center of the elementary square C(]jj)
associated to the subdivision Sy are given by

N_ N
N o mtm; N 42N

T ) = 5, N ) o3 ifi >0, 9%

N N wit m; NN ( )
N My Ty T AT

The area of every elementary square C(]jj) € Cy is given by |C(Z¥j)| = ﬁ Notice that for every

i,j € Z* with |i|,|7] > 1, the elementary squares having one side in common with the elementary
N N N

square C(i,j) are C(iiLj) and C(m.il).

Definition 2. For every ¢ € QZ,, we denote by Cn(¢) and Cnx(Q7) the sets of the elementary
squares in Cy with their interior included in ¢ and Q7 respectively:

Cn(g) = {C[;) € Cn; éf}{j) Cq}, Cn(Qr)={C{; €Cn; CO'(]Xj) C Qr}. (27)
If N is large enough, the sets Cn(q) and Cy(Qr) are non-empty. We also define Ry (¢) the union

of the elementary squares in Cy(q):

o

—_——~
Rv(= U Ciy (28)
Cg-,j)ECN(Q)

With these notations, we can now prove the following lemma.



Lemma 1. Let N > 1/ be a fized integer. For every q € QF,, the set UCﬁj)GCN(q) C(]Xj) s a
cover of ¢¢ given by (6]). Moreover, the set Rn(q) defined by satisfies ¢ C Ry(q) C q.
Proof. Let X € ¢°. Using the definition of ¢°, we have X € ¢ and d(X,0q) > . Since R?
is covered by squares in Cp, there exists C(JX i € Cn such that X € C(]X i) Moreover, since
diam(C(]Xj)) = KN, we have C(]Xj) C B(X,kn). Let Y € B(X,ky). Then, for every Z € R? )\ g,
it holds that

dY,Z) > d(Y,X) —d(X,Z)| >e—rn > 0.

Consequently, d(Y,R? \ ¢) > 0, which implies Y € ¢. Therefore, C'(];[j) C B(X,ky) C q and,
finally, C(]Xj) € Cn(q)- O

Figure [2|illustrates Lemma [1{in the case of the cylindrical observation domain ¢ = (1—56, %) X
(0,2), for e = 0.15 and N = 8. In order to write several expressions in a simpler form, we use
the following graph theory framework.

Definition 3. Let ¢ € QZ; an observation domain. We define the weighted graph Gn(q) as
follows:

e Iy given by is the set of vertices;

o for every ¢ € Iy, the degree of the vertex ¢ is given by:
aY = Card ({Cff_y € Cn(a); i€ fin(k),in(D}});
o for every i, j € Iy, the weight of the edge linking the vertices ¢ and j is
wl = wl, = Card ({C_y €Cnla); {03} = i (B).in(D}}).

Definition 4. Let ¢ € Q, and let 4,5 € I be two vertices of the graph Gn(g). We say that
there is a path in Gn(q) from i to j and we denote i X j if the vertices i and j are in the same
connected component of Gx(g). In particular, if wi\g £0, then i X j.

We then recall the definition of the Laplacian matrix associated to a graph.

Definition 5. Let ¢ € Q5. The Laplacian matriz associated to the graph Gn(q) (see Defini-
tion [3) is the symmetric positive matrix Ay (q) € Moy (R) defined by

N N N N

dy T TWoN1 TWong o TWoNN

N N N N
An(q) = —w_;_nN d2y —w_yp vt TWN (29)
NG =1 N e _wN dN ... N

1,-N 1,-1 1 1N

N N N N

—wWy_N o TWyor ~Wng o dy gy oy

Remark 2. Remark that for every g € Q5,, the graph Gn(q) has no loop, i.e. wf\; = 0 for every
i € Iy. Indeed, the elementary squares C(]\I;—l) such that jn(k) = jn(1) = i have their centers
x%_l) € Z and, consequently, cannot be in Qr.

Remark also that the Laplacian matriz An(q) of the graph Gn(q) verifies the following

p?"OpeTty (866 [Z7 4/) ; fO?" every 1 = (n—Nu s N=-1,M1, - 7]N) € RZN;

AN =Y A = Y0 wiming = Y (i) — 1oeG) (30)
i€ly i,j€IN Clleln (@)



From now on, we consider that the assumption of Lemma holds true, i.e. we take N > 1/e.

More precisely, we fix N the smallest integer strictly greater than e 1.

Lemma 2. Let q € QF, so ¢° verifies the usual geometric optics condition. Then the associated
graph Gn(q) is connected.

Proof. Let i € {1,...,N —1}. We denote by D;" the support of the characteristic line "z + t =

N starting from z

i in the direction of decreasing = and following the rules of geometric

optics for its reflexion on 7. Since ¢° satisfies the geometric optics condition, there exists
(z*,t*) € ¢° N D;. From Lemma we have ¢° C Ry(q), so (x*,t*) belongs to the common side
of two elementary squares in Cy(q):

(C(]X,z) and C(]ZHJ) with jny (k) = 2) or (C(]Xk) and C(]Xk_l) with jn (k) = —i) .

Therefore i X i+ 1 and, so, the vertices {1,..., N} are in the same connected component.

We denote by D, the support of the characteristic line "z —t = z;"", starting from va in
the direction of increasing x and following the rules of geometric optics for its reflexion on Y.
Since ¢° satisfies the geometric optics condition, there exists (z*,t*) € ¢° N D, . From Lemma

we have ¢ C Ry (q), so (z*,t*) belongs to the common side of two elementary squares in Cy(q):
(Cllyy and Oy pr) with jn(k) = i) or  (Cf,) and G,y with jn(k) = —i).

