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Abstract. Poisson-Boltzmann theory allows to study soft matter and biophysical

systems involving point-like charges of low valencies. The inclusion of fluctuation

corrections beyond the mean-field approach typically requires the application of

loop expansions around a mean-field solution for the electrostatic potential φ(r), or

sophisticated variational approaches. Recently, Poisson-Boltzmann theory has been

recast, via a Legendre transform, as a mean-field theory involving the dielectric

displacement field D(r). In this paper we consider the path integral formulation of

this dual theory. Exploiting the transformation between φ and D, we formulate a dual

Sine-Gordon field theory in terms of the displacement field and provide a strategy for

precise numerical computations of free energies beyond the leading order.

1. Introduction

The description of electrolytes in soft matter is commonly based on the Poisson-

Boltzmann equation, a mean-field theory for the electrostatic potential φ(r) (see, e.g.,

[1], and references therein). Formally, this theory is derived from the partition function

of a Coulomb system by performing a Hubbard-Stratonovich transformation to an

(imaginary) fluctuating field φ(r), later identified with the electrostatic potential [2, 3].

(For the Hubbard-Stratonovich transformation, see e.g. [4, 5, 6, 7, 8, 9]). This approach

is valid in the weak fluctuation regime, in which the saddle-point of the action yields the

standard Poisson-Boltzmann equation, which can be systematically improved by a loop

expansion [3]. An alternative approach to go beyond mean-field theory is to invoke a

variational approach [10, 11]. Going beyond mean field in Poisson-Boltzmann is known

to improve many features of the theory, for instance dielectric contrast and image-charge

interactions are much better described in theories which allow fluctuations [12].

A difficulty with these approaches is that the action of the functional integral

is complex. A Wick rotation gives a real theory, but at the price of rendering

the effective free energy concave. Thus, when the electrostatics is coupled to other

degrees of freedom, the extremization of the free energy becomes a numerically difficult

operation. Extrema result from a combination of minima in the non-electrostatic

degrees of freedom and maxima in the electrostatic potential. This complicates many
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numerical studies of biophysical molecules in which the solvent is described by Poisson-

Boltzmann theory, and also has repercussions for the validity limits of theories including

fluctuation effects beyond Poisson-Boltzmann theory [13]. This technical problem has

been circumvented [14, 15] by a reformulation of the Poisson-Boltzmann theory in terms

of purely convex functionals, which is achieved by the means of a Legendre transform,

with the complex field φ(r) being systematically replaced by the dielectric displacement

field D(r). Expressed in terms of the field D(r), the resulting theory yields a convex

functional so that standard minimization techniques can be applied, and loop corrections

or variational approaches be defined as for the original Poisson-Boltzmann theory.

Though it was constructed only from the mean-field, the one-loop correction in the

dual theory (very surprisingly) has been shown to yield the same fluctuation spectrum

as obtained within the usual formulation of Poisson-Boltzmann theory [16].

This approach, however, working from conventional mean-field theory, does not help

in constructing a systematic improvement in the dual formulation of the theory. The

aim of the present article is to formulate a systematic method for going beyond the “one-

shot” approximation that has been considered until now for constructing dual theories

and present a general formulation that is equivalent to the exact, discretized statistical

mechanics of the electrolytes that are formulated as integrals over an electrostatic

potential. We stress the generality of our approach, even if in this paper we chose

to apply the formulation to only the simplest two-component electrolyte.

With this motivation in mind, we revisit the dual approach from a functional

integral perspective which relies on the introduction of the dual transform via delta

functions. The arising transformation integrals can be performed either in an exact

way, or in a systematic fashion by invoking the Poisson summation formula. The latter

will first give us access to a saddle-point like limit, but it equally allows us - with no

more than simple integration and one-dimensional Fourier transforms - to explicitly

calculate the corrections beyond the saddle point which arise from the discrete nature

of the charges. In this way we obtain a novel formulation of Poisson-Boltzmann theory

in terms of its dual which is exact. Our final result is a discretized free energy function,

which, when sampled gives the exact discretized energy of a set of discrete charges

interacting with the Coulomb interaction.

We expect that this novel dual formulation will be highly useful for the finite

temperature simulation of coupled conformational/electrostatic degrees of freedom,

rather than the minimization envisaged with the original mean-field theory. For this

purpose we formulate the theory in a formulation adequate for numerical computations

on lattices.

