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Introduction

Animals use various environmental cues for habitat choices, and different individuals from a single species may show contrasting habitat preferences depending on their sex, stage, size and genetic background for instance [START_REF] Stamps | Habitat selection by dispersers: integrating proximate and ultimate approaches[END_REF][START_REF] Matthysen | Multicausality of dispersal: a review. Dispersal Ecology and Evolution[END_REF]. This intra-specific variation of behavioural responses may influence a wide range of eco-evolutionary processes [START_REF] Sih | Ecological implications of behavioural syndromes[END_REF][START_REF] Ronce | Dispersal syndromes. Dispersal Ecology and Evolution[END_REF][START_REF] Edelaar | Non-random gene flow: an underappreciated force in evolution and ecology[END_REF]. Inter-individual differences in habitat choice behaviours may be genotype-dependent and related to differential performance in specific habitats or niches [START_REF] Sih | Ecological implications of behavioural syndromes[END_REF][START_REF] Edelaar | Non-random gene flow: an underappreciated force in evolution and ecology[END_REF][START_REF] Hawthorne | Genetic linkage of ecological specialization and reproductive isolation in pea aphids[END_REF][START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF][START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF][START_REF] Jaenike | Genetic variation for habitat preference: evidence and explanations[END_REF]. Genetic variation in habitat choice behaviour is common in animals and has been well documented for host plant preferences and cryptic habitat selection in insects (reviewed in [START_REF] Jaenike | Genetic variation for habitat preference: evidence and explanations[END_REF].

One of the cues animals use to select their habitat is light which animals may be positively or negatively attracted to. For example, negative phototaxis acts as a predator-avoidance mechanism in some aquatic organisms [START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF][START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF][START_REF] Michels | Inter-clonal variation in phototactic behaviour and key life-history traits in a metapopulation of the cyclical parthenogen Daphnia ambigua: the effect of fish kairomones[END_REF][START_REF] Borowsky | Responses to light in two eyeless cave dwelling amphipods (Niphargus ictus and Niphargus frasassianus)[END_REF] and may help some soil organisms that are very sensitive to relative humidity to prevent desiccation by looking for deeper and more humid soil layers [START_REF] Salmon | Linking species, traits and habitat characteristics of Collembola at European scale[END_REF][START_REF] Salmon | Species traits and habitats in springtail communities: a regional scale study[END_REF]. Nevertheless, different individuals or populations within the same species may present different phototactic preferences. For example, clonal populations of Daphnia magna (a zooplancton species) exposed to high levels of predatory pressure are more photophobic than clonal populations less exposed to predation [START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF][START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF]. In general, differences in phototaxis may have a heritable, genetic basis (e.g., [START_REF] Markow | Genetic analysis of phototactic behavior in Drosophila simulans[END_REF][START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF][START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF] or could be the result of nongenetic, phenotypic plasticity and personality (is this too anthropomorphic for Daphnia or springtails?) differences among individuals (e.g., [START_REF] Kain | Phototactic personality in fruit flies and its suppression by serotonin and white[END_REF]. Quantifying sources of variation in phototaxis is therefore important to understand the evolution of this wide-spread behavioural trait. Here, we investigate the genetic variation in light sensitivity and light-dependent movement behaviour in the eye-less springtail Folsomia candida Willem 1902 (Collembola, Isotomidae), an hemi-edaphic and cosmopolitan soil organism inhabiting various habitats such as caves, forest litter and man-made habitats [START_REF] Fountain | Folsomia candida (Collembola): a standard soil arthropod[END_REF].

The degeneration or even loss of the visual system is a convergent and frequent evolutionary phenomenon in soil-dwelling and cave animals [START_REF] Christiansen | Morphological adaptations. Encyclopedia of Caves[END_REF]. Nevertheless, even eyeless and eye-reduced species often retain some sensitivity to the ambient light level through extra-ocular photoreceptors (EOP, Taddei-Ferretti and Musio, 2000;[START_REF] Ullrich-Lüter | Unique system of photoreceptors in sea urchin tube feet[END_REF], which are useful for the maintenance of circadian rhythms [START_REF] Friedrich | Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics[END_REF] or for orientation and habitat choice [START_REF] Timmermann | Phototactic response and light sensitivity in an epigean and a hypogean population of a barb (Garra barreimiae, Cyprinidae)[END_REF][START_REF] Borowsky | Responses to light in two eyeless cave dwelling amphipods (Niphargus ictus and Niphargus frasassianus)[END_REF]. Indeed, previous works strongly suggest that F. candida is sensitive to light despite being eyeless. In choice-test experiments, F. candida avoids UV light moving to warmer locations exposed to white light, prefers darkness over cool white light [START_REF] Fox | Phototactic responses to ultraviolet and white light in various species of Collembola including the eyeless species, Folsomia candida[END_REF], and displays a doseresponse avoidance of UV-B light relative to darkness [START_REF] Beresford | Lethal and sub-lethal effects of UV-B radiation exposure on the collembolan Folsomia candida (Willem) in the laboratory[END_REF]. Yet, to our knowledge, no study has examined the wavelengths of maximum sensitivity of the ocular or extra-ocular photoreceptors (EOPs)of these animals [START_REF] Barra | Les photorecepteurs des Collemboles, etude ultrastructurale[END_REF][START_REF] Jordana | A new type of arthropod photoreceptor[END_REF][START_REF] Fox | Phototactic responses to ultraviolet and white light in various species of Collembola including the eyeless species, Folsomia candida[END_REF]. In true insects (Pterygota), few species are able to detect wavelengths longer than 600 nm (red light), which suggests a red-blind common ancestor [START_REF] Briscoe | The evolution of color vision in insects[END_REF]. In addition, the behavioural tests mentioned above could not always prevent confounding effects of differences in temperature or humidity associated with the lighting treatment. This is of great importance, as F. candida needs a relative humidity close to saturation [START_REF] Holmstrup | Strategies for Cold and Drought Tolerance in Permeable Soil Invertebrates[END_REF][START_REF] Waagner | Recovery of reproduction after drought in the soil living Folsomia candida (Collembola)[END_REF] and is very sensitive to temperature [START_REF] Boiteau | Locomotor response of Folsomia candida (Collembola: isotomidae) to cooling temperatures[END_REF][START_REF] Boiteau | Role of avoidance behavior in the response of Folsomia candida to above-freezing cooling temperatures[END_REF].