Therefore —i ~ —i—1 and, so, the vertices {—N, ..., —1} are in the same connected component.

In order to finish the proof, it remains to show that the vertices N and —N belong to the
same connected component. We denote by D]'t, the support of the characteristic line "z+t¢ = a:%",
starting from 2 in the direction of decreasing = and following the rules of geometric optics for its
reflexion on ¥7. Since ¢° satisfies the geometric optics condition, there exists (z*,t*) € ¢°N D]J\rf.
From Lemma [l we have ¢° C Ry(q), so (z*,t*) belongs to the common side of two elementary

squares in Cy(q):
(Gl and G4y with jn(k) = N) or  (CfYy) and Cffy_y) with (k) = —N).

Hence, N & — N.
O

Remark 3. A well known graph theory result (see, for instance, [1, Proposition 1.3.7]) states
that the graph Gn(q) is connected if and only if dim(ker(An(q))) = 1. Moreover, if Gn(q) is

connected, then ker(An(q)) = Vect(1lay), where 1oy is the vector in R*V

with all its component
equal to 1.

Let us denote An(q) > 0 the smallest non-zero eigenvalue of the matriz An(q). This eigen-
value is known in graph theory as the algebraic connectivity of the graph. We also define Ay
by

AN = min A > 0. 31
N = min ~n(q) (31)

Note that since the set {Gn(q); q € Q5,} has a finite number of elements, Ay is well defined.

Definition 6. For every p € N*, we denote by C}(q) the set formed by the elementary squares
associated to the subdivision S,y having their interior in Ry (q):

Ch(q) ={ClN econi CPY € Ru(q)}- (32)



We then define the graph G%(q) following Definition [3| substituting N by pN, and substituting
Cn(gq) by C&/(q) in the definitions of the vertex degrees and the edge weights. Finally, we denote
AR (q) € Mapn(R) the Laplacian matrix associated to the graph G&(g). This matrix has the
following block form:

N N N N
dZnplp T _w—N,—IJI) _w—N,1Jp T _w—N,NJp
N N N N
Ay = | Ty e T T (33)
_w1,—NJp _wl,—ljp dy pI, _wl,NJp
N N N N
_wN,fNJp T _wN,fl‘]p _wN,l‘]p T dnplp

2pN x2pN

where I, J, € M,(R) are respectively the identity matrix and the matrix with all its elements
equal to 1.
Moreover, for every n = (N_pN, .-, N—1,M1,---,MpN) € R?PN | we have

7A@ = Y Y D Wty — o)) (34)

O ECN(q) €T j'ET?

with J? defined in .
For any p € N* the following lemma makes the link between the spectrum of the Lapla-

cian matrix A% (q) (see Definition @ and the spectrum of the Laplacian matrix An(q) (see
Definition [5)).

Lemma 3. Let p € N*. The spectrum of the Laplacian matrix %Alfv(q) (see ) is composed
of the spectrum of the Laplacian matriz An(q) (see (29)), and the diagonal elements of An(q)
repeated p — 1 times. Moreover, dim(ker(A% (q))) =1 and ker(A4% (¢)) = Vect(1apn).

Proof. Let 1 = (N—pNy---s1-1,01,---,7pn) € RPN For every i € Iy, we denote by I'; =
(nir)iregr € RP and we group these vectors in the matrix

I'=T_n|--T4|Tq|---[T'n) € Mpan(R).
In view of , it follows that

T NTT N T
A (gn=p Y &'TiTi— Y wili gLy,
i€l 3,J€lN
Since J,, is a real symmetric matrix, there exists an orthonormal basis (by)1<k<p of RP diago-

nalizing J,. Let us denote by = -=1,,. Then, there exists a diagonal matrix D € M, (R) and a

N
unitary matrix @ € M, (R) such that J, = QDQT. These matrices have the following form:
p 0 - 0
00 --- 0
D= S and Q= (b1]-- - [bp)pxp-
00 --- 0

pXp

We also define the matrix U = QTT € M, on5(R), and denote respectively

U, = 0 Ta)icry € R?Y and U = (b{Ts)1<k<p € R?



the rows and the columns of U. Then, for ¢, j € Iy, we have

p
/T, =U%0.,;=> Uz, and T]J,I;=U%DU ;= pU U,
k=1

The spectrum of the matrix %AZ;V (¢) can now be computed from

p
HEOTED WAL DRTH AR DD DEALY¢

i€y i,J€IN k=21i€lyn
p
= Ul An(q)Us. + > _ U}l Diag(An(q))Us...

k=2

Indeed, the expression above shows that A% (¢) is unitarily similar to the block diagonal matrix

An(q)
Diag(An(q))

Diag(AN(Q)) 2pN x2pN

2.2 Proof of Theorem

We are now in position, using all these notations and results, to prove the Theorem

Proof of Theorem[1. We prove the theorem in three steps.
Step 1. Let N be the smallest integer strictly greater than e
an observability inequality for the function ¢V given by and associated to the initial da-
tum —.

