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a b s t r a c t

In this work we present a novel set of possible auto-
oligomerisation states of yeast protein Fzo1 in the context of
membrane docking. The dataset reports atomistic models and
trajectories derived from a molecular dynamics study of the yeast
mitofusin Fzo1, residues 101e855. The initial modelling was
followed by coarse-grained molecular dynamics simulation to
evaluate the stability and the dynamics of each structural model in
a solvated membrane environment. Simulations were run for 1 ms
and collected with GROMACS v5.0.4 using the martini v2.1 force
field. For each structural model, the dataset comprises the pro-
duction phase under semi-isotropic condition at 1 bar, 310 K and
150 mn NaCl. The integration step is 20 fs and coordinates have
been saved every 1 ns. Each trajectory is associated with a ready-
available visualization state for the VMD software. These structural
detailed informations are a ready-available platform to plan inte-
grative studies on the mitofusin Fzo1 and will aid the community
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Specifications Table

Subject Structural Biology
Specific subject area Molecular modelling and
Type of data Structural Data: atomic c

simulations in XTC form
Visualization file: vmd v

How data were
acquired

PDB coordinates of the in
published Fzo1 model [2
software packages.
Trajectories were obtain
the martini v2.1 force fie
VMD states were created

Data format Raw
Parameters for data
collection

Molecular dynamics sim
NaCl concentration of 15

Description of data
collection

The trajectories reported
every 1 ns.
Visualization states were

Data source location Institution: Laboratoire d
City/Town/Region: 13 ru
Country: France

Data accessibility Repository name: Mende
Data identification numb
Direct URL to data:https:
b93c-853cf2f4e804

Related research article Astrid Brandner, Dario D
Physics-based oligomeric
membrane docking.
Mitochondrion
DOI:Manuscript number

Value of the Data
� Our data provide atomistic detailed Fzo1 oligo

experimentally. The oligomers represent cis an
These models allow for instance to derive expe

� Sharing our data will widely contribute to stim
Experimentalists such as crystallographers and
computational biologists and biophysicists wil
coordinates.

� Our data is represented by atomistic coordinat
mitofusins. Having structural data will allow re
elucidation of the mitochondrial tethering proc
conjunction with other actors involved in mem

� These data represent the first step towards a rig
environment and in the context of membrane
available.
to further elucidate the mitochondrial tethering process during
membrane fusion. This dataset is based on the publication “Phys-
ics-based oligomeric models of the yeast mitofusin Fzo1 at the
molecular scale in the context of membrane docking.” (Brandner
and De Vecchis et al., 2019)”.

© 2019 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
molecular dynamics simulation
oordinates in PDB format, trajectory files from molecular dynamics
at
isualization state
itial structural models were taken as starting point from a previously
]. Models were assembled using the MODELLER [3] and UCSF Chimera [4]

ed from molecular dynamics simulations using GROMACS v5.0.4 [5] and
ld [6,7]. The production runs were 1 ms long.
using VMD v.1.9.3 [16]

ulations of 1 ms length were run semi-isotropically at 1 bar, 310 K, with a
0 mM. The integration step was 20 fs.
here were obtained from a 1ms-long production run. Frames were saved
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1. Data

Trajectories are classified in two categories: dimers and tetramers. Three different cis-dimers are
presented: wide and narrow head-to-head complexes, where two Fzo1 molecules interact via their
GTPase domain; and a back-to-back complex for the closed model where two Fzo1 molecules interact
through their heptad repeats (HR) domains. For the tetramers, we also present three possible
oligomerisation structures: in the first, the Fzo1 monomers are in open conformations and interacting
through their GTPase domains; in the second, the cis interaction occurs via the HRs oriented in a
parallel fashion and the trans interaction occurs via the GTPase domain and third, a Fzo1 trans-
tetramer in closed conformation where the cis interaction occurs towards the GTPase domain and
the trans interaction via the respective HR domains oriented in an antiparallel fashion. All the files are
summarised in Table 1.

2. Experimental design, materials, and methods

The structural models presented here build upon an experimentally validated model of the
monomeric unit, namely our previously published model of Fzo1 in a closed conformation [2]. It is first
used to generate a monomeric model of the open conformation. Those twomodels are the basis for the
construction of Fzo1 dimer models in cis and then tetramers via the dimerization in trans of Fzo1
cis-dimers.

