
HAL Id: hal-02344704
https://hal.science/hal-02344704

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clay mineral diversity and abundance in sedimentary
rocks of Gale crater, Mars

Thomas Bristow, Elizabeth Rampe, Cherie N Achilles, David F Blake, Steve J
Chipera, Patricia Craig, Joy Crisp, David Des Marais, Robert T Downs, Ralf

Gellert, et al.

To cite this version:
Thomas Bristow, Elizabeth Rampe, Cherie N Achilles, David F Blake, Steve J Chipera, et al.. Clay
mineral diversity and abundance in sedimentary rocks of Gale crater, Mars. Science Advances , 2018,
4 (6), pp.eaar3330. �10.1126/sciadv.aar3330�. �hal-02344704�

https://hal.science/hal-02344704
https://hal.archives-ouvertes.fr


Science Advances                                                                                                                          Page 1 of 18 

 

Clay Mineral Diversity and Abundance in Sedimentary Rocks of Gale Crater, Mars 1 

 2 

Authors 3 

T. F. Bristow,1* E. B. Rampe,2* C. N. Achilles,3 D. F. Blake,1 S. J. Chipera,4 P. Craig,5 J. A. 4 

Crisp,6 D. J. Des Marais,1 R. T. Downs,3 R. Gellert,7 J. P. Grotzinger,8 S. Gupta,9 R. M. Hazen,10 5 

B. Horgan,11 J. V. Hogancamp,2 N. Mangold,12 P. R. Mahaffy,13 A. C. McAdam,13 D. W. Ming,2 6 

J. M. Morookian,6 R. V. Morris,2 S. M. Morrison,10 A. H. Treiman,5 D. T. Vaniman,14 A. R. 7 

Vasavada,6 A. S. Yen6  8 

 9 

Affiliations 10 
1NASA Ames Research Center, Moffett Field, CA 94035, USA 11 
2NASA Johnson Space Center, Houston, TX, 77058, USA  12 
3Department of Geosciences, University of Arizona, Tucson, AZ, 85721, USA  13 
4Chesapeake Energy, Oklahoma City, OK, 73154, USA  14 
5Lunar and Planetary Institute, Houston, TX, 77058, USA  15 
6Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA  16 
7Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada. 17 
8Division of Geologic and Planetary Sciences, California Institute of Technology, Pasadena, CA, 18 

91125, USA  19 
9
 Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, 20 

UK. 21 
10Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA 22 
11Earth, Atmospheric, and Planetary Sciences Department, Purdue University, West Lafayette, 23 

IN 47907, USA 24 
12LPG, UMR6112, CNRS, Université Nantes, Université Angers, Nantes, France 25 
13NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 26 
14Planetary Science Institute, Tucson, AZ, 85719, USA  27 

 28 

*Correspondence to:  thomas.f.bristow@nasa.gov, elizabeth.b.rampe@nasa.gov  29 

 30 

Abstract 31 

Clay minerals provide indicators of the evolution of aqueous conditions and possible 32 

habitats for life on ancient Mars. Analyses by the Mars Science Laboratory rover, Curiosity, 33 

show that ~3.5 Ga fluvio-lacustrine mudstones in Gale crater contain up to ~28 wt.% clay 34 

minerals. Here we demonstrate that the species of clay minerals deduced from X-ray diffraction 35 

and evolved gas analysis show a strong palaeoenvironmental dependency. Whilst perennial lake 36 

mudstones are characterized by Fe-saponite, we find that stratigraphic intervals associated with 37 

episodic lake drying contain Al-rich, Fe3+-bearing dioctahedral smectite, with minor (3 wt.%) 38 

quantities of ferripyrophyllite, interpreted as wind-blown detritus, found in candidate aeolian 39 

deposits. Our results suggest that dioctahedral smectite formed via near-surface chemical 40 

weathering driven by fluctuations in lake level and atmospheric infiltration, a process leading to 41 
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the redistribution of nutrients and potentially influencing the cycling of gases that help regulate 42 

climate.  43 

 44 

Teaser  45 

Clay minerals found in Gale crater, Mars, record surficial chemical weathering and changing 46 

conditions in an ancient lake.  47 

 48 

Introduction 49 

The Mars Science Laboratory (MSL) rover Curiosity has documented sedimentary rocks 50 

on the floor of Gale crater and lower slopes of the crater’s central mound, Aeolis Mons 51 