In view of and , remark that the function (}¥)? is constant on each elementary

square C(];[j) in Cn:

The first step is to prove

1
(901{\7)2|C€Vi7j) = Z(’Yj]x(i) —’YiVjN(j))27 (35)

where ’yj]]\fv (4) is given by and jy by . Using the definition of the set Ry(g), we can
minorate the L2-norm of ¢ restricted to ¢ as follows:

Jler= [ whr= v [ @

ON , eCn(@)”
1 N N 2
- SN2 Z (’VJ'N(Z') - V*JN(])) (36)
CN GCN(q)

For the last equality, we used that the area of every elementary square in Cy is ﬁ Combin-
ing with the relation (30f) in Remark [2) we obtain

J[ = Gt A, (1)

with YV = (7N, oYM, oY) € R2Y and 4V given by .

10



It is easy to see that vV € ker(An(q))*. Indeed, applying Lemma [2, the graph Gy (q) is
connected. Then, from Remark [3, we have ker(Ay(q)) = Vect(1ay) and, since a¥ = o, and

BN = —pN., the vector 4V verifies

N
N)T].QN = Z ")/ZN = 2204?7 =0.
=1

i€l

Then, using Ay defined in (31), it follows that

(M) Ay = aw Y G —2AN2( (8)

i€l
= 2Ny (||so0 ey + I 1220y - (38)

From and , we deduce the following observability inequality :

18, I < IIsDt I72(q) (39)

where the constant 4 —N is independent of the domain ¢ and the initial datum (g, ©1).

Step 2. For any p € N*  the second step of the proof consists in obtaining a uniform
observability inequality for an initial datum (gogN, @) of the form (L3)-(14). More precisely,
we aim to obtain a uniform inequality with respect to the domain ¢ € QF; and the integer
p € N*.

Let p € N*. As in the first step of the proof, we easily see that (gpr)2 is constant on every

pN .
elementary square C(i,’ in € Cpn:
pN 1 pIN 2
(901; ) ’Cpi]\ij 4(’Yij(i) ’Y,JPN( )) )
where PN is the solution of () associated to the initial datum (£2", @) given by (13)-(14),
and fy.pN .y is defined by . For any i € Z*, we define the set J¥ by
ipn (1) z

(40)

i

. {p(i —1)+1,...,pi} ifi>0,
{pi,...,pli+1) =1} ifi<o0.

Then, remark that every elementary square C'( ) € Cy is the union of p? elementary squares in
Cpn, or more precisely that

cily=U Uy, vijer.

i GJF J GJF

Using the above expression in the evaluation of the L?(q)-norm of ¢PV, we have

Jlerz ff = XL

(w)

- ¥ zz//cw PNy

C(JYJ)ECN( q) €T} j' €} @.5")

1
- 8p2N2 Z Z Z ’YJpN (&) ’y—le( ))

(”)eCN( q) el j eJ"

L (PNYT A (g (41)

- 8p2 N2

11



Since the graph Gx(q) is a connected graph, the degree d¥ of every vertex i € Iy verifies
d¥ > 1. Applying Lemma |3] the smallest non-zero eigenvalue A5, (g) of %Aﬁ’v(q) verifies

A (q) = min(An(q), HGI]%H dfv) > min(Ay, 1) > 0, (42)
i€l

so we set Ay = min(Ay,1). The vector yPN = ("}/f/N)ile]IpN belongs to ker(AR(¢))*. Indeed,

pN
(’y 12N Zv _QZO[ZP,N:O

7 erN i'=1
It follows that
1 ~
SO AR a0 = R S (3N = 2 z( +(85V)?)

i/EHpN
N
= 2pN Ay (Hsﬁf)’ H?qg(sz) + et H%%Q)) -

Consequently, combining the above relation with , we obtain the following observability
inequality

N pN AN N
(eh st )H%STHﬁ ||%2(q)7 Vp €N (43)
N

with the observability constant 2¥ independent of the domain ¢, the initial datum (0, 1) and
N
the integer p.
Step 3. In order to finish the proof, we pass to the limit when p — oo in the observability

inequality . It is easy to see that when p — oo, we have the convergences
pN . 1 pN : 2
vy — o in Hy(Q) and ¢ — ¢ in L7(Q).

Moreover, since the solution ¢ of the wave equation depends continuously on its initial
condition (po,¢1) € V , we can write

PN = in L2(0,T; LP(Q)).
Finally, passing to the limit in , we get

4N
oo, en)ly < max {4, 3> L rlagg, Vi o) € V

which concludes the proof with C§, . = max {4N , %} We recall that N depends on ¢ by the
condition N > 1/e. ]

Remark 4. Let ¢ C Q1 be a finite union of open sets. If q verifies the usual geometric optics
condition, there exists € > 0 small enough such that ¢ still verifies the geometric optics condi-
tion. We then set N = |1/e] + 1. The associated graph Gn(q) being connected, there exists a
relation (see, for instance, [17]) between the algebraic connectivity An(q), the number of vertices
Ny and the diameter Dg of the graph. More exactly, this relatwn is An(q) > Ny D . Since in
our case Ny = 2N and Dg < 2N, we deduce that Ay (q) > N2 and therefore that Cobs( ) < 4N3.
In the worst situation, we can have an observability constant of order 1/e3. Therefore, if we

consider € as a measure of the "thickness" of the observation domain q, we find the estimation
of the observability constant given in [21, Proposition 2.1].
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2.3 One explicit example

We illustrate in this section the proof of Theorem|[IJon a simple example for which the observation
domain ¢ depicted in Figure (colored in red) is well adapted to the subdivision Sy. The study of
this example is also the opportunity to develop a method for the computation of the observability

constant for observation domains which are exactly the union of elementary squares associated

to a given subdivision Sy, for a fixed integer N > 0.