Although sexual reproduction exists in some populations of F. candida [START_REF] Frati | High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae)[END_REF], this species is generally recognized as asexual, and most studies using F. candida as a model species have used parthenogenetic lineages [START_REF] Fountain | Folsomia candida (Collembola): a standard soil arthropod[END_REF]. Earlier studies on several parthenogenetic lineages have uncovered substantial intra-specific genetic and morphological polymor-phism [START_REF] Chenon | Genetic polymorphism in nine clones of a parthenogenetic collembolan used in ecotoxicological testing[END_REF][START_REF] Tully | Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida[END_REF][START_REF] Tully | Intraspecific phenotypic variation and morphological divergence of strains of Folsomia candida (Willem) (Collembola: isotomidae), the standard test springtail[END_REF]. Intra-specific diversity is organised in two major evolution-ary clades [START_REF] Tully | Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida[END_REF][START_REF] Tully | Intraspecific phenotypic variation and morphological divergence of strains of Folsomia candida (Willem) (Collembola: isotomidae), the standard test springtail[END_REF], and life history studies have shown that two contrasted biodemographic strategies evolved along the divergence of these two clades [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF][START_REF] Tully | Facteurs génétiques, maternels et environnementaux de l'expression des traits d'histoire de vie chez le collembole[END_REF][START_REF] Tully | The evolution of postreproductive life span as an insurance against indeterminacy[END_REF][START_REF] Mallard | Within species variation in long-term trajectories of growth, fecundity and mortality in the Collembola Folsomia candida[END_REF]. One clade has a high reproductive potential: when sufficient food is available, these springtails produce on average larger clutches than the ones from the other clade [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF], but they have shorter mean lifespans than the less fecund clade and also reach a smaller adult body size [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF][START_REF] Tully | The evolution of postreproductive life span as an insurance against indeterminacy[END_REF][START_REF] Mallard | Within species variation in long-term trajectories of growth, fecundity and mortality in the Collembola Folsomia candida[END_REF]. These two groups of clonal lineages fit well to the typical slow (A) and fast (B) life history syndromes (or r-K life histories, see [START_REF] Reznick | R-and K-selection revisited: the role of population regulation in life-history evolution[END_REF]. But, until now, the ecological conditions in which they have evolved and the time elapsed since the divergence of the two clades remain to be determined. Intra-specific variation in habitat choice behaviour and mobility has so far neither been examined in this species nor in other Collembola. Instead, the few works that relate the habitat preference or distribution and colonization ability of Collembola with their morphological and life history traits are focused on the study of collembolan community composition [START_REF] Salmon | Linking species, traits and habitat characteristics of Collembola at European scale[END_REF][START_REF] Ponge | Spatial and taxonomic correlates of species and species trait assemblages in soil invertebrate communities[END_REF][START_REF] Huebner | Post-fire succession of collembolan communities in a northern hardwood forest[END_REF][START_REF] Salmon | Species traits and habitats in springtail communities: a regional scale study[END_REF][START_REF] Ponge | Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes[END_REF]. Intraspecific variation in phototactic behaviour and life history traits has been well investigated in Daphnia magna. In this species, positive phototactic clones present a fast life history strategy whereas negative and intermediate phototactic clones present a slow life history strategy (e.g., De Meester, 1994).

We tested if springtail clonal variation in light-dependent habitat choice exists using an experimental setup to control the lighting conditions while maintaining constant temperature and moisture. We tracked springtail movements under this setup to quantify their spatial preference for shaded versus illuminated areas as a measure of the habitat choice behaviour. We first tested whether F. candida can use light as an environmental cue for habitat choice under different lighting conditions, including natural shaded and sunny understory spectra and an artificial redlight spectrum. We measured springtail sensitivity to long wavelengths because these wavelengths are dominant under the forest canopy [START_REF] Smith | Sensing the light environment: the functions of the phytochrome family[END_REF] while red and far red are the principal wavelengths that penetrate the soil [START_REF] Bliss | Penetration of light into soil and its role in the control of seed germination[END_REF]. We hypothesised that F. candida should not detect or react to red and far-red light per se if the incapability to detect these wavelengths was a shared condition of most true insects and Collembola, even though most springtails are sensitive to heat generated by red light [START_REF] Briscoe | The evolution of color vision in insects[END_REF]. We further studied the sensitivity to light of twelve clonal lineages of F. candida including eleven lineages belonging to the two evolutionary clades described earlier [START_REF] Tully | Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida[END_REF][START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF][START_REF] Tully | The evolution of postreproductive life span as an insurance against indeterminacy[END_REF][START_REF] Tully | Intraspecific phenotypic variation and morphological divergence of strains of Folsomia candida (Willem) (Collembola: isotomidae), the standard test springtail[END_REF]. We addressed the following questions: Do light sensitivity and habitat choice behaviour vary between clonal lineages, as has been found in other taxa [START_REF] Jaenike | Genetic variation for habitat preference: evidence and explanations[END_REF][START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF][START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF])? If such clonal variation exists, how is it organised relative to the phylogenetic clades and what are the links between the behavioural responses and the main life history strategies of each clade? We predicted that lineages from the slow life history group would be more photophobic [START_REF] De Meester | Life histories and habitat selection in Daphnia: divergent life histories of D. magna clones differing in phototactic behavior[END_REF][START_REF] De Meester | Life history characteristics of Daphnia magna clones differing in phototactic behavior[END_REF], given that photophobia is likely to be associated with life in more stable habitats, which usually selects for a slow life history [START_REF] Pianka | R-Selection and K-Selection[END_REF][START_REF] Reznick | R-and K-selection revisited: the role of population regulation in life-history evolution[END_REF].