The paper is organized as follows. In the second section, we discuss the notion

of duality, recall the formulation of the duality transform for the Poisson-Boltzmann

functional and the derivation of the dual mean-field functional. In section three we

derive a prescription to formulate the functional integral of a dual theory including

fluctuations beyond mean field for the case of the symmetric electrolyte; this choice

is made for definiteness and provides no restriction to the method. The program is
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subsequently implemented in section four. We conclude in section five.

2. Duality in Poisson-Boltzmann theory

We first recall the notion of duality previously employed in the context of the Poisson-

Boltzmann theory at the mean-field level [14]. We start with the usual expression [2]

for the partition function for a set of charged particles interacting through the Coulomb

interaction, described through a fluctuating potential field φ:

Z =

∫
D[φ]e−β

∫
d3rh(φ)

with

h(φ) = ε
(∇φ)2

2
+ g(iφ)− i%fφ ,

where g(iφ) is the pressure, while %f is the density of fixed charges, which are typically

confined to a small part of the system. Introducing the electric field E with the help of

a delta function (and being free with non-essential normalization factors)

Z =

∫
D[φ]D[E]e−β

∫
d3rh(φ)δ(E +∇φ)

yields after Fourier representation of the delta function with multiplier D

Z =

∫
D[φ]D[E]D[D]e−β

∫
d3rh(φ,E,D)

with

h(φ,E,D) = ε
E2

2
+ g(iφ)− iD · (∇φ+ E)− i%fφ (1)

= ε
E2

2
+ g(iφ)− iD · E + iφ(divD− %f ) .

Careful consideration of boundary conditions shows that∮
φD.dS = 0

so that one requires either φ = 0 or the normal component of the field Dn = 0 at the

boundaries. Performing the integration over the electric field E, one finds

Z =

∫
D[φ]D[D]e−β

∫
d3rh(φ,D) (2)

with

h(φ,D) =
D2

2ε
+ g(iφ) + iφ(divD− %f ) .
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In this expression, divD− %f ≡ s can be read as a Fourier transform variable such that

we arrive at the formal expression

h(φ,D) =
D2

2ε
− ln{F(eg(iφ))}[divD− %f ] (3)

with F the Fourier operator. We emphasize that this step requires the evaluation of just

a single one-dimensional Fourier transform. In numerical applications this transform

can be done once and tabulated, even if the model for g(iφ) is relatively complicated

analytically. As emphasized in [17] the function g(φ) is typically the pressure of the

uncharged fluid. We then find the main result of this paper

Z =

∫
D[D]e−β

∫
d3rheff (D) (4)

in which heff (D) is a local functional of D. If the conventional saddle-point

approximation is employed, we obtain the standard mean-field theory of soft matter

electrostatics. Our aim here is to derive an expression for heff (D) valid beyond mean-

field theory, on the basis of which an exact sampling of the partition function eq.(4) can

be performed e.g. by Monte-Carlo simulation [18].

In our formulation of the full statistical mechanics of the dual theory it is a crucial

feature that the duality transformation φ → D has been carried out solely via the

introduction of delta functions. Only this approach guarantees the identity of the

fluctuation spectra of the dual theory as discussed in detail [19] in a general field-theory

setting. By contrast, theories derived from reparametrizations are called pseudo-dual

theories [19] for which this property in general does not hold. This is e.g. the case for the

reparametrizations of the Poisson-Boltzmann theory recently developed in [20, 21] with

the aim of defining convex functionals for the electrostatic potential. These theories

fail to produce the correct fluctuation spectra as was shown explicitly in the calculation

of the one-loop correction [16]. Even in lattice gauge theories, dual formulations can

have similar technical advantages of positivity and convexity and are an active research

topic [22].

The above presentation has been at a formal level. In order to be explicit in this

program we will now present a detailed calculation of eq.(3) for the case of a simple

model for the pressure,

g(iφ) = −2λ cos(φ eβ) , (5)

corresponding to a perfect gas model of the ions. The full partition function

corresponding to (5) (without the complex coupling to the external charge %f ) is the

well-known Sine-Gordon energy. In three dimensions it has been widely studied due to

its links to electrodynamics. Unlike the closely related model of charged hard-spheres

there is no phase transition [23]. In its discretized form the theory is regularized by the

lattice spacing.