(informally known as Mt. Sharp), since landing in August 2012 (1,2). Early in the mission, at 52 

Yellowknife Bay (YKB) (1), lacustrine mudstones of the Sheepbed member were shown to 53 

contain ~20 wt.% clay mineral, which was identified as Fe-rich saponite. Saponite was proposed 54 

as forming close to the time of sediment deposition by isochemical aqueous alteration of detrital 55 

olivine under anoxic to poorly oxidizing conditions (3-5). By providing constraints on pH and 56 

possible substrates for chemolithoautotrophs during deposition, the clay minerals are key 57 

indicators of an ancient habitable lake (1,3,4). D/H ratios of clay minerals combined with their 58 

mode of formation also constrain the global inventory of martian water ~3.5 Ga (6).  59 

YKB gave an early glimpse of part of a spatially and temporally extensive Early 60 

Hesperian (~3.5 Ga) fluvial-lacustrine system that likely occupied much of Gale crater, which 61 

MSL continues to explore as part of its now >18 km traverse of the crater floor and lower slopes 62 

of Mt. Sharp (2). Mineralogical and geochemical investigations of these sediments have revealed 63 

the dynamic natures of lake water chemistry and early diagenetic conditions, with evidence of 64 

redox stratification in the lake, and/or variations in pH and Eh during subsequent diagenesis (7,8). 65 

Clay minerals were found in sandstones and mudstone samples stratigraphically above YKB at 66 

Windjana in the Kimberley formation, and various samples of the Murray formation outcrops in 67 

the Pahrump Hills (7,9,10) (Fig. 1, 2). The identified clay minerals largely belong to the 2:1 68 

group (7,9), a family of phyllosilicates with a diverse range of physical, chemical, and 69 

crystallographic properties (11-13). However, their low abundance (~10 wt.% or less), combined 70 

with XRD peak overlap from co-occurring pyroxene minerals (7,9,10), prevent detailed 71 

crystallography and chemical characterization. As a result, key constraints on the origin and 72 
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genesis of clay minerals are not accessible. Here we provide these details for clay minerals in the 73 

four most recent drill samples of Murray formation mudstones, stratigraphically above the basal 74 

Pahrump Hills member (Fig. 1).  75 

 76 

Results 77 

The four Murray formation samples we investigated are drill powders, collected from a 78 

depth of 5 to 6 cm in the bedrock, by Curiosity’s Sample Acquisition, Processing, and Handling 79 

(SA/SPaH). The samples in stratigraphic order, shown in Fig. 1, are: Oudam, from a ~25 m-thick 80 

unit of cross-stratified siltstones and very-fine grained sandstones of the Hartmann’s Valley 81 

member, likely aeolian in origin, although a fluvial interpretation has been discussed; Marimba 82 

and Quela, which come from a ~30 m-thick package of finely laminated mudstones of the 83 

Karasburg member, representing a return to subaqueous deposition; and Sebina, from the Sutton 84 

Island member that consists of heterolithic mudstone-sandstones containing desiccation cracks 85 

and other sedimentary structures suggesting episodic drying and subaerial exposure of the Gale 86 

lake (14-16). By examining the clay mineralogy of samples in their geological context, we 87 

constrain the timing, locus and mechanisms of clay mineral formation. Our findings are relevant 88 

to debates concerning surficial vs. crustal origins of clay minerals detected from orbit, which 89 

have implications for the planetary hydrology and climate of early Mars (17-19).  90 

CheMin X-ray diffraction (XRD) analysis (Materials and Methods) show that clay 91 

minerals make up ~15 to 28 wt.% of the bulk rock with similar contributions to XRD patterns in 92 

Marimba, Quela and Sebina (Table 1). As observed in nearly every clay mineral bearing sample 93 

collected by MSL (Oudam is the exception, as described below), broad basal reflections at ~10 94 

2 CoK, (~10 Å), indicate the presence of 2:1 group clay minerals (Fig. 3A). The 02l clay 95 

mineral band, which is sensitive to the occupancy and species of cations within the octahedral 96 

sheets of clay minerals (20), peaks at ~22.9 2 CoK (4.50 Å; Fig. 3B). This band position is 97 

characteristic of dioctahedral 2:1 clay minerals (13,20). Trioctahedral smectites in YKB samples 98 

(John Klein and Cumberland) have a distinctly different 02l band position (~22.7 2, 4.58 Å) 99 