We start by enumerating the elementary squares composing the observation domain ¢. In
Table (1}, we list, for 4,5 € Z*, the elementary squares C’El .) included in ¢ and the values of
the indices j4(i) and —j4(7), allowing to compute the Laplacian matrix A4(q) associated to the

corresponding graph G4(q).

The Laplacian matrix associated to the graph G4(q)

is given by

The spectrum of A4(q) can be explicitly computed:

Chp  Ja@) =) | Chy () —ia() | Chyy 3a()  —ia(j)
Cla 2 -1 | Cl_yy 3 1 Clo_gy 1 4
Chny 2 Chy -2 -1 |Ci.5 -1 —4
Ch 3 -1 | Ch_yy 2 1 | Cos 1 —4
Ch_1y 3 Ci_1 1 1 Ci_g 1 -3
Clany 4 1 | C g -1 2 | Che 1 -3
Ch_y 4 Clo_g 1 2 Cio_n —1 -2
Cony 4 -1 |Ch_ay -1 3 | Cho_n 1 -2
Ciy 4 Clo_y 1 3
Clo.n) 3 -1 |[Ck .y -1 4

Table 1: Elementary squares associated to S4 and belonging to C4(q).

4 0
0 4
0 0
-2 =2
-2 =2
0 O
0 O
0 O

0

0

4
-2
-2

0
0
0

0
0
0
-2
-2
4
0
0

0
0
0
-2
-2
0
4
0

0

0

0
-2
-2

0
0
4

Sp(A4(q)) = {0,4,4,4,4,4,14,16}.

8x8

0

V’v N\
SRRKS
RRX
K
SR
SRS
A A’A

0 X

9

Figure 3: Observation domain ¢

adapted to Sy.

It confirms that the kernel of A4(q) is one-dimensional — therefore G4(q) is connected — and
implies that the smallest non-zero eigenvalue of A4(q) is A4(q) = 4. If we replace the subdivision
S4 by the subdivision Sy, for any p € N*, then the Laplacian matrix associated to the graph

13



GY(q) is the following one:

apl, 0, 0, —2J, —2J, 0, 0, 0,
0, 4p, 0, -2J, -2J, 0, 0, O,
0, 0, 4pI, —2J, —2J, 0, 0, 0,
—2J, —2J, —2J, 13pl, —J, —2J, —2J, —2J,
—2J, —2J, —2J, —J, 13pl, —2J, —2J, —2J,
0, 0, 0, —2J, —2J, 4pl, 0, 0,
0o, 0, 0, —2J, —2J, 0, dpl, 0,
0o, 0, 0, -2J, —2J, 0, 0, A4pl,

8pX8p

According to Lemma, |3} the smallest non-zero eigenvalue of %AZ (q) is given by
Ni(q) = min(Aa(g), min d}) = min(4,4) = 4.
1ely

Consequently, the observability constant associated to the observation domain ¢ depicted in

Figure [3]is given by
4-4

Cobs(Q) =

2.4 A corollary

We show in this section a uniform observability inequality for the observation domains ¢, defined
in @, with v € G.q, which will be used in the next section.

Corollary 1. Let T > 2. There exists a constant Cops > 0 such that for every v € Guq,

10,0013y < Consllldagy  V(eo,01) € W, (44)

where @ is the solution of the homogeneous wave equation associated to the initial condition
(0, 1)

Proof. We show that for any ¢ > 0 small enough, {¢,; v € Gaqa} C Q4. Let v € Gog. We
introduce the sets T'y = {(y(t) £ do,t); ¢ € [0,T]}, Ty = {(v(t) £ 2,t); t € [0,T]} and
Q7 =Q x (e,T —¢). v being a M-Lipschitz curve, we can show that

Ay, Ty) > ——0
e le) 2 5 A

Then, for ¢ < 2570

s—, we have ¢y N Q7 C ¢, with the observation domain ¢, defined as
in @ with a half-width of 6y/2. The domain ¢, N Q% verifies the geometric optics condition
because dp < v < 1—Jg and T' — 2e > 2(1 — dp). Consequently, ¢5 also verifies the geometric
optics condition and ¢, € Q. We conclude the proof by noticing that the constant 2\/% is

independent of the choice of ~. O

3 Optimization of the shape of the control domain

In this section, we study the problem of finding the optimal shape and position of the control
domain, for a given initial condition (yg,y1) € V.

14



3.1 Existence of an optimal domain

In order to show a well-posedness result, we consider a variant of the optimal problem and
replace the characteristic function 1, in by a more regular function in space. More precisely,
we fix 6 € (0,00) and, for every v € Goq, we define x(z,t) = x(x — y(t)), with x : R = [0,1] a
C' even function such that
1 if x € (=09 + 6,00 — 6),
x(@) =1 0 if z ¢ (—d0,60), (45)
€ (0,1) otherwise.

In the sequel, we will also use the function x/, defined by X’ (z,t) = x'(x — v(¢)). In this new
setting, the HUM control now lives in the weighted space

Li(qy) = L*(qy; x+) = {v tgy — Ry / vy, < —l—oo} .
Ay

Moreover, we can adapt the uniform observability inequality given in Corollary [l For T" > 2,
there exists a constant Cyps > 0 such that for every v € G,q,

10, 1) IRy < Consll@lli gy, V(w0 01) €W, (46)

where ¢ is the solution of associated to the initial condition (g, ¢1).
Then, our optimization problem reads as follows: for a given initial datum (yo,y1) € V, solve

3 _ 2 _ 2
nt 0) =leli, = ] e (a7)

where v is the control of minimal Li—norm distributed over ¢, C Qr, and ¢ is the associated
adjoint state such that v = ¢, . This adjoint state can be characterized using the HUM method,
it is the solution of associated to the minimum (g, ¢1) of the conjugate functional

" 1
T3 (po.p1) = 5 2 Xy = (P190) -1 ()i @) {90, 1)) V(po,p1) €W (48)
ay

To show the well-posedness of ([47]), we follow the steps of [21, Theorem 2.1]. We start with
a convergence result on the function ..

