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Optimal control of Nuclear Magnetic Resonance periodic systems

Nadia Jbili1 and Julien Salomon2

Abstract— In this paper, we consider an optimal control
problem for quantum systems with a periodic time evolution.
In this non-classical problem both the initial and final state are
unknown (and equal). We first prove the existence of periodic
solution of this problem for a fixed period and study the
associated optimal periodic control problem.

I. INTRODUCTION

We consider in this paper a question arising from NMR
and MRI [1], [2], [3], [4], namely the maximization of the
signal-to-noise ratio per unit time (SNR) of spin as 1/2
particles. In the experiments, the SNR is practically enhanced
in spin systems by using a multitude of identical cycles. In
this periodic regime, the SNR increases as the square root
of the number of scans. Each period of control is composed
of a detection time and of a control period where the spin
is subjected to a radio-frequency magnetic pulse, the latter
being used to guarantee the periodic character of the overall
process. A pioneering work in this field has been done by
R. Ernst and his co-workers [4] in the sixties by establishing
an optimal control law made of a δ-pulse characterized by
a specific rotation angle, called the Ernst angle solution.
This pulse sequence is nowadays currently used in magnetic
resonance spectroscopy and imaging. Related control proce-
dures, known as SSFP (Steady State Free Precession) have
been also intensively investigated in the literature for medical
applications (See, among others, Ref. [5], [6], [7], [8], [9],
[10], [11], [12]).

From a mathematical point of view, some works have
tackled the exact local controllability of the linear Schrdinger
equation, see for example [13], [14] in the case of non-
periodic processes. In the context of the periodic systems,
there are also several works applied on different domains
[15], [16], [17], [18], [19].

In a recent paper [20], an optimal control algorithm for
periodic spin dynamics has been proposed to deal with the
maximization of SNR in the framework of the control of
an ensemble of inhomogeneous ensemble of spins. This
complex optimization problem involves the design of a
control field, while finding the initial state of the dynamics
associated with periodic trajectories. This work was rather
related to numerical aspects and above all to applications to
medical imaging.
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The goal of the present paper is to provide a mathematical
framework and analyse the problem of the maximization
of SNR in the case of periodic spin systems. Though we
consider an only spin, all what follows also holds for an
inhomogeneous ensemble of spins. More precisely, we prove
in Section II the existence and uniqueness of a solution of a
periodic version of the Bloch equation for a fixed control. In
Section III, we prove the existence of an optimal control for
the maximization of SNR and present the associated optimal-
ity system. We conclude with some numerical experiments
in section IV.

Throughout this paper, we use the following notations:
R3 denotes the canonical 3-dimensional linear space on R,
〈·, ·〉 the usual Euclidean scalar product on R3 and ‖ · ‖2 the
corresponding norm, L2

Tc
(0, T ;R2) indicates the subspace

of the Lebesgue space L2(0, T ;R2) of functions cancelling
on [Tc, T ], L∞(0, T ;R3) denotes the usual Lebesgue’s
functional space, and C(0, T ;R3) the space of continuous
functions of [0, T ] taking values in R3.

II. THE PERIODIC BLOCH EQUATION

The optimization of the SNR per time unit that we consider
corresponds to a simple scenario, described in Fig. 1 (see
Ref. [21], [22] for details). In this picture , the point M
reached at the end of the control process is the measurement
point for the spin of offset ω. The corresponding spin has
then a free evolution from this point to the steady state S
where the pulse sequence starts. The times Td and Tc denote
the detection time (fixed by the experimental setup) and the
control time, respectively.

Fig. 1. Schematic representation of the cyclic process used in the
maximization of the SNR.