(Fig. 3B) (3,4).  100 

The CheMin sample cells maintain near-constant, very low humidity, which would 101 

promote loss of interlayer H2O and collapse of smectite interlayers, making them difficult to 102 

distinguish from illite based on basal reflection position alone (3,4). However, illite, which 103 
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typically contains fixed K in the interlayer (4,11-13), does not appear to be a significant 104 

component of these samples based on the lack of correlation between clay content of Murray 105 

formation mudstones and K content of the bulk samples (Fig. S1). Smectitic clay minerals appear 106 

to be most abundant, with the K contents of samples accounted for by sanidine, jarosite and X-107 

ray amorphous material (10, Table S1).  108 

SAM evolved gas analyses (EGA, see Materials and Methods) give additional 109 

information on the nature of the octahedral sheets of the Murray clay minerals. The temperature 110 

of H2O loss during heat-driven dehydroxylation of clay minerals is sensitive to cation content, 111 

occupancy, and the position of the vacant octahedral sites in dioctahedral clay minerals (21-23). 112 

Peak H2O release of the Marimba sample occurred at 610C and 780C, indicating the presence 113 

of both dioctahedral and trioctahedral components, respectively (Fig. 4) (21-24). EGA data are 114 

inconsistent with the most Fe(III)-rich dioctahedral smectites such as nontronite, which have 115 

diagnostic dehydroxylation temperatures of <550C (21-24). Comparison of the dioctahedral-116 

assigned EGA peak at 610C with laboratory studies of dehydroxylation temperature systematics 117 

as a function of Fe content suggest that the dioctahedral smectite likely contains ~5 wt.% Fe2O3, 118 

requiring at least half of octahedral sites be occupied by Al (25). The peak water release at 780C, 119 

assigned to Mg-rich trioctahedral smectite, is higher than the 725C peak observed for YKB 120 

samples (24), indicating that trioctahedral smectites in Marimba have a comparatively lower Fe 121 

content.  122 

These observations are consistent with the CheMin XRD analyses. The intermediate 123 

position of the 02l clay mineral band is best modeled when measured clay mineral standards or 124 

structural models of both trioctahedral and Al-rich dioctahedral smectites are used in Rietveld 125 

refinements of the XRD patterns (Fig. 3C, Materials and Methods). Based on the combination of 126 

XRD, EGA, and bulk chemical data measured by the Alpha Particle X-ray Spectrometer (APXS) 127 

we find that a mixture of Al-rich dioctahedral and Mg-rich trioctahedral smectite is present in 128 

Marimba, Quela and Sebina. This is the first in situ detection of dioctahedral smectite in Gale 129 

crater.  130 

There have been no direct orbital detections of phyllosilicate in strata traversed (so far) 131 

by Curiosity. Recent orbital VNIR spectra have documented signatures of Al/Fe-smectites in 132 

laterally (and presumably time equivalent) units of the Karasburg and Sutton Island members of 133 

the Murray formation (26, 27, Fig. S2). Our rover-based results presented here are the first 134 
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crystallographic ground truth of the thousands of orbital phyllosilicate detections, which are 135 

essential inputs for Mars science and mission planning (17-19). Our results confirm the presence 136 

of Al-rich dioctahedral smectite (albeit in conjunction with additional trioctahedral smectite) and 137 

other mineralogical information that helps constrain the origin and environmental implications of 138 

these clay minerals. 139 

By incorporating structural models of clay minerals, with the b-unit cell parameter 140 

constrained by dehydroxylation temperatures observed in Marimba, Rietveld refinements of 141 

XRD patterns provide an estimate of the ratio of dioctahedral to trioctahedral smectites 142 

(Materials and Methods). The proportion of dioctahedral smectite increases up-section, with 143 

dioctahedral:trioctahedral ratios of 1:2, 1:1 and 5:3 for Marimba, Quela, and Sebina, respectively. 144 

The formation of Al-bearing dioctahedral smectites from basaltic precursors requires greater 145 

element mobility and more oxidizing conditions than the suboxic, isochemical aqueous alteration 146 

environments proposed for the Fe-saponite of YKB (3,4). For example, in terrestrial weathering 147 

profiles of basaltic rocks, the initial alteration products of olivine typically contain trioctahedral 148 

smectite species with compositions (e.g., Mg/Fe) related to those of the primary minerals (13). 149 

As alteration progresses, trioctahedral smectites are replaced by dioctahedral clay minerals via 150 

removal of Fe2+ and Mg2+ and/or oxidation of Fe2+ and passive enrichment of Si and Al (11-13). 151 