Materials and methods

Maintenance and origin of the studied springtails

We used twelve clonal lineages of the Collembola Folsomia candida labelled AP, BR, BV, DK, GB, GM, HA, ME, PB, TO, US and WI [START_REF] Tully | Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida[END_REF]. Information about the phylogenetic relation-ships and habitat and geographical origin of all strains except ME can be found in previous studies [START_REF] Tully | Two major evolutionary lineages revealed by molecular phylogeny in the parthenogenetic collembola species Folsomia candida[END_REF][START_REF] Tully | Intraspecific phenotypic variation and morphological divergence of strains of Folsomia candida (Willem) (Collembola: isotomidae), the standard test springtail[END_REF]. Clones AP, BV, BR, GB and HA belong to the "slow clade" A while the "fast clade" B comprises the clones DK, GM, PB, TO, US and WI [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF]. The new clone ME was collected in November 2013 from some decaying wood beams into an abandoned man-made tunnel in the Mercantour French National Park (South-East of France, 44°7.0260N, 7°16.7270E, 1530 m). The life history strategy of this clone and its phylogenetic relationships with the other clones are currently unknown.

All clonal populations were reared in similar conditions in polyethylene vials (inner diameter 52 mm, height 65 mm) filled with a 30 mm layer of plaster of Paris mixed with Indian ink to increase visual detectability of individuals [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF]. Populations were kept in incubators at 20°C (+/-0.5°C) in the dark and fed with pellets of a mixture of agar and dried yeast [START_REF] Tully | Reproductive flexibility: genetic variation, genetic costs and long-term evolution in a collembolan[END_REF]. We established synchronised populations of each clone in the same way and at the same time by transferring 10-12 randomly chosen adult females from stock cultures to new culture vials. Females were transferred to new vials every week and old vials were kept at 20 C for laid eggs to hatch since this temperature is optimal for all lineages. Then, vials were checked weekly for the presence of new-borns. If newborns were detected, ad libitum food was provided weekly to ensure optimum body growth. Therefore, the age of the experimental animals was known with a one-week accuracy. However, due to the low fecundity of some clones or accidental flooding in some vials, we had to add medium size (~1.4mm) adults of unknown age taken from the stock cultures in order to keep balanced samples for all clones and treatments (see Table S1 for details on sample size and individual characteristics).

Measurement of natural light conditions

At midday of a sunny day in June 2013, we measured 23 light spectra under the canopy of a temperate forest located in the Foljuif field station, 80km South of Paris, France (48 17013.96"N, 2 40040.34"E), where populations of F. candida have been previously found. We recorded 19 spectra in the shade and four spectra on sunspots in the undergrowth. The climate conditions and plant community structure of this forest have been studied extensively [START_REF] Blandin | Etude d'un ecosysteme forestier mixte, 1: Climat, structure de la vegetation et retombees de litieres [France, Seine-et-Marne[END_REF]. We used a handheld spectrome-ter parameterized for absolute irradiance measurements in the range 200-850 nm (Jaz Series, JAZ-ULM-200, Ocean Optics, USA). We measured the incident light with a cosine-corrected probe (180 field of view) after dark calibration and converted data into units of irradiance spectrum (mW cm 2) using factory calibration of the spectrophotometer. Measurements were taken at ground levels under the canopy of different tree and bush species, as well as under sunspots under the trees and into tree stump holes to sample different light spectra that natural populations of spring-tails are likely to encounter aboveground.