We consider a spin 1/2 particle [3]. In a rotating frame,
the motion for the spin follows the Bloch equation: ẋ

ẏ
ż

 =

 −2πx/T2

−2πy/T2

2π(1− z)/T1

+

 −ωy + uy(t)z
ωx− ux(t)z

ux(t)y − uy(t)x

 ,



where the Bloch vector X := (x, y, z)ᵀ corresponds to the
state of the spin, T1 and T2 are the two relaxation parameters,
ω the offset term and ux(t), uy(t) the two control fields.
Defining u = (ux, uy) and normalizing the time by the
detection time Td (see below for the definition) and setting
γ = 2πTd/T1 and Γ = 2πTd/T2, we arrive at:

Ẋ = A(u)X + D (1)

where D := (0, 0, γ)ᵀ and A(u) is a 3× 3- matrix:

A(u) :=

 −Γ −ω uy(t)
ω −Γ −ux(t)

−uy(t) ux(t) −γ

 ,

with u(t) = (ux(t), uy(t)).
In our periodic problem, the initial state X0 = X(0) is an

unknown of the problem, that must satisfy

X(T ) = X0. (2)

A. The Cauchy problem associated with the non-periodic
Bloch equation

We first consider the Cauchy problem associated with
Eq. (1). Given u ∈ L2

Tc
(0, T ;R2) and an initial state X0 ∈

R3, this one reads:
Find X ∈ C(0, T ;R3) such that{

Ẋ(t) = A(u(t))X(t) + D, t ∈ [0, T ]

X(0) = X0

(3)

The next theorem gives existence and uniqueness of a
solution of this problem.

Theorem 1: There exists a unique weak solution of (3),
i.e. a function X ∈ C(0, T ;R3) satisfying

X(t) = X0 +

∫ t

0

A(u(s))X(s) + Dds, (4)

for all t ∈ [0, T ].
Proof: Define the matrices

B :=

 −Γ −ω 0
ω −Γ 0
0 0 −γ

 , (5)

and

C(u(t)) :=

 0 0 uy(t)
0 0 −ux(t)

−uy(t) ux(t) 0

 . (6)

Note C(u(t)) that depends linearly on u(t), so that there
exists κ > 0 such that for all Z0 ∈ R3

‖C(u(t))Z0‖2 ≤ κ‖u(t)‖2‖Z0‖2. (7)

Consider the mapping:

Φ :

{
C(0, T ;R3)→ C(0, T ;R3)

X 7→ Φ(X),

where Φ(X) is defined for t ∈ [0, T ] by the Duhamel’s
formula:

Φ(X)(t) = exp(tB)X0

+

∫ t

0

exp((t− s)B) (C(u(s))X(s) + D) ds.

(8)

The operator Φ is well-defined: indeed since X ∈
C(0, T ;R3) and u ∈ L2

Tc
(0, T ;R2), s 7→ A(u(s))X(s) + D

is Lebesgue integrable, and t 7→ Φ(X)(t) ∈ C(0, T ;R3)
according to the fundamental theorem of calculus ( Φ(X) is
actually absolutely continuous). Consider now the contrac-
tion property of Φ. Let X1 and X2 ∈ C(0, T ;R3). As we
know that exp((t− s)B) is a bounded function, we note by
µ its upper bound such that

‖ exp((t− s)B)‖ ≤ µ. (9)

Using (8), (7) and (9), we obtain

‖Φ(X2)− Φ(X1)‖L∞(0,T ;R3)

≤
√
Tµκ‖u‖L2(0,T ;R2)‖X2 −X1‖L∞(0,T ;R3).

If ‖u‖L2(0,T ;R2) is small enough, the latter inequality implies
that Φ is a contraction. We deduce from the Banach fixed
point theorem that Φ has a unique fixed point, hence (3)
admits a unique solution X ∈ C(0, T ;R3).
If ‖u‖L2(0,T ;R2) is not small, we consider the partition
[0, T ] = ∪N−1

l=0 [Tl, Tl+1], with T0 = 0 and TN = T ,
such that ‖u‖L2(Tl,Tl+1;R2) is small enough. The existence
is obtained by applying the previous result on each interval
[Tl, Tl+1] for all l ∈ {0, · · · , N − 1}.

Finally, remark that if X is a fixed point of Φ, then the
right-hand sides of (4) and (8) are almost everywhere dif-
ferentiable and that there derivatives are almost everywhere
equal. A weak solution (3) consequently consists in a fixed
point of Φ. The result follows.