Oxidizing conditions also tend to lower pH, which is less favorable for formation of Mg–152 

trioctahedral clay minerals (28). As a consequence, trioctahedral smectites are rarely found in 153 

basaltic soils. 154 

Formation of dioctahedral smectite formation is not restricted to surface weathering 155 

profiles; on a basaltic planet like Mars dioctahedral smectites could form in a variety of surface 156 

and subsurface aqueous environments (17-19,28). Several observations indicate that the smectitic 157 

clay minerals in Marimba, Quela and Sebina were subject to modification or formed close to the 158 

time of deposition within the Gale sedimentary system. There is no evidence from orbital VNIR 159 

spectra for Al-bearing clay minerals in the rim and walls of Gale crater, suggesting that clay 160 

minerals we describe were not sourced there (29). The accompanying trends in sedimentary 161 

facies, as well as bulk mineralogy and geochemistry of mudstones, indicate that the occurrence 162 

of Al-bearing, dioctahedral smectite corresponds with a shift in environmental conditions and the 163 

degree of chemical alteration in Gale crater lake sediments. Fig. 2 shows the changes in 164 

abundances of environmentally sensitive mineral components along MSL’s traverse, including: 1) 165 
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a transition from magnetite to hematite as the main Fe-oxide; 2) an increase in the abundances of 166 

Ca-sulfates, which appear to be matrix components above the Pahrump Hills member of the 167 

Murray formation and thus indicators of near-surface evaporative processes; and 3) an overall 168 

reduction in the quantity of reactive mafic minerals – pyroxene and olivine. These mineralogical 169 

trends broadly correspond with observed sedimentary indicators of shallowing and episodic lake 170 

desiccation (14,16). The observed increase in the degree of aqueous alteration of mafic detritus 171 

in the upper part of the Murray formation is also reflected in chemical indices of alteration 172 

derived from bulk geochemical analyses (30).  173 

Our preferred mechanism for the production of Murray dioctahedral smectites involves 174 

open-system aqueous alteration of basaltic detritus in the lake, near the time of deposition, with 175 

elemental mobilization and oxidation driven by periodic desiccation and migration of the water 176 

table. Trioctahedral smectites may be the remnants of early-stage alteration of olivine or 177 

pyroxene, as proposed for YKB (2-5), or the product of high Mg2+ activities in lake water and 178 

sedimentary pore water caused by evaporation (31). Higher dehydroxylation temperatures 179 

indicate elevated Mg content in Murray saponite compared with YKB - a finding that is 180 

consistent with salinity-driven clay mineral formation mechanisms (28). 181 

Although Oudam contains just ~3 wt.% phyllosilicates, their basal (001) diffraction at 182 

~9.6 Å is distinct from those of every other phyllosilicate-bearing sample measured by CheMin 183 

to date. Interlayer collapse to <10 Å, potentially induced by the dry air inside CheMin (4), is 184 

observed in certain smectites with small, monovalent cations, such as Na+, in the interlayer (32). 185 

However, we do not think the ~9.6 Å peak in Oudam stems from collapsed smectite. Other 186 

smectite-bearing samples maintain basal spacings of ~10 Å inside CheMin, indicating the 187 

prevalence of bivalent interlayer cations (4). No evidence of a process leading to the preferential 188 

Na-exchange of Oudam clays is apparent from rover observations. Instead, Oudam siltstones 189 

appear to have been bathed in Ca2+-rich fluids as shown by Ca-sulfate minerals in the matrix 190 

(Table 1). 191 

A basal diffraction of ~9.6 Å is also characteristic of high-charge or zero-layer-charge 192 

phyllosilicates that lack interlayer H2O, which include certain micas (e.g., paragonite, margarite) 193 

and species in the pyrophyllite-talc series (e.g. ferripyrophyllite). The EGA trace for Oudam 194 

shows a single H2O release at 470C, which is reasonably attributable to dehydroxylation of a 195 

