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1- Introduction

➢ Bubble column & advantages

➢ Design & scale up (understanding complex hydrodynamics)

➢ Thin gap bubble column (millimetric thickness)

Applications

Photo-reactor for 
water photolysis

Thin-film Heat 
Exchangers

Fischer–Tropsch
bubble column 
slurry reactor

Membrane 
Bioreactor (MBR)

General

25 cm × 15 cm × 7 mm
Flat Panel PBR (Airlift)

(Soulies et al., 2013)

Specific Photobioreactor (PBR) for 

microalgae culture



2- Context & objectives of the project 
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Photobioreactor Intensification

GOAL

Hydrodynamics and gas liquid mass transfer in 

thin gap bubble column with non-Newtonian 

liquid phase.

Such as: Microalgae culture at high 

concentration (Soulies et al.,2013)

Biofacade PBR-Airlift Flat Panel PBR-Airlift

Thin gap bubble column

Characterization of thin gap bubble column (4 mm) with different 

non-Newtonian model fluids and sparging conditions.

Outcomes:

Global characterization :

• Gas Holdup

• Flow Regime Transition

• Mixing Time

• Gas Liquid Mass Transfer Coefficient

Local characterization :

• Gas Phase (Shadowgraphy)

• Liquid Phase (PIV)

✓ Effect of Confinement

✓ Effect of bubble size at sparger

✓ Effect of rheological properties of fluids

Objectives

(Soulies et al.,2013)(Todisco,2019)
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3-Materials and Methodology

❖ The rheological behaviour switches from Newtonian to non Newtonian, when microalgae cell concentration increases.(Soulies et al., 2013).

❖ For Chlorella vulgaris, three distinct rheological behaviour are observed.

❖ Microalgae culture data of (Souliès et al,. 2013) at shear thinning

behaviour (41.5g/l) compared to the rheological data of CMC and XG

determined by Rheometer (PAAR Physica® MCR500).

❖ Relationship between viscosity (𝜇𝑒𝑓𝑓) and shear rate 𝛾 (𝑠−1) :

𝝁𝒆𝒇𝒇= K˙𝜸n−1 (Power Law Model)

K is the flow consistency index and n is flow behaviour index.

Methodology to mimic biological culture.

RHEOLOGICAL BEHAVIOUR OF CHLORELLA 
VULGARIS AT HIGH CONCENTRATION
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3.1

Newtonian (N) Shear Thinning (ST) Yield Stress (YS)

𝑪𝒙< 30 g/L 30 g/L <𝑪𝒙< 65 g/L 𝑪𝒙 > 65 g/L
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Experimental Setup3.2

➢ Thin-gap bubble column (4 mm * 300 mm * 1200 mm).

➢ Gas sparging with 15 capillaries.

➢ Four capillary diameters 0.254, 0.508, 0.762 and 1.016 mm.

➢ Liquid height 950 mm corresponding to liquid volume 1.17 litre.

➢ Gas flowrate is adjusted using EL mass flowmeter.

➢ 2 pressure sensors (KELLER PR25).

➢ p1 for conductivity and p5 for 𝑂2 sensors.

9
5

0
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Bubble Column: allows the culture mixing and ensures the gas-liquid transfers that is necessary for the growth of 

microorganisms. 

3 flow regimes:

homogeneous transition heterogeneous

Hydrodynamics in a bubble column3.3
12th ECCE _ Florence, 15-19 Sept 2019 

Preferred regime for microalgae culture
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Methods

εG =f(UGsup)
A

𝜖𝐺 = 1 −
∆𝑃

𝜌𝑙𝑔∆ℎ

Uswarm=f(UGsup)
B

𝑈𝑠𝑤𝑎𝑟𝑚 =
𝑈𝐺𝑠𝑢𝑝

∈𝐺

<jGL> =f(εG) C <𝑗𝐺𝐿 >= 𝑈𝐺𝑠𝑢𝑝 ∗ (1−∈𝐺)

B=Zuber and Findley (1965) 
C=Wallis (1969) 

A
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Gas holdup measurement and characterization of flow regimes
( Results of Tap water-0.254 mm capillaries)

Measurement Techniques3.4

By measuring the differential pressure

Δh

P1

P2

𝜺𝑮 = 𝟏 − ∆𝑷
𝝆𝑳𝒈∆𝒉
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➢ Tracer injection of 2 mL of a NaCl solution at 200 g/L .

➢ Experiments triplicated for water and repeated 5 times for non-

Newtonian fluids.

➢ Deoxygenation of the reactor by aeration with 𝑁2 sparging.