B. The periodic problem

We now consider a variant of the previous Cauchy prob-
lem, where the initial condition must also satisfy the period-
icity condition (2). Given u ∈ L2

Tc
(0, T ;R2), this problem

reads:
Find (X0, X) ∈ R3 × C(0, T ;R3) such that{

Ẋ(t) = A(u(t))X(t) + D, t ∈ [0, T ]

X(0) = X0 = X(T ).

To prove the existence and uniqueness of a (weak) solution
of this problem, we need the following result.

Lemma 1: let Z0 ∈ R3 and Z(t) ∈ C(0, T ;R3) be the
weak solution of (3) in the case X0 = Z0 and D = 0. For
t ∈ [0, T ]:

‖Z(t)‖2 ≤ e−min(Γ,γ)t‖Z0‖2. (10)
Proof: The result will be obtained by a Gronwall-type

estimate. Let t ∈ [0, T ]. As a weak solution of (3), the



function Z is almost everywhere differentiable and a direct
calculation gives

d‖Z(t)‖22
dt

= 2〈Z(t), A(u(t))Z(t)〉 ≤ −2 min(Γ, γ)‖Z(t)‖22,
(11)

where we have used the fact that the symmetric part of
A(u(t)) is diagonal, with negative coefficients. Defining
h(t) :=

d‖Z(t)‖22
dt +2 min(Γ, γ)‖Z(t)‖22 and multiplying both

sides by e2 min(Γ,γ)t, we obtain:

d(e2 min(Γ,γ)t‖Z(t)‖22)

dt
= e2 min(Γ,γ)t h(t),

which gives by integration over [0, t]

‖Z(t)‖22 = e−2 min(Γ,γ)t‖Z0‖22 +

∫ t

0

e2 min(Γ,γ)(s−t) h(s)ds.

Because of (11), h(t) ≤ 0 and the result follows.
We can now state an existence and uniqueness result in

the periodic case.
Theorem 2: There exists a unique couple (X0, X) ∈ R3×

C(0, T ;R3) satisfying{
X(t) = X0 +

∫ t
0
A(u(s))X(s) + Dds,

X(T ) = X0,
(12)

for all t ∈ [0, T ].
Proof: Introduce the mapping Ψ : R3 → R3 defined

by
Ψ(X0) := X(T ),

where X is the weak solution of (3) obtained in Theorem 1.
Given X1

0 ∈ R3 and X2
0 ∈ R3, define Z0 = X2

0 − X1
0

and Z(t) = X2(t) − X1(t), where X2 and X1 are the
weak solutions obtained by Theorem 1 with X0 = X2

0 and
X0 = X1

0 , respectively. Substracting the corresponding weak
representations (4), we see that Z satisfies the assumptions
of Lemma 1 so that (10) holds. As a consequence,

‖X2(T )−X1(T )‖2 ≤ e−min(Γ,γ)T ‖X2
0 −X1

0‖2,

which implies that Ψ is a contraction. Applying Banach
fixed-point theorem, it follows that there exists a unique
X0 ∈ R3 such that Ψ(X0) = X0. The corresponding weak
solution X of (3) satisfies (12).

Remark 1: Theorem 2 remains true if D ∈ L1(0, T ;R3).
We can actually bound X , as stated in the next lemma.
Lemma 2: Let (X0, X) ∈ R3×C(0, T ;R3) be the unique

solution of (12) and t ∈ [0, T ]. We have

‖X(t)‖2 ≤
1

min(Γ, γ)
‖D‖2. (13)

Proof: The first step of the proof is similar to the one
of Lemma 1. As a weak solution of (3), the function X is
almost everywhere differentiable and we have for t ∈ [0, T ],

d‖X(t)‖22
dt

=2〈X(t), A(u(t))X(t) +D〉

≤ − 2 min(Γ, γ)‖X(t)‖22 + 2‖X(t)‖2‖D‖2

≤− 2 min(Γ, γ)‖X(t)‖22 + ε‖X(t)‖2 +
1

ε
‖D‖22,

where ε is on the interval ]0, 2 min(Γ, γ)[. Multiplying both
sides by e(2 min(Γ,γ)−ε)t, we obtain:

d(e(2 min(Γ,γ)−ε)t‖X(t)‖22)

dt
≤ e(2 min(Γ,γ)−ε)t 1

ε
‖D‖22,

(14)
which gives by integration over [0, T ]

‖X(T )‖22 ≤ e(−2 min(Γ,γ)+ε)T ‖X0‖22

+

∫ T

0

e(2 min(Γ,γ)−ε)(s−T ) 1

ε
‖D‖22ds.