Fe(III)-rich phyllosilicate (21). Ferripyrophyllite is consistent with both XRD and EGA data (33). 196 
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All of the candidate 9.6 Å phyllosilicate analogs recognized are the products of high-temperature 197 

hydrothermal and metamorphic processes. The absence of textural or mineralogical indicators of 198 

these processes at Oudam, and the presence of sedimentary structures indicative of an aeolian 199 

origin (14), leads us hypothesize that Oudam phyllosilicates did not form in situ, but are wind-200 

blown detritus sourced elsewhere (29).  201 

 202 

Discussion 203 

The contrast between the clay mineralogy of the Marimba, Quela, and Sebina mudstones 204 

with that of the 9.6 Å phyllosilicate in Oudam provides additional support linking smectite 205 

abundance and speciation with syn-depositional neoformation and transformation processes 206 

rather than later period of genesis during burial diagenesis. We note that the Oudam sample has 207 

the same basic mineralogy as other Murray formation mudstones (Table 1), much of which could 208 

serve as precursors to smectite formation in an invasive diagenetic fluid model (e.g., 26). In 209 

terrestrial sedimentary basins, the high porosity and permeability typical of sandstones promotes 210 

more extensive production of burial diagenetic clay minerals compared with mudstones. Based 211 

on sedimentological observations it appears that Oudam sediments spent less time in a dynamic 212 

aqueous environment close to the water table.  213 

The discovery of a broad spectrum of mineralogical facies at Gale crater provides a 214 

window into the history of near-surface aqueous alteration processes on ancient Mars. On Earth, 215 

aqueous reactions at the juncture of the atmosphere, hydrosphere and lithosphere (termed the 216 

critical zone) are central to biogeochemical cycles that regulate climate and biological 217 

productivity of the planet through the draw-down of greenhouse gases and release of nutrients 218 

(34). The unexpected abundance and diversity of clay minerals in sedimentary rocks at Gale 219 

crater and longevity of this sedimentary system (2) indicate near-surface aqueous alteration 220 

continued into the Early Hesperian on Mars.  When integrated with sedimentological 221 

observations, clay mineral diversity provides additional insight into how environmental 222 

conditions evolved during and after the deposition of the strata of lower Aeolis Mons. Through 223 

the continued survey of sedimentary rocks at Gale, which are predicted to encompass a range of 224 

conditions, MSL has the opportunity to develop an understanding of how the martian critical 225 

zone operated and influenced planetary evolution.  226 

 227 
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 228 

 229 

Materials and Methods 230 

CheMin collects X-ray diffraction (XRD) data using Co radiation in transmission 231 

geometry (see ref. 35 for more details). Curiosity’s Sample Acquisition, Processing, and 232 

Handling (SA/SPaH) system was used to drill Oudam, Marimba, Quela, and Sebina from the 233 

Murray fm. bedrock (the majority of sample powder delivered to CheMin comes from a depth of 234 

5 to 6 cm), sieve the resulting powder to <150 μm, and deliver ~50 mm3 of material to CheMin 235 

analysis cells, which have either Mylar or Kapton windows. Oudam and Marimba were delivered 236 

to Mylar cells, and Quela and Sebina were delivered to Kapton cells. Sample cells are reusable 237 

and located on a rotating sample wheel. The cells are shaken piezoelectrically during analysis to 238 

randomize grain orientations, presenting all lattice orientations to the incident Co X-rays. A CCD 239 

detector is used to determine the energy and position of photons striking the CCD; fluoresced 240 

photons provide XRF data and the two-dimensional (2D) position of each diffracted Co Kα 241 

photon is used to construct the diffraction pattern; circumferential integration of Debye 242 

diffraction rings, corrected for arc length, produces a conventional 1D XRD pattern with 2θ 243 

resolution of ~0.3° (e.g. Fig. 3). Positions of detected photons are summed over repeated 10-sec 244 

measurements for several hours during each night of analysis. Samples are generally analyzed 245 

for four or more nights, spaced at time intervals determined by rover energy budget, allowance 246 

for operating other instruments, and other operational considerations. Plagioclase is a common 247 

phase in almost all samples, and the 1D diffraction patterns are corrected for minor variations in 248 

sample-to-detector distance using the best fit to plagioclase c and γ unit cell parameters (10). 249 

Abundances of crystalline phases in the Oudam, Marimba, Quela, and Sebina samples were 250 

determined by Rietveld analysis using Jade software. The mineral quantities presented in this 251 

paper (Table 1) differ slightly from results available in the Planetary Data System (PDS) 252 

(https://pds.nasa.gov). These new results are products of Jade-based Rietveld refinements that 253 

incorporate clay mineral standard patterns in addition to structural models of crystalline phases. 254 