➢ 𝑂2 concentration as a f (t) during the deoxygenation & reoxygenation 

step. The slope of Eq: 2 gives the value of ‘kLa’.

li
n
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n

Perfectly mixed liquid phase & 
constant gas composition

Deoxygenation-Reoxygenation Curves

Conductivity Method Mixing Time ( 𝒕𝒎 ) Deoxygenation - Reoxygenation Method kLa

Eq:2

Conductivity 

Sensor

Tracer injection 

1
2
0
0
 

m
m

300 mm

Mixing Time determination
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Measurement Techniques….3.4

(Thobie et al., 2017)

𝑑𝐶

𝑑𝑡
= 𝑘𝐿𝑎 (𝐶∗ − 𝐶(𝑡))

𝑙𝑛
𝐶∗ − 𝐶(𝑡)

𝐶∗ − 𝐶(𝑡 = 0)
= 𝑘𝐿𝑎. 𝑡

𝐶∗= 𝑂2 saturation concentration Eq:1



𝐈𝐧𝐟𝐥𝐮𝐞𝐧𝐜𝐞 𝐨𝐟 𝐜𝐨𝐧𝐟𝐢𝐧𝐞𝐦𝐞𝐧𝐭 𝐨𝐧 gas holdup (𝜺𝑮)
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Water : homogeneous regime, 𝜀𝐺 is slightly greater than in conventional BCs.
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4. Results and Discussion
4.1

CMC & XG : 𝜀𝐺 is higher than in conventional BCs for 

all three regimes

Coalescence effect



Elastic effect Influence of front 

& back walls
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Influence of fluid rheology & bubble size at sparger on 𝜺𝑮4.2
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Influence of front 

& back walls

Influence of front 

& back walls

Elastic effect

➢ Opposite in unconfined BC : water have higher 𝜀𝐺 then nN solutions.

➢ Effect of the confinement and higher ‘tr’ .
➢ Similar results were observed by Bohm et al.,2014 for confined 

column (5 mm gap).



Influence of front 

& back walls
Elastic effect

Influence of fluid rheology & bubble size at sparger on 𝜺𝑮4.2
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Influence of front & 

back walls
Influence of front 

& back walls



Influence of liquid rheology & bubble size at sparger on Mixing time (𝒕𝒎)4.3
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➢ 𝑡𝑚 with the       𝑈𝐺𝑠𝑢𝑝
➢ 𝑡𝑚 with the      𝑑𝑐𝑎𝑝

➢ 𝑡𝑚 in nN higher than water (viscosity effect), especially in homogeneous & transition regimes.
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➢ The trajectory, fluctuations and the bubble shape in water is much different than nN fluids. 
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Influence of confinement on kLa4.4

Comparison of kLa (water) with kLa in infinite columns Comparison of kLa (CMC and XG) with kLa in infinite columns 

➢ Confined BC kLa results vs unconfined BC kLa results.

➢ The value of kLa lower then in conventional BCs. (Thobie et al.,2017 , for water and glycerol , same thickness )
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Influence of fluid rheology and bubble size at sparger on 𝒌𝑳𝒂4.5

Effect of sparger’s diameter on kLa Effect of Rheological Properties on kLa

➢ kLa       with the     𝑈𝐺𝑠𝑢𝑝.

➢ kLa with the        𝑑𝑐𝑎𝑝 (due to interfacial area of bubbles, db and number of bubbles)

➢ kLa       with the        𝜇𝑓𝑙𝑢𝑖𝑑
➢ kLa is much higher in Newtonian fluids (tap water) than in nN fluids. 

↗ ↗

↗↘

↘ ↗

Lowest 𝑑𝑐𝑎𝑝 has 

highest kLa

water

CMC
XG3
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5- Conclusion & Perspectives
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GAS HOLDUP

➢ 𝜀𝐺 is more important in confined column.

➢ 𝜀𝐺 of nN liquids >  Newtonian  in confined column 

(high residence time)

REGIME TRANSITIONS

➢ The RT in confined column occur earlier compared 
to conventional BCs
➢ The RT for non-Newtonian liquids appear at lower 
𝑈𝐺𝑠𝑢𝑝 than Newtonian. (coalescence tendency) 

MIXING TIME

➢ 𝑡𝑚 is higher in confined column than unconfined 
column.

➢ 𝑡𝑚 ↓ with 𝑈𝐺𝑠𝑢𝑝 ↑   &    𝑡𝑚 ↓ with 𝑑cap ↑

➢ 𝑡𝑚 in nN liquids is quite poor at low 𝑈𝐺𝑠𝑢𝑝
(viscosity effect)

GAS LIQUID MASS TRANSFER COEFFICIENT

➢ The value of kLa is lower in thin gap bubble column 
compared to conventional BCs.

➢ kLa is poor in nN fluids than in Newtonian (water). 

➢ kLa ↑ with 𝑑𝑐𝑎𝑝 ↓ (due to ‘a’, ‘db’ and ‘nb’)

The local hydrodynamics characterization will be 
performed :

✓ Gaseous phase by shadowgraphy

✓ Liquid Phase by Particle image velocimetry (PIV)
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Optimization of culture conditions:

➢ Flowrate, bubble diameter 



Regime Transition visualization
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Homogeneous Regime

𝑈𝐺𝑠𝑢𝑝 = 0.002 𝑚/𝑠
Water CMC XG

Heterogeneous Regime

𝑈𝐺𝑠𝑢𝑝 = 0.02 𝑚/𝑠
Water CMC XG

Transition Regime

𝑈𝐺𝑠𝑢𝑝 = 0.008 𝑚/𝑠
Water CMC XG
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