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ABSTRACT

Context. Asteroseismology allows us to probe stellar interiors. In the case of red giant stars, conditions in the stellar interior are
such as to allow for the existence of mixed modes, consisting in a coupling between gravity waves in the radiative interior and
pressure waves in the convective envelope. Mixed modes can thus be used to probe the physical conditions in red giant cores. How-
ever, we still need to identify the physical mechanisms that transport angular momentum inside red giants, leading to the slow-down
observed for red giant core rotation. Thus large-scale measurements of red giant core rotation are of prime importance to obtain
tighter constraints on the efficiency of the internal angular momentum transport, and to study how this efficiency changes with stellar
parameters.
Aims. This work aims at identifying the components of the rotational multiplets for dipole mixed modes in a large number of red
giant oscillation spectra observed by Kepler. Such identification provides us with a direct measurement of the red giant mean core
rotation.
Methods. We compute stretched spectra that mimic the regular pattern of pure dipole gravity modes. Mixed modes with the same
azimuthal order are expected to be almost equally spaced in stretched period, with a spacing equal to the pure dipole gravity mode
period spacing. The departure from this regular pattern allows us to disentangle the various rotational components and therefore to
determine the mean core rotation rates of red giants.
Results. We automatically identify the rotational multiplet components of 1183 stars on the red giant branch with a success rate of
69% with respect to our initial sample. As no information on the internal rotation can be deduced for stars seen pole-on, we obtain
mean core rotation measurements for 875 red giant branch stars. This large sample includes stars with a mass as large as 2.5 M�,
allowing us to test the dependence of the core slow-down rate on the stellar mass.
Conclusions. Disentangling rotational splittings from mixed modes is now possible in an automated way for stars on the red giant
branch, even for the most complicated cases, where the rotational splittings exceed half the mixed-mode spacing. This work on
a large sample allows us to refine previous measurements of the evolution of the mean core rotation on the red giant branch.
Rather than a slight slow-down, our results suggest rotation is constant along the red giant branch, with values independent of the
mass.
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1. Introduction

The ultra-high precision photometric space missions CoRoT and
Kepler have recorded extremely long observation runs, provid-
ing us with seismic data of unprecedented quality. The surprise
came from red giant stars (e.g. Mosser & Miglio 2016), which
present solar-like oscillations that are stochastically excited in
the external convective envelope (Dupret et al. 2009). Oscillation
power spectra showed that red giants not only present pressure
modes as in the Sun, but also mixed modes (De Ridder et al.
2009; Bedding et al. 2011) resulting from a coupling of pres-
sure waves in the outer envelope with internal gravity waves
(Scuflaire 1974). As mixed modes behave as pressure modes in
the convective envelope and as gravity modes in the radiative
interior, they allow one to probe the core of red giants (Beck
et al. 2011).

Dipole mixed modes are particularly interesting because
they are mostly sensitive to the red giant core (Goupil
et al. 2013). They were used to automatically measure the

dipole gravity mode period spacing ∆Π1 for almost 5000
red giants (Vrard et al. 2016), providing information about
the size of the radiative core (Montalbán et al. 2013) and
defined as

∆Π1 =
2π2

√
2

(∫
core

NBV

r
dr

)−1

, (1)

where NBV is the Brunt–Väisälä frequency. The measurement of
∆Π1 leads to the accurate determination of the stellar evolution-
ary stage and allows us to distinguish shell-hydrogen-burning red
giants from core-helium-burning red giants (Bedding et al. 2011;
Stello et al. 2013; Mosser et al. 2014).

Dipole mixed modes also give access to near-core rotation
rates (Beck et al. 2011). Rotation has been shown to impact
not only the stellar structure by perturbing the hydrostatic equi-
librium, but also the internal dynamics of stars by means of
the transport of both angular momentum and chemical species
(Zahn 1992; Talon & Zahn 1997; Lagarde et al. 2012). It is thus
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crucial to measure this parameter for a large number of stars to
monitor its effect on stellar evolution (Lagarde et al. 2016). Semi-
automatic measurements of the mean core rotation of about 300
red giants indicated that their cores are slowing down along the
red giant branch while contracting at the same time (Mosser
et al. 2012b; Deheuvels et al. 2014). Thus, angular momen-
tum is efficiently extracted from red giant cores (Eggenberger
et al. 2012; Cantiello et al. 2014), but the physical mechanisms
supporting this angular momentum transport are not yet fully
understood. Indeed, several physical mechanisms transporting
angular momentum have been implemented in stellar evolution-
ary codes, such as meridional circulation and shear turbulence
(Eggenberger et al. 2012; Marques et al. 2013; Ceillier et al.
2013), mixed modes (Belkacem et al. 2015a,b), internal gravity
waves (Fuller et al. 2014; Pinçon et al. 2017), and magnetic fields
(Cantiello et al. 2014; Rüdiger et al. 2015), but none of them can
reproduce the measured orders of magnitude for the core rota-
tion along the red giant branch. In parallel, several studies have
tried to parameterize the efficiency of the angular momentum
transport inside red giants through ad-hoc diffusion coefficients
(Spada et al. 2016; Eggenberger et al. 2017).

In this context, we need to obtain mean core rotation mea-
surements for a much larger set of red giants in order to put
stronger constraints on the efficiency of the angular momen-
tum transport and to study how this efficiency changes with the
global stellar parameters like mass (Eggenberger et al. 2017). In
particular, we require measurements for stars on the red giant
branch because the dataset analysed by Mosser et al. (2012b)
only includes 85 red giant branch stars. The absence of large-
scale measurements is due to the fact that rotational splittings
often exceed half the mixed-mode frequency spacings at low
frequencies in red giants. For such conditions, disentangling
rotational splittings from mixed modes is challenging. Neverthe-
less, it is of prime importance to develop a method as automated
as possible as we enter the era of massive photometric data, with
Kepler providing light curves for more than 15 000 red giant stars
and the future Plato mission potentially increasing this number
to hundreds of thousands.