For both the purpose of regularizing and simulating this theory, we will first

discretize it. Our dual model then is, by construction, entirely equivalent to this full,
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discrete Sine-Gordon system, as it includes all the fluctuations beyond mean-field theory

that are contained in this starting theory.

3. Discretization of the dual theory

We now turn to a definition and calculation of the functional integral (2), for the explicit

case of the symmetric electrolyte given by (5). The continuum action for the potential

that we start with is

h(φ) = ε
(∇φ)2

2
− 2λ cos(φ eβ)− i%fφ . (6)

We discretize this model at a spacing ` to a simple cubic lattice. The potential and

charges are associated with the sites of the lattice. Derivatives are replaced by lattice

differences, d`. The discretized energy corresponding to eq. (6) is then

h`(φ) = `ε
(d`φ)2

2
− 2λ`3 cos(φ eβ)− i`3%fφ .

We change the integration variable from φ to the scaled potential φ/(eβ), which gives

the (a-dimensional) statistical weight

βh`(φ) =
∑
sites

[
`ε

e2β

(d`φ)2

2
− 2λ̄ cos(φ)− i%̄φ

]
,

where we define λ̄ = β`3λ and ρ̄ = %f`
3/e. We note that `ε/e2β = `/(4π`B), with `B

the Bjerrum length. To define the dual formulation we now consider the discrete electric

field, E` = −d`φ, to be associated the links of the lattice and impose this constraint

using a delta-function integral over D`, which is also considered as link variable. The

entire formulation follows very closely the continuum calculation given above. We need

only to define the discrete equivalent of the divergence operator from the adjoint (or

matrix transpose) of the difference operator d`: div→ −dT` [24].

The partition function in its discretized form is thus

Z =

∫
D[D`]D[φ] e

−
∑( e2β

2`ε
D`

2+i(−dT` D`−%̄)φ−2λ̄ cos(φ)

)
.

This expression can be reorganized into

Z =

∫
D[D`] e

−
∑ e2β

2`ε
D`

2

∫
D[φ]e

∑
(−isφ+2λ̄ cos(φ))

= I[D`, J [φ]] (7)

with s ≡ −dT` D` − %̄. Here sums in the exponentials are understood as being over sites

for potentials and charges and over links for field components. It is here that we see

explicitly that the only step that is needed to complete the program is the integration

over the field φ. As the field φ in the expression (7) is purely local, we can drop the
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functional notation and thus have to deal with a simple integral for each site of the

discretization

z(s) =

∫
dφ e(−isφ+2λ̄ cos(φ)) . (8)

For a general model of electrolyte we can expect that this integral will be difficult to

perform analytically, but it can always be treated in a numerical manner, in order to

generate the exact effective theory for D`. We can make further analytic progress for

the case of the two-component electrolyte, which we now present in detail.

4. Two-component electrolyte

The standard way of proceeding to calculate z(s) would be to invoke complex integration.

The argument of the exponential function has zeroes at 2λ̄ sin(φ) = is, hence at

φ = sin−1(is/2λ̄), whereby the inversion of the sine function fixes the saddle to be

retained. Here, we will work through the saddle-point evaluation and its corrections

in a different manner, in view of our interest to have an approach which is adapted to

numerical computations.

The mathematical tool we use in our formalism is the Poisson summation formula

which expresses a sum over integer occupation numbers by an equivalent sum over

Fourier coefficients. This gives a mathematically rigorous formulation in which the

dominant contribution is the mean-field free energy already but gives a framework in

which higher-order corrections to the dual theory are expressed as an exact Fourier series,

with exponential convergence. Thus we now find an analytic expansion for eq. (8).

In order to implement this program we note that we first rewrite z(s) in the discrete

form

z(s) =
∑
n

δ(s− n) g(n) =
∑
n

δ(s− n) e−fe(n) (9)

where we then need to calculate the weighting function fe(s). In order to perform this

step we expand the exponentiated cosine in eq. (8) as a Taylor series of the two complex

exponentials using

exp (λ̄eiφ) =
∞∑
n=0

einφ+nµ

n!
, (10)

where for convenience we define µ = ln(λ̄). Substituting eq. (10) in eq. (8) and using

the definition of the delta function we find

z(s) =
∞∑

n1,n2=0

1

n1!