We find this method improves model fits of measured XRD patterns.  255 

The clay mineral standards used in these hybrid refinements were measured on CheMin 4 256 

– a prototype instrument that is similar to the CheMin flight instrument. We found that including 257 

both dioctahedral and trioctahedral smectite clay mineral standards led to the best replication of 258 

measured XRD patterns in Jade, consistent with our conclusion that Marimba, Quela, and Sebina 259 
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contain both di- and trioctahedral smectite phases. Smectite clay mineral standards were heated 260 

to 200ºC for 10 hours before analysis to remove interlayer H2O and collapse basal spacing to ~10 261 

Å, to more closely replicate the state of clay minerals within MSL. These approaches produce 262 

accurate identification and detection for virtually all crystalline phases at abundances greater 263 

than ~1 wt.%. The abundances of amorphous components and poorly crystalline clay minerals 264 

are determined using the program FULLPAT (36) and remain as reported in the PDS.  265 

The phases contributing to the pattern in the vicinity of the clay mineral 02l band were 266 

examined in more detail using BGMN, a Rietveld refinement program that can generate XRD 267 

patterns of partially disordered clay minerals and simultaneously consider contributions from 268 

crystalline phases (37,38). BGMN uses instrument profiles as part of the XRD pattern modeling 269 

procedure. BGMN instrument profiles are generated based on description of the XRD 270 

instruments’ geometry using raytracing simulations. BGMNs’ ray tracer does not support 271 

simulation of the flat CCD detector that collects CheMin patterns; therefore, we approximate 272 

profiles using a point detector, making adjustments to instrument geometry parameters until the 273 

profile function reproduces unit cell parameters and peak shapes of the beryl standard that 274 

resides inside CheMin and was measured earlier in the mission.  275 

BGMN refinements were used to estimate the relative proportions of dioctahedral and 276 

trioctahedral smectites in Marimba, Quela and Sebina. These refinements include structural 277 

models of dehydrated dioctahedral smectite (based on montmorillonite) and a trioctahedral 278 

smectite (saponite). The b-unit cell parameter of the dioctahedral smectite phase was constrained 279 

to <9 angstroms during refinements, based on the relation between dehydroxylation temperature 280 

and Fe content of dioctahedral smectites in ref. 25. Note that we report the ratios of 281 

dioctahedral:trioctahedral smectites from BGMN refinements because we do not have a reliable 282 

way to quantify the amount X-ray amorphous material in our samples with BGMN. 283 

To distinguish between illitic and smectitic clay minerals, we use potassium abundance 284 

data obtained by the APXS onboard the Curiosity rover for Murray formation samples analyzed 285 

between sols 782 and 1496. These data are reproduced in Table S2 with their reported analytical 286 

uncertainties. A complete description of the instrument, as well as the methods used for 287 

calibration and quantification of APXS data, can be found in Gellert et al. (39) and Campbell et 288 

al. (40). In summary, APXS is a contact instrument with Curium-244 sources that induce 289 

Particle-Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF) to determine the 290 
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abundance of major, minor, and trace elements from sodium to bromine in soil and rock targets. 291 

Low atomic number (Z) element X-rays stem from the topmost 5 microns of the sample, higher 292 

Z elements like Fe are detected from the upper ~50 microns. The APXS is mounted on a turret at 293 

the end of the Curiosity rover’s arm and is deployed on selected targets along the rover traverse 294 

to determine their elemental composition. The sampled area is about 1.7 cm in diameter when 295 

the instrument is in contact with the sample, and APXS spectra represent the average 296 

composition over the sampled area.  297 

The Sample Analysis at Mars (SAM) instrument suite consists of a quadrupole mass 298 

spectrometer (QMS), a six-column gas chromatograph (GC), and a tunable laser spectrometer 299 

(TLS) connected to a gas processing system that includes two pyrolysis ovens (24,41,42). Gases 300 

evolved during pyrolysis of samples can be sent to several of these instruments; here we focus on 301 

data from the direct QMS detection of gases during sample heating, referred to as evolved gas 302 

analysis mass spectrometry (EGA-MS). Volatiles evolved during pyrolysis and their evolution 303 

temperatures can be used to inform the mineralogy or organic chemistry of samples. For further 304 

information about the SAM instrument and its operation see refs. 24,41,42. 305 

 Splits of the <150 μm portion of the Oudam and Marimba sample powders were 306 

delivered by SA/SPaH into cleaned (by heating to >800°C) quartz sample cups. The mass of 307 

portions delivered to SAM cups is not measured in situ but is estimated to be 45 ± 18 mg (2σ) 308 

based on sample volume delivered during experiments with the Collection and Handling for 309 