First, we generate the Fzo1 GTPase dimer construct. Two chains of the Fzo1 model in closed
conformation [2] were placed by superimposing their GTPase domains onto that of BDLP in open
conformation [8]. Then, only the coordinates of the two fragments that comprise the Fzo1 GTPase
domain (residues 188e461) were retained to form the final GTPase domain dimer model. The loop
refinement tool implemented in MODELLER [3] was used to remove a clash in both chains involving an
unresolved loop in the template 2J68 [9] (residues 215e219). Models were ranked according to the
discrete optimized protein energy (DOPE) method [10], selecting the best-scoring loop out of 20
candidates.

2.1. Cis-dimer structural models

2.1.1. CisHeadNarrow_Model
Two Fzo1 chains in closed conformation [2] were oriented facing each other within a compatible

distance to accommodate two interacting GTPase domains. Subsequently, the coordinates of residues
188e440 enclosed between hinges 2a and 2b (i.e., comprising the GTPase domain) were removed from
both chains and replaced with the GTPase dimer construct described above. The latter was manually
positioned between the two deleted chains, resulting in the head-to-head interaction dimer.
The backbone interruptions were connected using the loop refinement tool implemented in MOD-
ELLER [3] using positions 185e188 and 436e445 as anchors. Solutions were ranked according to the
DOPE method [10], selecting the best-scoring loop out of 20 candidates.

2.1.2. CisBack_Model
Two chains of the Fzo1 model in closed conformation [2] were manually oriented with respect to

each other to generate the back-to-back interaction. In the resulting model system, the HR domains
face each other in a parallel fashion.

2.1.3. CisHeadWide_Model
The coordinates from BDLP in open conformation [8] derived from the electron density map of

native BDLP lipid tubes (accession code: EMD-1589) were used as a template to model Fzo1 in open
conformation. Starting from our previous Fzo1-BDLP target-template alignment [2], we introduced
homologous chain breaks on the Fzo1 model [2], resulting in five rigid blocks. Each fragment was
superposed to its corresponding fragment in 2W6D to reconstitute the orientation found in BDLP.
The MatchMaker tool from the UCSF Chimera software [4] was used during this procedure. The
loop refinement tool implemented in MODELLER [3] enabled us to complete the model in the



Table 1
List of shared files with descriptions ordered by olgimerisation type and origin of coordinates.

System
type

Origin of
coordinates

Filename File description

Cis-
dimers

Models CisBack_Model.pdb PDB coordinates for the initial atomistic cis back-to-
back dimer model of Fzo1.

CisHeadNarrow_Model.pdb PDB coordinates for the initial atomistic cis head-to-
head narrow dimer model of Fzo1

CisHeadWide_Model.pdb PDB coordinates for the initial atomistic cis head-to-
head wide dimer model of Fzo1.

Coarse-grained
molecular
dynamics

CisBack.pdb, PDB coordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis back-to-back dimer of Fzo1.

CisBack.xtc,
state_CisBack.vmd

CisHeadNarrow.pdb, PDB coordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis head-to-head narrow dimer of Fzo1.

CisHeadNarrow.xtc,
state_CisHeadNarrow.vmd

CisHeadWide.pdb, PDB oordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis head-to-head wide dimer of Fzo1

CisHeadWide.xtc,
state_CisHeadWide.vmd

Tetramers Models TetramerBackAntiparallel_Model.pdb PDB coordinates for the initial atomistic model of the
cis head-to-head, trans back-to-back antiparallel
interaction of Fzo1.

TetramerBackParallel_Model.pdb PDB coordinates for the initial atomistic model of the
cis back-to-back parallel, trans head-to-head
interaction of Fzo1.

TetramerHeadWide_Model.pdb PDB coordinates for the initial atomistic model of the
cis head-to-headwide, trans head-to-head interaction
of Fzo1

Coarse-grained
molecular
dynamics

TetramerBackAntiparallel.pdb
TetramerBackAntiparallel.xtc
state_TetramerBackAntiparallel.vmd

PDB coordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis head-to-head, trans back-to-back antiparallel
interaction of Fzo1

TetramerBackParallel.pdb
TetramerBackParallel.xtc
state_TetramerBackParallel.vmd

PDB coordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis back-to-back parallel, trans head-to-head
interaction of Fzo1.