Simulation of environmental conditions

Artificial light and constant climate conditions were simulated in a controlled environment laboratory at the CEREEP Ecotron -Ile De France (Saint-Pierre-les-Nemours, France). We used one 13 m3 controlled environment chamber of the Ecolab, where climate (temperature, relative humidity, rainfall) and lighting conditions can be simulated [START_REF] Verdier | Climate and atmosphere simulator for experiments on ecological systems in changing environments[END_REF]. In the centre of the chamber, we installed vials for the characterisation of photophobia in springtails (see below) on a controlled water table to maintain constant humidity and temperature conditions in the vials during the observations. Controlling for constant humidity and temperature was essential to test exclusively for the effect of light, since slight changes in humidity and temperature could modify the springtails' behaviour and thus affect their apparent or real photophobia [START_REF] Holmstrup | Strategies for Cold and Drought Tolerance in Permeable Soil Invertebrates[END_REF][START_REF] Boiteau | Locomotor response of Folsomia candida (Collembola: isotomidae) to cooling temperatures[END_REF]. Atmospheric temperature in the chamber was maintained at 20°C (+/-0.1°C) and temperature of the water table was set at 10°C. We used a cold water table to keep the temperature inside the vials slightly lower than the air temperature to prevent condensation on the transparent lid that covered the vials (Fig. 1). The temperature measured inside the vials was 19°C and the relative humidity was 93% (DS-1923 iButton loggers) irrespective of the test conditions. Light was provided by means of modular LED (light emitting diodes) arrays (n = 40) allowing to turn on or off cool white LEDs (n=15 per array) and five different LED types with maximum emission wavelengths in the UV (370nm, n=3), green (520nm, n=2), red (660nm, n=5), far red (740nm, n=7), and infrared (840 nm, n = 3). Thus, up to 36,864 combinations of LEDs parameters can be programmed. To automatise the simulation of the most appropriate lighting conditions, we wrote a procedure in R (The R and Development Core Team, 2012) to calculate the sum of squared distance between the reference spectrum and the simulated spectrum, and to select the combination of parameters that minimised this sum. We simulated the "average undergrowth" light spectrum by producing a spectrum which best matched the mean spectra of the 23 light measurements made at various places on the forest floor (see Fig. 2a and Table S2 provided as Supplementary information). We also produced a "maximum undergrowth spectrum", using the four measurements made on sunspots, which should correspond to the strongest undergrowth light conditions that litterdwelling springtails are susceptible to be exposed to in this forest (Fig. 2b and Table S2). We expected a stronger light-avoidance response under this condition compared to under the mean undergrowth light spectrum. In addition, we simulated a "red light" spectrum whose power was close to that of the mean undergrowth light spectrum (Fig. 2a and Table S2). This red light spectrum has two irradiance peaks (red at 660 nm and far red at 740nm) and has no UV light that could promote photophobia in springtails [START_REF] Fox | Phototactic responses to ultraviolet and white light in various species of Collembola including the eyeless species, Folsomia candida[END_REF][START_REF] Beresford | Lethal and sub-lethal effects of UV-B radiation exposure on the collembolan Folsomia candida (Willem) in the laboratory[END_REF]. We further com-pared these three lighting conditions with a control treatment where the room was maintained in the dark. This condition was used to verify whether the experimental set-up in itself could affect the behaviour of the springtails and to compare the mobility of the different clones in the dark.

Experimental protocol

The dark, average undergrowth and red light spectra were tested in June 2014, and the maximum undergrowth spectrum was tested in December 2014. We used 36 individuals of each clonal lineage in each light treatment (n = 1728), and six individuals per clone were tested every day. Springtails were photographed to measure their length (mean = 1.41 mm, range = 0.93-2.19 mm) and kept isolated without food in rearing vials the day before. These individuals were transferred the next morning to new rearing vials wrapped with a thin flexible black plastic sheet, and only exposed to light from above. Each plastic box was filled with plaster of Paris and had a hole in the bottom to ensure that the plaster can be kept constantly wet to saturation (Fig. 1). An opaque black piece of plastic covered half of the vial's opening and descended vertically along the centre of the vial down to 3 mm above the plaster level, in order to maintain in the dark half of the vial while allowing the springtail to move freely between the two halves of the vials. Preliminary experiments showed that in total darkness springtail behaviour is very sensitive to drought and slight humidity differences between the two sides of the vials. The vials were thus covered with transparent lids to prevent any desiccation. When being transferred, animals were separated randomly in two groups of same size and released in the bright and dark sides at the beginning of the experiment (here called 'position') respectively, such that the proportion of animals in each position was exactly 50% for each clone and treatment. One observer (MGR) studied the springtails' movements between the two sides of the vials by recording the position of each animal every hour during six hours (from 9 am to 5 pm). For the control dark treatment, we observed the springtails' positions as quickly as possible using a soft light head torch to minimise disturbance. At the end of the experiment, we inspected all vials to check that no individual had escaped or deceased to ensure valid observations when the springtails did not move.

Statistical analyses

We used the software R (The R and Development Core Team, 2012) for the statistical analysis and to produce the graphs. The raw data and the R-scripts of the analysis, and figures are provided as Supplementary information. We calculated the movement (or transition) probabilities (the probability that an individual has moved from one side to the other side of the vial after one hour), using pairs of consecutive observations of the same individual to form a binomial variable which equals zero when the individual stayed in the same half of the vial and equals one when the animal had moved to the other. This binomial variable was analysed with nested generalised linear mixed models (GLMMs) for repeated measurements approach with a binomial error distribution and logit link function, using treatment (light spectrum type), position (dark or light) and clonal group as the fixed factors, and individual as the random factor. Observations were thus clustered in individuals and individuals were nested within clones. In the full model, we analysed all main effects as well as two and three-way interactions. We implemented the full model with the glmer procedure in package lme4 for R 3.1.2 [START_REF] Bates | lme4: Linear mixed-effects models using S4 classes[END_REF]The R and Development Core Team, 2012) and tested for the significance of fixed effects with Chi-square tests. Since the threeway interaction Spectrum*Position*Clone was significant (see Table S3 provided as Supplementary information), we analysed each treatment independently to get a better understanding of the behavioural differences among clones under each treatment.