Lemma 4. Let (Vn)n>0 C Gag and v € Gaq. If vy — 7 in L®(0,T), then x~, — X~ i L=(Qr).

Proof. 1t is a direct consequence of the Taylor’s inequality applied to x. Indeed, this inequality
gives

X7 = XAl (@) < IX Nl zoe @) 1N = Yl oo (0,7)-

We then have that the following continuity result.
Proposition 1. The cost J is continuous over G,q for the norm L>(0,T).

Proof. Let (Yn)n>0 C Gaqa and vy € Gaq such that v, — v in L>°(0,7") as n — oo.
For any n € N, we denote (¢g,}) € W the minimum of 7 , and ¢" the corresponding
solution of . Using the uniform observability inequality and the optimality condition of
s it follows that

165Dl < Cons [ "3 = Cons ({68001 1y — () 12)
9vn

< Cobsll(#6, 1) Il (wo, 1) [lv
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leading to the uniform bound ||(¢f, ¥T)lw < Cobs||(v0,y1)||v. Consequently, there exist two
functions o € L?(Q) and 1 € H~1(Q) such that, up to a subsequence, as n — oo, we have

i — o weakly in L*(Q) and ¢} — ¢ weakly in H1(Q).

From the continuous dependence of the solution of the wave equation with respect to the initial
condition, it follows
" — ¢ weakly in L*(0,T; L*(Q)),

where ¢ is the solution of associated to (¢o, ¢1)-
Let ¢ € L?(0,T; L?(2)). We then have

//QT V" Xy, = //QT WP”XW-F//QT Yo" (X — Xv) = //QT Poxy-

Indeed, we can take the weak limit in the first term because ¥, € L%*(0,T;L*(2)). Using
Lemma [4] and the boundedness of (¢™),>0 in L?(0,T; L?(Q)), the second term converges to 0

because
V/QT " (X = Xy)

Consequently, we obtain the convergence

< el €™ 122y Ixam = Xl (@r)-

©" Xy, — PXy Weakly in LZ(O, T; L2(Q)).

Let now (¢0,v¢1) € W and ¢ the corresponding solution of . Taking the weak limit in
the optimality condition

/q7 Yoxy = (V1,50 -1y — /Qllﬁoyl-

This means that (4o, 1) is the minimum of J. Besides, we remark that this property uniquely

V" Xy = (V1,50 -1 — /leoyl,

q"/n

we find

characterizes the weak limit of any subsequence of (¢, ¢7). This implies that the whole sequence
(¢0, @) weakly converges. The continuity of J is finally obtain by taking the weak limit in the
optimality condition

// (™)X = (07, 50) -1 —/ @oy1L = (1, Y0) -1 1 —/ Poy1 =/ Xy
9yn 0 Q 0 Q 9~y

The continuity of J then allows to show that the extremal problem is well-posed.
Proposition 2. The cost J reaches its minimum over Ggq.

Proof. The cost J being bounded by below, there exists a minimizing sequence (V5 )n>0 C Gad-
By definition of G,q, this sequence is bounded in W°°(0,T'). By the generalized Rellich theorem,
Wt20(0,T) is compactly embedded in L>(0,T). Consequently, there exists a curve v € L>(0,7)
such that, up to a subsequence, v, — 7 in L>°(0,T"). From the definition of G.q, all the curves =,
are M-Lipschitzian, with M independent of n. So, taking the pointwise limit in the expressions
"Yn(t) - 'Yn(s)| < M‘t - 8‘7 Vt78 S [OvT]>
50§’7n(t) < 1—60, Vt € [O,T],
we notice that v € Goq. Finally, using Proposition (1, we obtain J(v,) — J(v) = infg,, J which
means that v is a minimum of J over G,q. ]
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3.2 First directional derivative of the cost

We now give the expression of the directional derivative of the cost J.

Definition 7. Let 7,57 € W1>(0,T), with dg < v < 1 — §p. The perturbation 7 is said
admissible if and only if for any 7 > 0 small enough, the perturbed curve -, = v 4 17y verifies
9o <y <1 —dp.

Lemma 5. Let x € C%(R) and v,57 € Wh*(0,T), with o < v < 1 —6y. For any n > 0, we
define the perturbed curve v, = v +n7y. Taking n — 0, we then have

Xom = Xy *WX/W in L®(Qr).
Proof. 1t is a direct consequence of the Taylor’s inequality applied to x. Indeed, this inequality
gives
— ! 772 " =12
X = X9 + 10 2o (@) = 5 IX e @) 171200 (0,7 -

O]

Proposition 3. Let x € C%(R) and v,57 € WH>(0,T), with 6o <y < 1—3dg. For anyn > 0, we
define the perturbed curve vy, =y +ny. If ¥ is an admissible perturbation, then the directional
derivative of J at vy in the direction 7, denoted by dJ(v;7), reads