TetramerHeadWide.pdb
TetramerHeadWide.xtc
state_TetramerHeadWide.vmd

PDB coordinates for the initial structure from the
coarse-grained molecular dynamics simulation, full
production run trajectory and visualization file of the
cis back-to-back parallel, trans head-to-head
interaction of Fzo1.of the cis head-to-head wide, trans
head-to-head interaction of Fzo1.
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resulting backbone interruptions and to remove a clash in both chains between the side chain of
the Lys271 and the backbone of the Ala401 residues, using positions 268 and 273 as anchors.
Solutions were ranked according to the DOPE method [10], selecting the best-scoring loop out of 10
models.
2.2. Trans-tetramer structural models

2.2.1. TetramerHeadWide_Model
Two Fzo1 CisHeadWide models obtained as described above were manually oriented to mimic the

interactions in trans towards their respective GTPase domains. In the resulting model system, the two
transmembrane segments are located at opposite ends.
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2.2.2. TetramerBackAntiparallel_Model
The transmembrane segment of two Fzo1 CisHeadNarrow described above were manually oriented

at opposite ends to optimize the interaction between their respective HR domains oriented in an
antiparallel fashion. Note that this system, although antiparallel, could also be considered as back-to-
back.

2.2.3. TetramerBackParallel_Model
Two Fzo1 CisBackmodels obtained as described above were initially positioned with the respective

transmembrane segments at opposite ends to mimic the supposed tethering process. Subsequently,
the coordinates of residues 101e491 and 816e855 enclosed between hinges 1a and 1b were removed
from the two resulting juxtaposing chains. Then the GTPase dimer construct was built. We superposed
the GTPase domain alpha carbons of two Fzo1 chains in closed conformation [2] with the human
mitofusin dimer [11]. This choice was motivated and directly inspired by the work from Gao and
collaborators, who proposed a possible Mfn1 trans cross oligomer [11]. From the resulting Fzo1 dimer,
only the GTPase domain and the 3-helix bundle were selected and used to replace the aforementioned
deleted portions, thus generating the trans head-to-head interaction. A clash in one chain (residues
215e218) was removed from the resulting Fzo1 dimer using the loop refinement tool implemented in
MODELLER [3]. Models were ranked according to the DOPE method [10], selecting the best-scoring
loop out of 10 candidates. The same tool was used to reconstitute the backbone interruptions. Posi-
tions 491e495 and 812e816 were selected as anchors. The best-scoring loop was selected out of 10
candidates.

2.3. Molecular dynamics simulation protocol

Topologies to run coarse-grained (CG) simulations were generated with themartinize tool choosing
the martini v.2.1 force field with an elastic network [6,7] The initial all atom coordinates were obtained
from the published models in the related research paper [1]. The force bond constant was set to 500
kJ mol�1 nm�2 with lower and upper elastic bond cutoffs of 0.5 and 0.9 nm, respectively. Firstly, 5000
steps of steepest descent with position restraints for the protein were run followed by 5000 steps
without restraints. The obtained coordinates were inserted in a POPC:POPE (1:1) membrane via the
insane tool [12] where the membrane position was manually set up to match the reported trans-
membrane regions corresponding to residues 706e726 and 737e757 according to UniProt numbering.
All systems were fully solvated to mimic an environment of 150mM of NaCl solution. The final systems
followed the same simulation protocol using the GROMACS 5.0.4 software [5] with periodic boundary
conditions. A further 5000 steps of steepest descent minimisation with position restraints of 1000 kJ
mol�1nm�2 in protein and lipids were followed by 5000 steps without position restraints. Equilibration
was performed in three stages, with timesteps of 20 fs. Firstly, 25000 steps of equilibrationwere run at
310 K using the V-rescale thermostat [13] and semi-isotropic pressure coupling via Berendsen barostat
[14] with position restraints of 1000 kJ mol�1 nm�2 for protein and lipids, followed by the same setup
without position restraints. Finally, the last equilibration step was run for 50000 steps with the V-
rescale thermostat (coupling constant tau_t ¼ 1 ps) and semi-isotropic coupling with Parinello-
Rahman barostat [15] (coupling constant tau_p ¼ 12 ps). Production runs were 1 ms long for all six
systems, following the same parameters as those used in the last equilibration setup. The trajectories
shared in this work correspond to the coordinates of all non-water atoms from the production run for
each of the systems. They were centred on the protein to facilitate the visualization. Protein residues
have been sequentially numbered, i.e each monomer consists of protein residues 1e755, 756e1510,
1511e2265 and 2266e3020. The martini forcefield naming scheme was retained, where the backbone
is represented by one bead only (BB).

2.3.1. Visualization information
To facilitate the visualization of each trajectory, we added a vmd state file to be loaded in VMD [16]

alongside the trajectory without any need of extra processing. The colouring was made to highlight the
functional domains of the protein following the same scheme as in our original paper [1]. The domains
highlighted by colour are: violet, HRN; green, HR1; orange, HR2; red, GTPase and yellow:
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transmembrane. Phosphorus atoms (blue) from lipid bilayer headgroups are depicted in space-filling
representation.
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