Since X(T ) = X0, we deduce

‖X0‖22 ≤
1

(2 min(Γ, γ)− ε) ε
‖D‖22

We then set ε = min(Γ, γ) to get

‖X0‖2 ≤
1

min(Γ, γ)
‖D‖2. (15)

Using again (14), we obtain by integration over [0, t]:

‖X(t)‖22 ≤ e−min(Γ,γ)t‖X0‖22

+
1

min(Γ, γ)2

(
1− e−min(Γ,γ)t

)
‖D‖22.

Eq. (13) then follows by estimating ‖X0‖2 using (15).
In the rest of this paper, we note by H1

per(0, T ;R3) a
subspace of C(0, T ;R3) defined as follows:

H1
per(0, T ;R3) := {X ∈ H1(0, T ;R3)\X(0) = X(T )}.

Corollary 1: For every u ∈ L2
Tc

(0, T ;R2) and X ∈
C(0, T ;R3) solution of (12), X is in H1

per(0, T ;R3).
Proof: Because of (8) and the fact that φ(X) = X , the

solution X is well-defined. Moreover, it is almost everywhere
differentiable and we have:

Ẋ(t) = B exp(tB)X0 + (C(u(t))X(t) + D) .

Since X ∈ C(0, T ;R3) and u ∈ L2
Tc

(0, T ;R2), X and Ẋ are
in L2(0, T ;R3).

III. OPTIMIZATION PROBLEM

In this section, we are interested here in presenting an
optimal control problem [23], [24], [25], [26] that amounts
to maximizing a functional. In this way, we define:

F (u) := 〈X(Tc)|O|X(Tc)〉 − α‖u‖2L2
Tc

(0,T ;R2), (16)

where X ∈ H1
per(0, T ;R3) is the solution of (12), α > 0,

0 < Tc < T and O is a self-adjoint matrix of spectral radius
λO. The optimal control problem we consider is:

Find u? solving the maximization problem:

max
u∈L2

Tc
(0,T ;R2)

F (u), (17)

In what follows, we prove the existence of a solution of
this problem and obtain optimality conditions.



A. Maximizing sequence

Consider a maximizing sequence (uk)k∈N associated
with (17) and (Xk

0 , X
k)k∈N the corresponding sequence of

solutions of (12). Because of (13), we have

〈Xk(Tc)|O|Xk(Tc)〉 ≤
λO

min(Γ, γ)2
‖D‖22,

so that if ‖uk‖L2(0,T ;R2) → +∞, then F (uk) → −∞. This
contradicts the definition of (uk)k∈N. As a consequence, we
can extract a subsequence, that we still denote by (uk)k∈N,
that weakly converges in L2(0, T ;R2) to some control u∞.
Considering again (13), we see that (Xk

0 )k∈N is necessarily
bounded, so that -up to a supplementary extraction- we can
also assume that (Xk

0 )k∈N converges to some state X∞0 .

B. Existence of an optimum

We now prove that the sequence (Xk)k∈N of weak solu-
tions of (12) defined in the previous section actually strongly
converges in C(0, T ;R3).

Theorem 3: We keep the previous notations. The sequence
(Xk)k∈N converges strongly in C(0, T ;R3) to X∞, where
X∞ is the solution of (12) with u = u∞.

Proof: Consider the mapping:

R3 × L2
Tc

(0, T ;R2)→ C(0, T ;R3)

ϕ : (X0, u) 7→ X,

where X is defined as the solution of (4) associated with
X0. We have

X∞ −Xk =ϕ(X∞0 , u∞)− ϕ(Xk
0 , u

k)

=ϕ(X∞0 , u∞)− ϕ(X∞0 , uk)

+ ϕ(X∞0 , uk)− ϕ(Xk
0 , u

k).