_ T
dJ(v;7) =}7g%w :/0 W/QsOQX'w (49)

where ¢ is the solution of associated to the minimum (o, p1) of J5-

Proof. For > 0 small enough, we denote (¢{, ¢]) the minimum of ‘7‘;7’ and ¢" the correspond-
ing solution of . Likewise, we denote (¢, ¢1) the minimum of Jy, and ¢ the corresponding
solution of . Using the optimality conditions of ‘77*71 and J7, we can write

T =10 = [ @, - [ e

= <<80117790>H—1,H3 _/Q‘ngl> - <<801,y0>H—1,H3 —/Q@oy1>
= / 0 oxy — / 0P"X, = — / / O o(Xyy — X7)-
q~ vy Qr

Arguying as in the proof of Proposition (1} we can show that ¢”7 — ¢ weakly in L?(0,T; L?(£2)).
As a result, we have

J () —J(v) :// ST _// S (Xvn—xuw,)
Ui Qr K Qr n K

T
—>// ¢27x§:/ 7/ ©0*X.,.
Qr 0 Q

Indeed, we can take the weak limit in the first term because ¢yx/, € L2(0,T; L*(Q2)). Using
Lemma [5| and the boundedness of (¢"),~0 in L?(0,T; L%(£2)), the second term converges to 0
because

Xy — X _
[ o (2 )| < 1z el
T

‘X'yn - X~ +7X/
Y

Lo@Qr)
0

Remark 5. We emphasize that the directional derivative does not depend on the solution of
an adjoint problem. This is due to the fact that we minimize with respect to the curve ~y over
controls of minimal LQ(qw)—norm. We refer to the proof of [18, Theorem 2.3] for more details.
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3.3 Regularization and Gradient algorithm

At the practical level, in order to solve the optimal problem numerically, we need to handle
the Lipschitz constraint included in G.4. In this respect, we add a regularizing term to the cost
J in order to keep the derivative of v uniformly bounded. The optimization problem is now the
following one: for € > 0 fixed, solve
. € 2
min J(1) = J0) + 517 a0 (50)

~EWH(0,T)
do<y<1-do

The regularization parameter e, which can be compared to the Lipschitz constant M in the
definition of G,q, controls the speed of variation of the curves v € W1°(0, T').

We fix v € W°°(0,T) such that §o < v < 1 — . Using Proposition , for any admissible
perturbation 7 € W1°(0,T), a direct calculation provides the expression of the directional
derivative of J,

T
dJe(v;7) = dJ(v;7) + € /O Y7 = Gy 20 + €057 r200,1)5 (51)
with
50 = [ Pt (@t e, Vee (0.T) (52)
Q

In the expression of j,, the function ¢ is the solution of associated to the minimum (g, 1)
of J;. Consequently, a minimizing sequence (v, )nen for Je is defined as follows:

{ Yo given in H1(0,T), (53)

Ynt1 = Pisy1-50)(0n — pJ5,,),  for n >0,
where P, 1-5,) is the pointwise projection in the interval [00,1 — dp], p > 0 a descent step and
jS, € H'(0,T) is the solution of the variational formulation

G5 M rzom) + €05 A 20m) = U V2o + €0V ) 120y, V7 € HY(0,T),  (54)

so that dJE('Yn;jnyn) = ||j'6yn||%2(o,T) + 6“]‘5/”“%2(07T) > 0.

4 Numerical experiments

Before to present some numerical experiments, let us briefly mention some aspects of the reso-
lution of the underlying discretized problem.

e The discretization of the curve v is performed as follows. For any fixed integer N' > 0, we
denote §t = T'/N and define the uniform subdivision {¢;};—o.... - of [0, T] such that ¢; = i6t. We
then approximate the curve « in the space of dimension N/ + 1

PO = {~ e C(0,1)); Y, 1, affine, Vi e {1,... N1

For any v € P, v = SN ALY with (7)o<icn € QVH! where (LI)g<icnr is the usual
Lagrange basis. Consequently, v is defined by the A + 1 points (7%,¢;) € Q x [0,7]. The
knowledge of the initial curve vy € P such that 6y < 79 < 1 — &y determines such points and
then a triangular mesh of Q7. At each iteration n > 0, these points are updated along the z-axis

according to the pointwise time descent direction j5, € H 1(0,T) (see (54))) as follows:
x?“ = P[5071—50} (.’L‘? — pj,eyn (t?)), t?’+1 = t? Vi = 0, s ,./\/ + 1.
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We emphasize in particular that a remeshing of Q)7 is performed at each iteration n according

to the set of points (2}, t')i=0,... A+1-

177

e Each iteration of the algorithm requires the numerical approximation of the control of minimal
L*(g,,) for the initial data (yo,y1). We use the space-time method described in [3, Sections 3-4]
which is very well-adapted to the description of v embedded in a space-time mesh of Q7. The
minimization of the conjugate functional J* (see (#8)) with respect to (¢o, 1) € V is replaced
by the search of the unique saddle-point of the Lagrangian £ : Z x L?(0,T; H}(Q2)) — R defined
by

1 T
L(p,y) = §||80H%2(q%) —/O (s L) a1 (@4t + (e, 0),50) g1 (@), 13 () — (0(5.0), 1) 12(0)

with Z = C1([0, T]; H~1(2)) N C([0, T); L*()). The corresponding mixed formulation is solved
with a conformal space-time finite element method while a direct method is used to invert the
discrete matrix. The interesting feature of the method for which the adaptation of the mesh is
very simple to handle with, is that only a small part of the matrix - corresponding to the term
(= (gy,) = 18 modified from two consecutive iterations n and n + 1.