For subsequent analyses we further included the body length of each individual in the analysis to test for a size effect on individual movement probability. Since mean body length can vary substantially among clones [START_REF] Mallard | Within species variation in long-term trajectories of growth, fecundity and mortality in the Collembola Folsomia candida[END_REF], we calculated for each treatment the corrected body lengths as the sum of the overall mean body length and the body length residuals computed here as the difference between individual lengths and mean length of their clone. This "corrected body length" was then used to study the effect of body length while controlling for differences among clones. The full models included position, clone and corrected length as fixed factors, the two-way interactions and individual identity as the random factor. We used a backward stepwise selection to get final models that only included significant factors and interactions. We also report full models in Table S4 following Forstmeier and Schielzeth's recommendation [START_REF] Forstmeier | Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse[END_REF]. For the full and final models, we calculated marginal and conditional R2, which quantify the amount of variance explained by the models [START_REF] Nakagawa | A general and simple method for obtaining R2 from generalized linear mixedeffects models[END_REF]. We additionally performed GLMMs with clade, position and their interaction as fixed factors, and clone and individual within clone as nested random factors to test for phylogenetic variation. The clone ME, whose evolutionary clade has not yet been characterized, was excluded from these analyses. 

Results

In the homogenous dark environment, the mobility of spring-tails was not influenced by their position in the vial (Table 1; Fig. 3) and was independent of their body length. The individual mobility (average transition probability) differed significantly among clones (Table 1, Fig. 4a), and this variability was mostly due to difference between the two evolutionary clades (x21 = 15.86, p < 0.001). In complete darkness, the clones with a fast life history (clade B) had on average a high-er propensity to switch between sides (0.44 per hour) than clones with a slow life-history strategy (0.34, Fig. 4a). Contrary to our expectations, F. candida proved to be slightly sensitive to red light (Table 2), independently of their length: springtails preferentially moved from red light to dark (0.46 per hour) than from dark to red light (0.42, see Fig. 3). Clones also differed in their mean mobility, but these differences were not due to clade (x21 = 0.07, p = 0.79, Fig. 4b). Springtails showed photophobia when exposed to average undergrowth light: they moved from the light to the dark side significantly more often than in the reverse direction (0.43 versus 0.37, see Fig. 3 and Table 3). The different clones (x211 = 18.09, p = 0.08) and the two clades (x21 = 0.40, p = 0.40) had similar movement probabilities (Fig. 4c andTable 3). In this light condition, movement probability varied with body length depend-ing on position: while in the dark compartment the length did not influence mobility, but when exposed to light, smaller than average springtails were more prone to move than longer ones (Fig. 5a). When exposed to maximum undergrowth light, springtails moved away on average more often (0.45 per hour) than when they were in the dark side of the vials (0.36, see Fig. 3 and Table 4). Differences among clones (x211 = 15.67, p = 0.15) and clades were not significant (x21 = 1.04, p = 0.31, Fig. 4d), and there was a non-significant trend (Position* Corrected Length: x211 = 1.22, p = 0.27) for longer than average individuals to move less often than smaller individuals, as observed in the average undergrowth light treatment (Table 4). However, there was a significant interaction between effects of clone and of corrected length: for most clones, size matters little and smaller individuals tended to move more, while for clone GB the mobility was positively influenced by relative length (x211 = 21.49, p = 0.03) (Fig. 5b) Clone GB was characterised by the slowest life history strategy. 

Discussion

Limits of the experimental protocol

Our experimental protocol allowed us to study the behaviour of isolated individuals in darkness and under three light conditions while maintaining constant temperature and humidity. As the springtails' mobility is very sensitive to these environmental factors, this represents a significant improvement to test for photophobia. Differences in temperature between the illuminated and dark sides of the boxes fell within the measurement error of our thermometer devices (<0.5°C). Thus, even though we cannot strictly exclude that the bright side may be slightly warmer than the dark side, the potential temperature difference was so small that we could not detect it. Thus we interpret our result as a light sensitivity but one has to remember that temperature gradients could also play a role. For instance, temperature receptors such as micro setae on the antennas or legs may help springtails to perceive small temperature gradients, in particular when doing 'turning' movements (loops), a frequent behaviour when in an unknown environment [START_REF] Bengtsson | Irregular walks and loops combines in small-scale movement of a soil insect: implications for dispersal biology[END_REF].

In addition, our experimental design is not suited to know how many times springtails moved between sides during the one hour census interval. Our estimations of transition probabilities are based on the hypothesis that each springtail does no or only one move in an hour, which may be wrong given that some individuals may have moved multiple times between two censuses. Future studies should track more continuously individuals through space to obtain better estimates of dispersal distances and capacities.

Light sensitivity and its ecological significance

We found that, despite being eyeless, F. candida is slightly but significantly sensitive to light. Photophobia was detected in the presence of the three light sources, including two light spectra chosen to mimic natural conditions encountered by springtails. Hence, this study confirms earlier general findings of negative phototaxis in this species [START_REF] Fox | Phototactic responses to ultraviolet and white light in various species of Collembola including the eyeless species, Folsomia candida[END_REF][START_REF] Beresford | Lethal and sub-lethal effects of UV-B radiation exposure on the collembolan Folsomia candida (Willem) in the laboratory[END_REF][START_REF] Boiteau | Geotaxis in the springtail Folsomia candida[END_REF][START_REF] Salmon | Responses to light in a soildwelling springtail[END_REF]. But our study goes one step further by showing that the intensity of photophobia response varied depending on the light spectrum: Light avoidance by springtails increased from the red light spectrum at an intensity equivalent to that of the average light spectrum under the canopy, to average undergrowth spectrum, and to maximum undergrowth spectrum. F. candida is thus sensitive both to light intensity and to its quality. This suggests that despite being blind, these springtails can use light as an environmental cue for orientation, movement and habitat choice under natural conditions. Light avoidance behaviour was not very strong, because individuals also moved from the dark to the illuminated side of the vials and switched their position frequently. This may be due to the fact that the intensity of the light spectrum tested was low compared for example to direct sunlight, but could also be related to the small spatial scale of the setup and the short time scale of our tests.