Let η > 0. We first consider the term Zk := ϕ(X∞0 , uk) −
ϕ(Xk

0 , u
k). Substracting the weak representations (4) cor-

responding to ϕ(X∞0 , uk) and ϕ(Xk
0 , u

k), we see that Zk

satisfies the assumptions of Lemma 1 so that (10) holds. As
a consequence,

‖ϕ(X∞0 , uk)− ϕ(Xk
0 , u

k)‖2 ≤ e−min(Γ,γ)T ‖X∞0 −Xk
0 ‖2,

meaning that there exists k1, such that for all k ≥ k1

‖ϕ(X∞0 , uk)− ϕ(Xk
0 , u

k)‖2 ≤ η
2 .

Let us now consider the term W k := ϕ(X∞0 , u∞) −
ϕ(X∞0 , uk). Following the reasoning in the proof of Theorem
1, we obtain the Duhamel formula for t ∈ [0, T ]:

W k(t) =

∫ t

0

exp ((t− s)B)
(
C(uk(s)− u∞(s))

)
X∞(s)ds

+

∫ t

0

exp ((t− s)B)C(uk(s))W k(s)ds, (18)

where B and C(·) have been defined in (5)
and (6). Define X̃k ∈ C(0, T ;R3) by X̃k(t) :=∫ t

0
exp (−sB)

(
C(uk(s)− u∞(s))

)
X∞(s)ds.

We aim at showing that (X̃k)k∈N converges strongly in
C(0, T ;R3) using the compact embedding of H1(0, T ;R)
in C(0, T ;R). According to the fundamental theorem of

calculus X̃k ∈ C(0, T ;R3), so that X̃k ∈ L2(0, T ;R3).
Moreover, this function is differentiable almost everywhere
and we have:

˙̃
Xk(t) = exp (−tB)

(
C(uk(t)− u∞(t))

)
X∞(t). (19)

As X∞ and t 7→ exp (−tB) are two bounded continuous
functions on [0, T ] and uk − u∞ ∈ L2

Tc
(0, T ;R2), ˙̃

Xk

belongs to L2(0, T ;R3). Thus, X̃k ∈ H1(0, T ;R3).
Let us now show that X̃k converges weakly to 0 in
H1(0, T ;R). Given U ∈ H1(0, T ;R3), we have:

〈U, X̃k〉H1(0,T ;R3) =

∫ T

0

〈U(t), X̃k(t)〉R3dt (20)

+

∫ T

0

〈U̇(t),
˙̃
Xk(t)〉R3dt.

The first member in the right-hand side could be written as
follows:∫ T

0

〈U(t), X̃k(t)〉R3dt =

∫ T

0

〈ϕ(s),
˙̃
Xk(s)〉R3ds

where ϕ(s) :=
∫ T
s
U(t)dt so that ϕ ∈ L∞(0, T ;R3) ⊂

L2(0, T ;R3). It follows then from (19) that both terms of
the right-hand side of (20) consist in sums of integrals of
products of functions in L2(0, T ;R) with components of
uk − u∞. Since uk − u∞ converges weakly to 0, the two
terms converge to 0. As a consequence, (X̃k)k∈N weakly
converges to 0 in H1(0, T ;R3). From Sobolev embedding
H1(0, T ;R)→ C(0, T ;R) applied to the components of X̃k,
we have

dk := sup
t∈[0,T ]

∥∥∥exp (−tB) X̃k(t)
∥∥∥

2
→ 0 (21)

On the other hand, we can estimate the second integral of
W k(t) in (18) by∥∥∥∥∫ t

0

exp ((t− s)B)C(uk(s))W k(s)ds

∥∥∥∥
2

≤ µ
∫ t

0

∥∥C(uk(s))W k(s)
∥∥

2
ds

≤
√
Tκµ‖uk‖L2

Tc
(0,T ;R2)

∫ t

0

∥∥W k(s)
∥∥

2
ds,

where κ and µ has been introduced in (7) and (9), respec-
tively. Summarizing these results, we get:

‖W k(t)‖2 ≤ dk +
√
Tκ‖uk‖L2

Tc
(0,T ;R2)

∫ t

0

‖W k(s)‖2ds.