4.1 Numerical illustrations

We discuss several experiments performed with FreeFEM (see [9]) for various initial data and
control domains. We notably use an UMFPACK type solver.

We fix 6y = 0.15 and § = dy/4. Moreover, according to (45), we define the function y € C*(R)
in [0p — 9, 60| as the unique polynomial of degree 5 such that x(d9 —0) = 1, x(do) = x' (0o — 0) =
X'(60) = X" (00 — §) = x"(d0) = 0 and vanishing on R\ [dy — J, dg].

Concerning the stopping criterion for the descent algorithm, we observed that the usual one
based on the relative quantity |J — J?~1|/J? is inefficient because too noisy. This is due to
the uncertainty on the numerical computation of the adjoint state ™ and the perturbation j5 .
Consequently, in order to better capture the variations of the sequence (J!'),en, we replace J*

and J?~! by the right and left p-point average respectively leading to the stopping criterion

1 wntp—1 71 15wl i
D Zi:n Je T p Zi:n—p Je
Jo

€

AJl = <mn, forpe N* fixed. (55)

In the sequel, we fix p = 10 and n = 1073,

Furthermore, in order to measure the gain obtained by using non-cylindrical control domains
rather than cylindrical ones, we define a performance index associated to each optimal curves
Yopt; identifying any constant curve v = o with its value z¢ € [dp,1 — do], we compute the
minimal cost ming, Je(zo) for cylindrical domains. We then define the performance index of
Yopt by

_ _ Jelyop)
M(yopt) = 100 (1 s (mo)) . (56)

In the sequel, in practice, the minimum of J. with respect to zq is searched among 13 distincts
values equi-distributed between 0.2 and 0.8.

e We first consider the regular initial datum (yp,y1) given by

yo(x) = sin(27x), wyi(z) =0, for z € (0,1). (EX1)
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and T = 2, ¢ = 1072, p = 10~%. We initialize the descent algorithm with the following three
initial curves:

() = 5 Y(t) = L + L cos (W;) , for t € (0,7). (57)

2
z )= =
57 fYO() 57 2 10

The corresponding initial and optimal domains are depicted in Figure [] together with typical
space-time meshes. The numbers of iterations until convergence, the values of the functional J.
evaluated at the optimal curve v, and the performance indices of v, are listed in Table

Initial curve ‘ o 8 o
Number of iterations 33 33 84
Je(Yopt) 4709  47.09  47.93
I (Yopt ) —0.32% —-0.32% —-2.11%

Table 2: (EX1) - Number of iterations, optimal value of the functional J. and performance
index, for the initial curves (78)2-6{1’273} given by .

In Figure [d we observe that the optimal domain computed by the algorithm depends on
the initial domain chosen. This indicates that our functional J. does have several local minima.
Moreover, one can show that, among the cylindrical domains, there are two optimal values,
xo = 1/4 and 2y = 3/4, leading to J.(xg) =~ 46.94. These values correspond to the extrema of
the function sin(27z) in [0, 1]. The simulations associated with the initial curves 7} and 43 are
in agreement with this result. On the other hand, the worst cylindrical domain corresponds to
zo = 1/2 (see Figure [6} Left).

Eventually, the adjoint states ¢ (from which we obtain the control v = @\q;z) computed for
the optimal domains in Figure @} Bottom, are displayed in Figure [5

e We now consider the initial datum (yp,y1) given by
yo(z) = (10x — 4)2(1033 - 6)21[0‘4,0‘6} (z), wi(z) =y,(x), for z € (0,1). (EX2)

This initial condition, plotted in Figure [7], generates a travelling wave, as can be seen in Fig-
ure 8 3.

For T = 2, ¢ = 1072 and p = 107%, we initialize the descent algorithm with the curve
70 = 1/2. The convergence is reached after 68 iterations and the optimal cost is Je(yopt) =~
48.70. Moreover, the minimal cost for cylindrical domains is ming, Je(xo) ~ 179.22 leading to
a performance index II(yopt) ~ 72.83%. The non-cylindrical setup is in that case much more
efficient that the cylindrical one. It is due to the fact that the domains we consider can follow
very closely the propagation of the travelling wave. This can be noticed in Figure [§, where we
display the optimal control domain, the corresponding adjoint state ¢, the uncontrolled and
controlled solutions over the optimal domain.

The evolution of the cost J and the derivative dJ!* with respect to n are displayed in
Figure [0 Figure [6}Right depicts the values of the functional J. for the constant curves v = x
used to determine the best cylindrical domain and highlights the low variation of the cost with
respect to the position of such domains.

e We now consider the initial datum (yp,y1) given by
yo(z) = (102 — 4)*(10z — 6)*Ljg.40.6(x), yi(z) =0, for z € (0,1). (EX3)