Multiple examples of eye-reduced and eyeless species that retain brightness and colour sensitivity exist (e.g. [START_REF] Ramirez | Understanding the dermal light sense in the context of integrative photoreceptor cell biology[END_REF][START_REF] Friedrich | Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics[END_REF]. Extra-ocular photoreceptors (EOP) or nonvisual photoreceptors can be responsible of light sensitivity when eyes are absent. EOP exist in the form of dermal photoreceptors in invertebrates [START_REF] Tosini | Dermal photoreceptors regulate basking behavior in the lizard Podarcis muralis[END_REF][START_REF] Binder | The role of dermal photoreceptors during the sea lamprey (Petromyzon marinus) spawning migration[END_REF][START_REF] Xiang | Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall[END_REF][START_REF] Ullrich-Lüter | Unique system of photoreceptors in sea urchin tube feet[END_REF], the sixth caudal ganglion in decapods [START_REF] Wilkens | Photosensitivity in the sixth abdominal ganglion of decapod crustaceans: a comparative study[END_REF][START_REF] Larimer | A functional caudal photoreceptor in blind cavernicolous crayfish[END_REF], genitalia [START_REF] Arikawa | Multiple extraocular photoreceptive areas on genitalia of butterfly Papilio xuthus[END_REF] and neurons of the optic lobes in butterflies [START_REF] Lampel | Expression of UV-, blue-, long-wavelength-sensitive opsins and melatonin in extraretinal photoreceptors of the optic lobes of hawk moths[END_REF], and photosensitive cells in the hydra [START_REF] Taddei-Ferretti | Photobehaviour of Hydra (Cnidaria, Hydrozoa) and correlated mechanisms: a case of extraocular photosensitivity[END_REF]. F. candida lacks external eye facets and any other external eye structures as revealed by scanning electron microscopy [START_REF] Fox | Phototactic responses to ultraviolet and white light in various species of Collembola including the eyeless species, Folsomia candida[END_REF]. Whether F. candida is only facet-less but has internal photoreceptors where eyes should be or whether it uses other types of extraocular photoreception such as a dispersed photoreception dermal sense [START_REF] Ramirez | Understanding the dermal light sense in the context of integrative photoreceptor cell biology[END_REF] or neural photoreception [START_REF] Lampel | Expression of UV-, blue-, long-wavelength-sensitive opsins and melatonin in extraretinal photoreceptors of the optic lobes of hawk moths[END_REF][START_REF] Wilkens | Photosensitivity in the sixth abdominal ganglion of decapod crustaceans: a comparative study[END_REF], remains an open question.

Photophobia may help springtails to avoid open spaces when they forage in the litter close to the surface, and together with positive geotaxis [START_REF] Boiteau | Geotaxis in the springtail Folsomia candida[END_REF], it may serve for orientation in vertical movements. Being able to avoid open spaces and the surface of the litter may provide several benefits. First of all, all clonal lineages tested here were non-pigmented and thus little protected against the deleterious effects of UV radiations. Long-term (two weeks) exposure to UV-B light increases mortality and causes DNA damage in this species [START_REF] Beresford | Lethal and sub-lethal effects of UV-B radiation exposure on the collembolan Folsomia candida (Willem) in the laboratory[END_REF]. Behavioural tactics of habitat selection for dark sheltered zones or deeper soil layers can help springtails to escape from potentially dangerous UV-radiation. This may also explain why unpigmented or slightly pigmented Collembola are preferentially distributed in edaphic or hemiedaphic rather than epigeal habitats and in woodlands rather than in grasslands [START_REF] Salmon | Linking species, traits and habitat characteristics of Collembola at European scale[END_REF][START_REF] Salmon | Species traits and habitats in springtail communities: a regional scale study[END_REF]. However, the photophobia of F. candida cannot be exclusively related to UV-radiation avoidance, since F. candida was also sensitive to red light. Longwaves are dominant wave-lengths under the forest canopy [START_REF] Smith | Sensing the light environment: the functions of the phytochrome family[END_REF], and thus sensitivity to these wavelengths could be related to a more general aboveground avoidance. Moreover, as ambient light level is often correlated with other climatic factors (notably temperature and humidity), photophobia is useful to target deeper, more humid and more stable microhabitats preferred by most Collembola species, especially those that are the most vulnerable to desiccation [START_REF] Salmon | Linking species, traits and habitat characteristics of Collembola at European scale[END_REF][START_REF] Salmon | Species traits and habitats in springtail communities: a regional scale study[END_REF]). Another explanation is that photophobia may indirectly help springtails to avoid predators. Being devoid of compound eyes F. candida probably cannot form images and thus cannot see approaching predators [START_REF] Hauzy | Spatial heterogeneity and functional response: an experiment in microcosms with varying obstacle densities[END_REF], as it is the case of the sister eyeless species Folsomia fimentaria [START_REF] Baatrup | Predation of the mite Hypoaspis aculeifer on the springtail Folsomia fimetaria and the influence of sex size, starvation, and poisoning[END_REF]. This species is thus very vulnerable in illuminated environments to visually active-chasing predators such as hunting ground-beetles, some of which are ferocious predators of springtails [START_REF] Ernsting | Effects of food deprivation and type of prey on predation by Notiophilus biguttatus F. (Carabidae) on springtails (Collembola)[END_REF].