Interior Martian Rock Analysis (CHIMRA) system testbed on Earth and analytical models 310 

(41,42). Sample fines were then heated from ~30°C (ambient SAM temperature) to ~860°C at 311 

35°C /min under a helium carrier gas flow of ~0.8 standard cubic centimeters per minute (sccm) 312 

and ~25 mb of gas pressure in the sample pyrolysis ovens. A split of gases evolved from the 313 

sample during heating was swept into the QMS inlet and detected by the mass-to-charge ratio 314 

(m/z) of the molecules. If the main mass of a molecule saturated the MS detector, as was the case 315 

for m/z 18 from H2O, then a signal for an isotopolog (e.g., H2
18O at m/z 20 for H2O) or QMS 316 

fragment of the molecule (e.g., m/z 17 for H2O) was used to study the evolution of a molecule 317 

with temperature. 318 

 319 

 320 

Supplementary Materials 321 
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table S1. Data used to infer the K content of clay minerals. 322 

fig. S1. Comparison of the clay mineral and potassium content of Murray formation samples. 323 

fig. S2. Comparisons of CRISM smectite signatures in the Murray Formation vs. the 324 

phyllosilicate trough. 325 

 326 

 327 
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Figures and Tables 459 

 460 

Table 1. Mineralogical composition (wt. %) of Oudam, Marimba, Quela, and Sebina with 461 

1 errors. Detection limits for crystalline materials are 0.5 wt.%. 462 

mineral Oudam Marimba Quela Sebina 

Andesine 27.8 ± 0.5 14.0 ± 0.9 13.5 ± 0.7 10.7 ± 0.4 

Hematite 13.9 ± 0.4 6.4 ± 0.4 7.1 ± 0.4 6.9 ± 0.2 

Ca-sulfate 6.3 ± 0.3 7.0 ± 0.6 5.5 ± 0.4 7.4 ± 0.6 

Sanidine -  2.4 ± 0.6 2.3 ± 0.5 1.4 ± 0.4 

Pyroxene 5.3 ± 0.9 0.7 ± 0.6 2.7 ± 0.7 2.8 ± 0.4 

Jarosite -  At detection At detection 0.9 ± 0.2 

Quartz 0.7 ± 0.1 At detection At detection At detection 

Clay Minerals 3 ± 1 28 ± 5 16 ± 3 19 ± 4 

Amorphous 43 ± 20 40 ± 20 51.7 ± 25 51.1 ± 25 

 463 

 464 
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 465 
 466 

Figure 1. Stratigraphic column of sedimentary rocks at Gale crater observed by MSL, 467 

showing positions of drill samples. The stratigraphic framework of Gale crater sediments 468 

shown here was established in ref. 2 and is actively updated and refined through the efforts 469 

of the MSL sedimentology/stratigraphy working group (e.g. ref. 14). 470 
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 472 

 473 
 474 

Figure 2 – Changes in abundances of environmentally sensitive mineralogical components 475 

in mudstones along MSLs’ traverse. Samples are arranged in stratigraphic order. Mineral 476 

abundances and associated 1 errors shown for John Klein and Cumberland, Confidence 477 

Hills to Buckskin, and Oudam to Sebina, are sourced from ref. 10, 7 and table 1, 478 

respectively.  479 

 480 
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 481 
Figure 3. X-ray diffraction patterns of clay mineral bearing sample from Gale Crater. (A) 482 

Comparison of XRD patterns from Oudam, Marimba, Quela, and Sebina, with peaks 483 

assigned to clays minerals and other component minerals (A = anhydrite, B = bassanite, H 484 

= hematite, P = plagioclase). (B) Close up comparison of Marimba, Quela, Sebina, and 485 

YKB XRD patterns with trioctahedral and dioctahedral smectite standards (SapCa-1  486 

saponite and SAz-1 montmorillonite), showing the difference in 02l band position 487 

corresponding to a difference in octahedral occupancy. (C) BGMN model of the 02l region 488 

of Marimba showing contributions from trioctahedral and dioctahedral smectites. 489 

 490 
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 491 
 492 

Figure 4 – SAM evolved H2O release of Marimba and Oudam. Background has been 493 

subtracted from the EGA traces, the counts are not scaled. 494 