This initial condition generates two travelling waves going in opposite directions, as can be seen in
Figure 3. For T =2, ¢ = 1072 and p = 10~%, we initialize the algorithm with the initial curve
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Figure 5: (EX1) - Isovalues of the adjoint states ¢ computed for the optimal domains obtained

for the initial curves (78)1-6{1’2’3} given by (from left to right).
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Figure 6: Values of J, for constant curves v = xg (o ), for the initial data (EX1)) (left) and (EX2]
(right). The dashed line (- -) represents the value of Je(yopt), for the initial curves o = 2/5
(left) and v = 1/2 (right).
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Figure 7: Initial datum (yp,y1) defined in (EX2]).
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Figure 8: (EX2) - From left to right, optimal control domain, isovalues of the corresponding
adjoint state ¢, isovalues of the uncontrolled and controlled wave over the optimal domain, for
the initial curve vo = 1/2.
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Figure 9: (EX2) - Evolution of the cost J* (left) and the derivative dJ* (right) for the initial
curve v = 1/2.
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Figure 10: (EX3) - From left to right, optimal control domain, isovalues of the corresponding
adjoint state ¢, isovalues of the uncontrolled and controlled wave over the optimal domain, for
T = 2, for the initial curve vy = 1/2.
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ensure controllability. This highlights the necessity to use non-cylindrical domains. Compared
to the simulation for T' = 2, the optimal cost increases by a factor around 2.3. Figure|l1|displays
the optimal control domain, the corresponding adjoint state ¢, the uncontrolled and controlled
wave over the optimal domain. We remark that the projection of the optimal domain on the
x-axis covers the whole domain €2, in contrast with the domain associated with T" = 2.

7N /N
h\V% |

.5 5
T 17 x T

Figure 11: (EX3) - From left to right, optimal control domain, isovalues of the corresponding
adjoint state ¢, isovalues of the uncontrolled and controlled wave over the optimal domain, for
T =1, for the initial curve vo = 1/2.

e Eventually, in order to highlight the influence of the regularization parameter € on the optimal
domain, we now consider the initial datum (yg,y1) given by

3z if0<z<1/3,
yo(x) =¢ 3(1—2x) if1/3<x<2/3, yi(x)=0, for z € (0,1). (EX4)
—3(1—2) if2/3<x<1,

For T = 2 and p = 10~°, we initialize the descent algorithm with the curve v = 1/2 and consider
€ = 1072 and € = 0. The numbers of iterations until convergence, the values of the functional
Je evaluated at the optimal curve 7, and the performance indices of ,p¢ are listed in Table @
For the initial datum , the minimal cost for cylindrical domains is ming, Je(zo) ~ 47.71.

€ o0 102

Number of iterations 247 389
Je(Yopt) 60.35 43.23
H(Yopt) —26.51% 9.38%

Table 3: (EX4) - Number of iterations, optimal value of the functional J. and performance
index, for € € {0,102}, for the initial curve vy = 1/2.

In Figure we clearly see the regularizing effect of ¢ and the need of regularization in this
case, as the optimal domain obtained when € = 0 is very oscillating.

4.2 Iterative approximation of the observability constant

In this last part, we formally describe and use an algorithm allowing to approximate the observ-
ability constant appearing in , associated to any domain ¢ C Q7. The algorithm is based on
the following characterization:

RAyo,
Cobs(‘]) = sup M

(58)
voev  llyoll¥
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Figure 12: (EX4) - Optimal control domain and isovalues of the adjoint state for e = 1072
(left), € = 0 (right), for the initial curve yo = 1/2.

where A, and R are respectively the control operator associated to the domain ¢ and the duality
operator between the space W and V:

At Y oW R W Y . (59)
Yo — @ (o, 1) = ((=02) " ¥1,—%0)

In the definition of Ay, Py € W is the minimum of the functional J* (cf. (f])) associated to
yo € V. The characterization can be obtained by following the steps of [20, Section 2]
and [6, Remark 2.98]. The main consequence of this characterization is that Cops(g) can be
viewed as the largest eigenvalue of the operator RA, in V. Consequently, we can formally adapt
the power iteration method to our infinite-dimensional setting. The algorithm reads as follows.
Let y € V be given such that ||y|[v = 1. For n > 0, using the space-time finite element method
described in [3, Section 3-4], we compute @{ = A,y§ then set z§ = R@{ and ygtt = 22/||z8 ||v-
We finally have Cops(q) = limy, o0 ||Z(||v while y§ converges in V to the most expensive initial
datum to control. For the control domain of Figure this algorithm (after an appropriate space-
time), initialized with yJ = K(2(1 — z),0) - K such that |lyJ||v = 1-, produces the following
sequence {||z§|v}n>0 = {2.6895,3.829,3.981,3.994,3.997, - - - } converging toward the value 4,
in agreement with the result of Section based on a graph argument. The most expensive
initial datum to control is displayed in Figure Remark that the initial datum solution of

is not unique.

5 Conclusion and perspectives

Making use of the d’Alembert formulae for the solutions of the one dimensional wave equation,
we have shown a uniform observability inequality with respect to the class of non cylindrical
domains satisfying the geometric option condition. The proof based on arguments from graph
theory allows notably to relate the value of the observability constant to the spectrum of the
Laplacian matrix, defined in term of the graph of any domain ¢ C Q7. The uniform observability
property then allows to consider and analyze the problem of the control’s optimal support
associated to fixed initial conditions. For simplicity, the optimization is made over connected
domains defined by regular curves. As expected, the optimal domains (approximated within a
space-time finite element method) are closely related to the travelling waves generated by the
initial conditions.
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Figure 13: Most expensive initial data yo (left) and y; (right) to be controlled.

This work may be extended in several directions. First, the characterization of the observabil-

ity constant in term of a computable eigenvalue problem in Section [f.2] may allow to consider the

optimization of such constant with respect to the domain of observation, i.e. infquZd Cobs(q)-

Moreover, from an approximation point of view, we may also consider more general domains

(than connected ones) and use, for instance, a level set method to describe the geometry (as

done in [I8]). Eventually, this work may be adapted to the case of controls supported on single

curves of @, using the uniform observability property given in [2].

The extension of this work to the N-dimensional case studied in [I3} 22] is also a challenge.
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