Intra-specific variability in movement and light sensitivity

In general, smaller individuals were more mobile than larger ones and we found that smaller springtails exposed to light were also more likely to seek refuge in the dark side than the larger ones in the average undergrowth light treatment. The risk of staying in an illuminated environment may not be the same for large and small individuals. For example, it has been shown that the carabid Notiophilus biguttatus a common visual hunter and voracious predator of springtails preys more efficiently on small rather large Collembola [START_REF] Ernsting | Components of predatory behaviour underlying density-dependent prey-size selection by Notiophilus biguttatus F. (Carabidae, coleoptera)[END_REF]. This interpretation is tenuous given that the effect of body size on movement was small, variable across clones and not repeatable across light treatments. These variable effects of body size are difficult to explain. The intensity of photophobia may also depend on other individual state parameters such as the nutritional status or the phase in the moulting and oviposition cycle. There could also be a trade-off between the preference for safer dark deep zones and the need for foraging and dispersal at the illuminated surface [START_REF] Dromph | Effect of starvation on phototaxis and geotaxis of collembolans[END_REF].

We searched for clonal variation in both the mean movement propensity and in the light sensitivity of movement. We first found that the various lineages moved differently in the dark: the average transition probabilities varied from 0.2 to almost 0.5 depending on the lineages. Quite remarkably, this genetic diversity was structured between the two previously described phylogenetic clades: clones from the clade characterized by a fast lifehistory strategy had on average higher transition probabilities than those with slow life-history strategy, suggesting that they move faster and can potentially disperse over longer distances in natural conditions. Even though we did not measure dispersal per se (defined as the movement of individuals or propagules that leads to gene flow, see [START_REF] Clobert | Dispersal Ecology and Evolution 1 st[END_REF], mobility or exploratory activity has generally been positively correlated to dispersiveness and can thus be used as a rough proxy for dispersal in natural populations [START_REF] Ronce | Dispersal syndromes. Dispersal Ecology and Evolution[END_REF]. The higher movement propensity of the fast life-history clade agrees with the evolutionary scenario of the 'colonizer syndrome' where fast life-history species or populations are more dispersed than their slow life-history counterparts [START_REF] Ronce | Dispersal syndromes. Dispersal Ecology and Evolution[END_REF]. The combination of increased dispersal, high fecundity but short lifespan and low competitive ability allows fast individuals to colonise new habitats more efficiently. Individuals with reduced movement propensity, low fecundity and high competitive ability perform better at the core range and in stable habitats, where populations have reached their carrying capacity and where infraspecific competition is strong [START_REF] Burton | Trade-offs and the evolution of life-histories during range expansion[END_REF]. Future studies should assess whether differences in short-distance movement probabilities translate into clonal differences in long-distance movement behaviour and therefore dispersal distances.

Studies on the intraspecific variation of phototaxis are scarce but differences in phototaxis among genetically distinct lineages have been reported in several species. It has been shown that several Daphnia clonal populations differ in their photophobia in response to contrasting predatory pressures [START_REF] Cousyn | Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes[END_REF][START_REF] De Meester | Evolutionary potential and local genetic differentiation in a phenotypically plastic trait of a cyclical parthenogen, Daphnia magna[END_REF]. Artificially selected Drosphila strains also differ in their phototactic preferences both in quality and degree as a result of different genotypes and the presence of specific mutations [START_REF] Kain | Phototactic personality in fruit flies and its suppression by serotonin and white[END_REF]. But contrary to these findings, we did not find any significant differences in our model organism in light sensitivity among clones and clades for the two undergrowth spectra, including when springtails were exposed to the brightest light spectrum. This could indicate that photophobia is a shared, evolutionary rigid behavioural trait in this species. It also implies that other studies that failed to find intraspecific variation in phototaxis may be missing in the published bibliography.

In addition, when exposed to light, the genetic differences in movement behaviour observed in the dark vanish. Our observations also suggest that moving from one side of the vial to the other side in homogeneous dark conditions or in heterogeneous light conditions is associated with different underlying behaviours: exploration for the former and escape for the latter. This is also supported by the fact that body length did not affect movement in the dark while small individuals were found to be slightly more mobile than larger ones in the heterogeneous environments. Table S1 
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Figure 1 :

 1 Figure 1: Fig. 1. a) Photographs of the experimental boxes. Boxes were wrapped with a thin flexible black plastic sheet (1), and only exposed to light from above. Boxes were covered with a transparent plastic lid (2) to prevent desiccation and disturbance due to airflow. The arrow shows the gap between the plaster of Paris floor (3) and the opaque black piece of plastic (4) that descended vertically along the

Figure 2 :

 2 Figure 2: Light conditions used during the experiment. a) Natural and simulated average under-canopy spectra and experimental red light spectrum. The three spectra have equivalent total power. b) Natural and simulated sunspots under the canopy spectra. The two spectra have equivalent total power.

Figure 3 :

 3 Figure 3: Models that best describe transition probabilities in the dark treatment after backward selection (N = 431). Dropped variables are presented in order in which they were removed. Marginal and conditional R2 of the final model are 0.111 respectively.

Table 1 :

 1 Models that best describe transition probabilities in the dark treatment after backward selection (N = 431). Dropped variables are presented in order in which they were removed. Marginal and conditional R2 of the final model are 0.111 respectively. Table 2: Models that best describe transition probabilities in the red light treatment after backward selection (N = 432). Marginal and conditional R2 of the final model are 0.015 and 0.068 respectively.