Since W k(0) = 0, Gronwall’s inequality then gives ∀t ∈
[0, T ]

‖W k(t)‖2 ≤ dk exp(T
3
2κ‖uk‖L2

Tc
(0,T ;R2)).

It follows from (21) that there exists k2, such that for all
k ≥ k2, ‖ϕ(X∞0 , u∞) − ϕ(X∞0 , uk)‖2 ≤ η

2 . This leads to
obtain

‖X∞(t)−Xk(t)‖2 ≤ η.

Hence the result.



We can now prove the existence of solution of (17).
Theorem 4: There exists a solution u ∈ L2

Tc
(0, T ;R2) of

Problem (17).
Proof: Let still denote by (uk)k∈N and (Xk)k∈N the se-

quences introduced in Section III-A. Because of Theorem 3,
limk→∞Xk(Tc) = X∞(Tc). We have

F (u∞) =〈X∞(Tc)|O|X∞(Tc)〉 − α‖u∞‖2L2
Tc

(0,T ;R2),

≥ lim
k→∞

〈Xk(Tc)|O|Xk(Tc)〉

− α lim sup
k→∞

‖uk‖2L2
Tc

(0,T ;R2)

= lim sup
k→∞

F (uk),

where we have used the lower-semicontinuity of the L2-
norm. Since (uk)k∈N is a maximizing sequence, we have
proved that u∞ is a solution of (17). The result follows.

C. Optimality system
We finally characterize an optimum by means of an opti-

mality system. The corresponding Euler-Lagrange equations
are given in the next theorem.

Theorem 5: Let u be a solution of Problem (17), and X ∈
H1
per(0, T ;R3) the corresponding solution of (12). Then,

there exists Y ∈ L2(0, T ;R3) and continuous everywhere
except Tc such that:

Ẋ(t) = A(u(t))X(t) + D

Ẏ (t) = −Aᵀ(u(t))Y (t)

Y (T+
c ) = Y (T−c )− 2OX(Tc)

Y (t)ᵀ∂u(t)A(u(t))X(t) = 2αu(t).

(22)

Proof: We start by introducing K : H1
per(0, T ;R3) ×

L2
Tc

(0, T ;R2)→ L2(0, T ;R3) is defined by:

(X,u) 7→ A(u(.))X(.) +D − Ẋ(.),

so that K(X,u) = 0 is equivalent to (12). Let us
show that F and K are Fréchet-differentiable and the
linearization ∇K(v) is surjective [27] for every v =
(X,u) ∈ H1

per(0, T ;R3)×L2
Tc

(0, T ;R2). First, let recall that
H1(0, T ;R3) is continuously embedded into C(0, T ;R3) so
that there exists an embedding constant c1 > 0 satisfying:

‖φ‖L∞(0,T ;R3) ≤ c1‖φ‖H1
per(0,T ;R3).

Let v = (X,u) and hv = (hX , hu) belong to
H1
per(0, T ;R3)×L2

Tc
(0, T ;R2). We start by the function F .

Note that

F (v+hv)−F (v)−2〈X(Tc)|O|hX(Tc)〉−2α〈u, hu〉L2(0,T ;R2)

= 〈hX(Tc)|O|hX(Tc)〉 − α‖hu‖2L2
Tc

(0,T ;R2),

which leads to

|F (v+hv)−F (v)−2〈X(Tc)|O|hX(Tc)〉−2α〈u, hu〉L2(0,T ;R2)|
≤ λO‖hX(Tc)‖22 + α‖hu‖2L2

Tc
(0,T ;R2)

≤ λOc1‖hX‖2H1
per(0,T ;R3) + α‖hu‖2L2

Tc
(0,T ;R2)

≤ c2
(
‖hX‖2H1

per(0,T ;R3) + ‖hu‖2L2
Tc

(0,T ;R2)

)
= c2‖hv‖2H1

per(0,T ;R3)×L2
Tc

(0,T ;R2) → 0,

where c2 = λOc1 +α. Thus, F is Fréchet-differentiable and
its Fréchet-derivative ∇F (v) is:

∇F (v)(hv) = 2〈X(Tc)|O|hX(Tc)〉 − 2α〈u, hu〉L2(0,T ;R2)

Similarly, we prove that the Fréchet-derivative of the function
K satisfies

∇K(v)(hv) = A(u(.))hX(.) +A(hu(.))X(.)− ḣX(.).