1

n2!
eµ(n1+n2) δ(s+ n1 − n2) (11)

where n1 and n2 represent the occupation numbers of positive and negative ions.
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In order to perform the summation, we can invoke the Poisson summation formula

which tells us that if g(n, s) is a function defined on integers and g̃ is its continuous

Fourier transform

z(s) =
∑
n

g(n, s) =
∑
k

g̃(2πk, s) =
∑
k

zk(s) (12)

where zk(s) is the contribution to the k-th Fourier mode to the total sum z(s). In order

to apply this identity we solve the delta-function constraint and reduce the problem to

a single summation, which leads to the expression

z(s) =
∑
n

g(n, s) =
∑
n

1

n!

1

(n+ |s|)!
eµ(2n+|s|) .

This expression is a simple function of the variable s, which can be tabulated, or

interpolated to arbitrary precision for numerical work.

Some additional care is, however, needed for our problem: we here require the sum

is over positive integers, whereas the Poisson formula applies for a sum over positive and

negative integers. This can be achieved by imposing a multiplicative weighting function.

We implement this first for the k = 0 contribution to the full partition sum eq. (12).

For convenience we go back to a continuous variable n with which we can write this

contribution as an integral over the summand of eq. (12); it thus is the naive integral over

the occupation number variable, forgetting about the discrete nature of the elementary

charges. It reads as

z0(s) =

∫ ∞
−∞

dnw(n) g(n, s)

where the weighting function is given by, e.g.,

w(n) =


0 if n < −1

e−1/n

e−1/n+e1/(1+n)
if− 1 < n < 0

1 if n > 0 .

This cross-over function is smooth and increases from zero to unity on the interval

−1 < n < 0. The choice of w(n) is non-unique; we note that the general theory of

Fourier analysis show that the final results does not depend on the particular choice

we have made. We also note that the extension of the factorial function to the real

numbers, which is needed to represent g(n, s) in its continuous form, is also non-unique.

The commonly used extension is Euler’s Gamma function, but alternative extensions

due to Hadamard are also possible [25].

The integral z0(s) is dominated for λ̄ > 1 by a saddle. We will also show that in

this limit the contributions zk(s) for |k| ≥ 1 are exponentially smaller and that to high

accuracy z(s) can be replaced by z0(s). To study the nature of the saddle we work with

an improved version of the Stirling formula

ln(n!) ≈ (n+ 1/2) ln(n+ 1/2)− (n+ 1/2) +O(1) = S(n)



A fluctuation-corrected functional of convex Poisson-Boltzmann theory 8

which correctly includes the term (lnn)/2 in its expansion. Replacing the single

continuous variable n again by two continuous variables n1 and n2 we then have the

expression

z0(s) =

∫
n1,n2

exp (µ(n1 + n2)− S(n1)− S(n2)) δ(s+ n1 − n2). (13)

The saddle-point is best studied by implementing the delta-function constraint with a

Lagrange multiplier τ , which leads to the following equations,

s = 2λ̄ sinh(τ)

n1 + 1/2 = λ̄e−τ (14)

n2 + 1/2 = λ̄e+τ .

On eliminating τ we find the values of the occupation numbers which extremize the

integrand:

n2 + 1/2 =
( s+ (s2 + 4λ̄2)

1/2
)

2

n1 + 1/2 =
(−s+ (s2 + 4λ̄2)

1/2
)

2
. (15)

When (s/λ̄) is small, both n1 and n2 equal the background occupation number λ̄. The

value of the saddle-point eq. (13) is

ln(z0) ≈ s ln

[
s

2λ̄
+

√
1 + (s/2λ̄)

2

]
−
√
s2 + 4λ̄2 − ln (λ̄) (16)

and we define f0(s) = − ln z0. With s small, z0 = O(e2λ̄).

We now evaluate the second derivative, ∆(s), of the action at the saddle

∆(s) =
1

n1 + 1/2
+

1

n2 + 1/2
=

1

λ̄2

√
4λ̄2 + s2 .