Figure 4 :

 4 Figure 4: Mean movement probability between the two sides of the test boxes (95% CI) for each clone. Black symbols denote clones with a slow life-history strategy; white symbols denote clones with a fast life-history strategy; and the grey symbol denotes the clone ME whose life-history strategy remains uncharacterised. Mean values were averaged over the two sides of the test boxes.

Table 3 :

 3 Models that best describe transition probabilities in the average undergrowth spectrum after backward selection (N = 432). Marginal and conditional R2 of the final model are 0.011 and 0.074 respectively. Table 4: Models that best describe transition probabilities in the maximum undergrowth spectrum after backward selection (N = 432). Marginal and conditional R2 of the final model are 0.039 and 0.089 respectively.

Figure 5 :

 5 Figure 5: a) Predicted mean movement probability between the two sides as a function of individuals' length, for each position in the average undergrowth spectrum. White boxplots and dotted line denote that the individual was on the bright side prior to the observation, while grey boxplots and solid line denote that the individual was on the dark side. The dashed-line represent the predicted response of the individuals that were on the bright side prior to the observation, while the solid line represent the predicted response of the individual that were on the dark side. b) Predicted movement probability between the two sides as a function of individuals' length for each clone in the maximum undergrowth spectrum.

.

  Sample size, age and body length per clone studied in the experimental setup.

	Total	Number	Mea	Range	Mean	Range of
	num-	of indi-	n	of age	body	length
	ber of	viduals	age	(days)	length	(mm)
	individ	of un-	(days		(mm)	
	uals	known	)			
		age (or				
		length)				
	AP 144	42	46.2 23-96 1.34 0.95-1.99
	BR 144	42	32.3 17-76 1.41 0.99-2.02
	BV 144	24	68.4 23-117 1.50 1.02-1.98
	DK 144	26	62.7 23-110 1.29 0.97-1.76
	GB 144	61	48.6 20-104 1.58 1.11-2.19
	GM 144	24	65.1 23-116 1.38 0.99-1.80
	HA 144	24	66.1 23-117 1.51 1.08-2.05
	ME 144	24	69.7 12-117 1.41 0.97-1.99
	PB 144	24 (1)	67.5 23-116 1.35 0.97-1.77
	TO 144	24	68.8 23-116 1.39 1.04-1.91
	US 144	24	66.5 23-110 1.36 0.93-2.16
	WI 144	24	60.8 23-109 1.40 1.06-1.89

Table S2 .

 S2 Summary of the total irradiance of natural and simulated spectra.

	Spectrum	Total	irradi-
		ance	
		(µW.cm-2)
	Natural average undergrowth	31.5	
	Simulated average undergrowth	37.3	
	Red and far-red	23.8	
	Natural maximum undergrowth	70.5	
	Simulated maximum undergrowth	52.0	

Table S3 .

 S3 The influence of clone identity, position (dark or light), spectrum type (four treatments) and their two and three-way interactions (full model) on transition probability of springtails between each side of the experimental boxes (N=1728 individuals). * p<0.05, ** p<0.01, *** p<0.001.

		Chi	D. f. p-value	
		square			
	Clone	31.02	11 0.001	***
	Position	26.98	1	<0.001 ***
	Spectrum	9.09	3	0.028	*
	Clone*Position	8.03	11 0.710	
	Clone*Spectrum	47.87	33 0.045	*
	Position*Spectrum	8.33	3	0.039	*
	Clone*Position*Spectrum 47.51	33 0.049	*

Table S4 .

 S4 Full models describing the influence of clone, position, corrected length and their two-way interactions on transition probabilities of springtails between each side of the experimental boxes. Full models were fitted separately for each spectrum type corresponding to dark, red light, average undergrowth spectrum and maximum undergrowth spectrum treatments. Marginal and conditional R2 are provided. * p<0.05, ** p<0.01, *** p<0.001.

		Chi squared	D.f.	p-value		R2m	R2c
	Dark treatment (N=431)						
	Clone	23.73	11	0.0139 *	*	0.0037	0.1141
	Position	0.74	1	0.3880			
	Residual Length	0.03	1	0.8547			
	Clone* Position	16.86	11	0.1120			
	Clone* Corrected Length	14.10	11	0.2273			
	Position* Corrected Length	0.66	1	0.4165			
	Red light treatment (N=432)						
	Clone	20.21	11	0.0425 *	*	0.0247	0.0731
	Position	4.77	1	0.0290 *	*		
	Corrected Length	0.04	1	0.8472			
	Clone* Position	9.13	11	0.6095			
	Clone* Corrected Length	8.94	11	0.6276			
	Position* Corrected Length	0.0046	1	0.9462			
	Average undergrowth treatment (N=432)					
	Clone	17.8053	11	0.0862		0.0384	0.0827
	Position	9.4785	1	0.0021 **	**		
	Corrected Length	3.8588	1	0.0495 *	*		
	Clone* Position	17.5853	11	0.0917			
	Clone* Corrected Length	12.5436	11	0.3242			
	Position* Corrected Length	7.1203	1	0.0076	**		
	Maximum undergrowth treatment (N=432)					
	Clone	15.4355	11	0.1634		0.04574	0.0961
	Position	23.0414	1	<0.001	***		
	Corrected Length	0.0164	1	0.8981			
	Clone* Position	11.7662	11	0.3815			
	Clone* Corrected Length	21.7120	11	0.0267	*		
	Position* Corrected Length	1.1535	1	0.2828			
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