We now prove the surjectivity of the function ∇K(v) for
every v = (X,u) ∈ H1

per(0, T ;R3)×L2
Tc

(0, T ;R2). Let g ∈
L2(0, T ;R3) be arbitrary. Then, ∇K(X,u)(hX , hu) = g is
equivalent to:

ḣX = A(u(.))hX +A(hu(.))X − g.

Using Remark 1 and Corollary 1, we see that there exists
hX ∈ H1

per(0, T ;R3) satisfying the latter equation with
hu = 0. As a consequence, ∇K(v) is surjective.
We have assumed that u is a solution of (17) and X ∈
H1
per(0, T ;R3) satisfies (12). Finally, thanks to the sur-

jectivity (see [27], Section 1.3) of ∇K(X,u) there exists
an adjoint vector Y ∈ L2(0, T ;R3) such that for δX
in H1

per(0, T ;R3), we get the usual Karush-Kuhn-Tucker
condition:

∇F (u)(δX, 0) =

∫ T

0

〈Y (t),∇K(X,u)(δX, 0)〉

meaning that∫ T

0

〈Y (t), δẊ(t)〉 dt =2〈X(Tc)|O|δX(Tc)〉

+

∫ T

0

〈A(u(t))ᵀY (t), δX(t)〉 dt.

Consider now a function φ such that φ̇(t) = −A(u(t))ᵀY (t)
and φ(T−c ) − φ(T+

c ) = 2OX(Tc). By integrating
〈φ(t), δẊ(t)〉 on the interval [T+

c , T
−
c ] (in the periodic

sense), we obtain∫ T−c

T+
c

〈φ(t), δẊ(t)〉 dt = 〈φ(T−c )− φ(T+
c )), δX(Tc)〉

−
∫ T−c

T+
c

〈φ̇(t), δX(t)〉 dt.

by identification, we conclude that Y = φ. Hence the
equation on Y .

IV. NUMERICAL RESULTS

We finally investigate here some results about the L2-norm
of optimal field for different values of penalty parameter
α and time Tc, respectively. For the numerical solving of
the evolution equation in X we use a Crank-Nicholson
time-discretization scheme, with 50 steps in [0, Tc]. To
compute the optimal controls u, we apply the gradient
method described in [20]. The values of the parameters we
consider are also taken from the latter. The implementation
is carried out with Octave [28].



First test : We consider a range of values α in the interval
[10−2, 4] and we solve iteratively the optimization problem
for increasing values of α; the previous optimal field is
used as a guess field to initialize the next optimization.
Figure 2 (left) shows that the L2-norm of the optimal control
field decrease with α. We observe a polynomial convergence
of the norm of the control with respect to α, more precisely,
we find that ‖u‖L2(0,T ;R2) = a

α asymptotically for some
a > 0.

Second test : We consider the same procedure as in the
previous test, and solve the optimization problem for various
values of Tc. More precisely, we consider values of Tc in the
interval [10−4, 10−2]. Figure 2 (right) shows that the norm
of control field increases with Tc. We observe a relation of
the form:

log(‖u‖L2(0,T ;R2)) = a log(Tc) + b,

where the coefficients a and b can be determined with the
blue line. In this test, we observe that a ≈ 0.5.
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Fig. 2. Evolution of the ‖u‖L2(0,T ;R2) (Red), for ω = 0, Γ = 1.8 and
γ = 1, with respect to α (Left, Tc = 10−2 and T = 1 + Tc). and to Tc
(Right, α = 10−5 and T = 1 + Tc).
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