For small s, ∆(s) = 2/λ̄. At the saddle-point we have the quadratic approximation to

the statistical weight,

f(n, s) = f0(s) +
1

2
∆ (n− ns)2, ns = min(n1, n2) . (17)

According to the sign of s we use the smaller of n1 and n2 as the primary variable

mean-field occupation number. Performing the integral over the full occupation number

n in eq. (17) we find that the effective action for eq. (9) is

fe(s) = f0(s) +
1

2
ln(∆(s)) . (18)
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Figure 1. Comparison of the evaluation of the sum eq. (11), (blue dot-dash)

compared to the saddle point approximation eq. (16), (red dash) and the quadratic

approximation, eq. (18), (yellow dotted). Three different values of λ̄. For already

modest values of λ̄ = 3 (bottom) the quadratic approximation approximation is already

excellent with a good overlay of the exact and approximate curves. For λ̄ < 1 (top)

the mean field and quadratic approximations underestimate the true free energy. The

curves are shifted so that f(0) = 0.

With the help of the Poisson summation formula we now calculate the higher

Fourier contributions to the sum eq. (12) which come from the discrete nature of the

elementary charges. For λ̄ > 1 the Fourier components are also calculated in the saddle-

point approximation. We take the quadratic approximation to the energy eq. (17) and

regroup the positive and negative Fourier coefficients,

z̃k = (zk + z−k) = e−f0(s)

∫
2 cos (2πkn)e−∆(n−ns)2/2dn ,

which results in the expression

z̃k =
e−f0(s)

√
∆

2 cos(2πkns)e
−2k2π2/∆ .
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If we consider that ∆ = O(2/λ̄) then the amplitude of this contribution is

z̃k/z0 = O(e−π
2k2λ̄) .

If λ̄ & 1 then this contribution is strongly suppressed in comparison with the k = 0

contributions to the partition function.

We now calculate the importance of the crossover function w(n) which constrains

the sums and integrals to be over positive occupations. Near n = 0 the function

ln(n!) = O(1). The Fourier transform of the weighting function can be estimated by

a further saddle-point calculation to be O(1) × e−
√
k, [26]. We thus expect that the

contribution to the partition sum coming from the constraint of the sum over positive

occupation numbers is of O(1).

Finally, by a regrouping of the contributions we conclude that an expansion for the

Fourier partition sum eq. (12) is given by the formula

z(s) =
e−f0(s)√

∆(s)
(1 + 2 cos(2ns)e

−2π2/∆(s)) +O(1) ,

where −f0(s) ∼ 2λ̄ and we have kept just the first and largest non-trivial Fourier

component for z̃k.‡
We conclude that when the discretization is such that λ̄ > 1, we can drop the

oscillating terms as well as the end-point corrections to find the simplified expression

fe(s) = f0(s) +
1

4
ln

(
s2 + 4λ̄2

λ̄4

)
. (19)

This result is to be compared to the exact sum eq. (11) in Fig. 1. We see that the the

analytic expression is an excellent fit to the full numerical evaluation.

Thus for λ̄ > 1, the final effective functional for the displacement field D` is given

by the

heff =
∑
links

[e2β

`ε

D2
`

2
+ fe(−dT` D` − %̄)

]
,

where fe(s) is given by eq. (16) and eq. (19), and the measure includes the delta-functions

of eq. (9). This functional is valid beyond mean-field as it includes the fluctuations in

the underlying field φ, it is also explicitly an energy function that should be sampled by

Monte Carlo or molecular dynamics.

5. Conclusions

In this Letter we have given an explicit formulation of the duality-transformed Poisson-

Boltzmann theory, for the illustrative case of a system of a symmetric electrolyte. The

‡ We have also assumed that the background charge density is not so large that it overwhelms the

electrolyte concentration.
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partition function is given by a double integral over the potential-field variable φ and the

dielectric displacement field D`. The potential integral can be evaluated as a systematic

series with the help of the Poisson summation formula. The result is a Fourier series for

the φ integral. For λ̄ > 1 we evaluated this series analytically, but the Fourier transforms

can also be evaluated numerically for small λ̄. The final result is a theory which has

physical content identical to the Sine-Gordon model of a charged lattice gas, which goes

beyond mean field theory and includes all fluctuations in an exact manner. The final

theory remains clearly analytically intractable. However, it is of now of a form which is

simple to simulate, and to couple to external charges. This is in contrast to the original

field-theory formulation in terms of the potential, which included a complex coupling to

external charges. This opens the possibility of simulation of complex coupled situations

where electrostatic fluctuations are important.

Although we have derived our formulation for the case of the symmetric electrolyte

our approach is not limited to this choice and should allow the treatment of more

complex models of electrolyte, fully including fluctuations beyond mean-field theory in

their coupling to external soft-matter systems.
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