In this work we set up an almost fully automated method to
identify the rotational signature of stars on the red giant branch.
Our method is not suitable for clump stars, presenting smaller
rotational splittings as well as larger mode widths due to shorter
lifetimes of gravity modes (Vrard et al. 2017). Thus, the anal-
ysis of the core rotation of clump stars is beyond the scope of
this paper. In Sect. 2 we explain the principle of the method,
based on the stretching of frequency spectra to obtain period
spectra reproducing the evenly-spaced gravity-mode pattern. In
Sect. 3 we detail the set up of the method, including the estima-
tion of the uncertainties. In Sect. 4 we compare our results with
those obtained by Mosser et al. (2012b). In Sect. 5 we apply the
method to red giant branch stars of the Kepler public catalogue,
and investigate the impact of the stellar mass on the evolution of
the core rotation. Section 6 is devoted to discussion and Sect. 7
to conclusions.

2. Principle of the method

Mixed modes have a dual nature: pressure-dominated mixed
modes (p-m modes) are almost equally spaced in frequency,
with a frequency spacing close to the large separation ∆ν, while
gravity-dominated mixed modes (g-m modes) are almost equally
spaced in period, with a period spacing close to ∆Π1. In order
to retrieve the behaviour of pure gravity modes, we need to

disentangle the different contributions of p-m and g-m modes,
which can be done by deforming the frequency spectra.

2.1. Stretching frequency spectra

The mode frequencies of pure pressure modes are estimated
through the red giant universal oscillation pattern (Mosser et al.
2011)

νp,` =

(
np +

`

2
+ εp + d0` +

α

2
(np − nmax)2

)
∆ν, (2)

where
– np is the pressure radial order;
– ` is the angular degree of the oscillation mode;
– εp is the phase shift of pure pressure modes;
– α represents the curvature of the radial oscillation pattern;
– d0` is the small separation, namely the distance, in units of

∆ν, of the pure pressure mode having an angular degree
equal to `, compared to the midpoint between the surround-
ing radial modes;

– nmax = νmax/∆ν− εp is the non-integer order at the frequency
νmax of maximum oscillation signal.

We consider only dipole mixed modes, which are mainly sen-
sitive to the red giant core. Thus, in a first step we remove
from the observed spectra the frequency ranges where radial and
quadrupole modes are expected using the universal oscillation
pattern (Eq. (2)). We then convert the frequency spectra con-
taining only dipole mixed modes into stretched period spectra,
with the stretched period τ derived from the differential equation
(Mosser et al. 2015):

dτ =
1
ζ

dν
ν2 . (3)

The ζ function, introduced by Goupil et al. (2013) as a function
of mode inertia, expressed as a function of global asymp-
totic parameters by Mosser et al. (2015), can be redefined as
(Hekker & Christensen-Dalsgaard 2017)

ζ =

1 +
ν2

q
∆Π1

∆νp

1
1
q2 sin2

(
π
ν−νp

∆νp

)
+ cos2

(
π
ν−νp

∆νp

)

−1

. (4)

The parameters entering the definition of ζ are as follows:
– q the coupling parameter between gravity and pressure

modes;
– ∆νp = ∆ν

(
1 + α(np − nmax)

)
the observed large separation,

which increases with the radial order;
– νp the pure dipole pressure mode frequencies;
– ν the mixed-mode frequencies.

The pure dipole pressure mode frequencies are given by Eq. (2)
for ` = 1. The mixed-mode frequencies are given by the asymp-
totic expansion of mixed modes (Mosser et al. 2012c):

ν = νp +
∆νp

π
arctan

[
q tan π

(
1

∆Π1ν
−

1
∆Π1νg

)]
, (5)

where

νg =
1

ng∆Π1
(6)
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Fig. 1. Stretching function ζ (blue line) computed with ∆ν = 11
µHz, ∆Π1 = 80 s, and q = 0.12. The asymptotic behaviours of
ζ for g-m and p-m modes are indicated by a red and green line,
respectively.

The pure dipole pressure mode frequencies are given by
Eq. 2 for ` = 1. The mixed-mode frequencies are given by
the asymptotic expansion of mixed modes (Mosser et al.
2012c)

ν = νp +
∆νp

π
arctan

[
q tanπ

(
1

∆Π1ν
− 1

∆Π1νg

)]
, (5)

where

νg =
1

ng∆Π1
(6)

are the pure dipole gravity mode frequencies, with ng

being the gravity radial order, usually defined as a negative
integer.

We can approximate

ζ ' ∆P

∆Π1
, (7)

where ∆P is the bumped period spacing between consec-
utive dipole mixed modes. In these conditions, ζ gives in-
formation on the trapping of dipole mixed modes. Gravity-
dominated mixed modes (g-m modes) have a period spac-105
ing close to ∆Π1 and represent the local maxima of ζ, while
pressure-dominated mixed modes (p-m modes) have a lower
period spacing decreasing with frequency and represent the
local minima of ζ (Fig. 1).

2.2. Revealing the rotational components110

Pressure-dominated mixed modes are not only sensitive
to the core but also to the envelope. The next step thus
consists in removing p-m modes from the spectra through
Eq. 2, leaving only g-m modes. In practice, g-m modes with
a height-to-background ratio larger than six are considered
as significant in a first step; then this threshold is manually
adapted in order to obtain the best compromise between
the number of significant modes and background residuals.
All dipole g-m modes with the same azimuthal order m

should then be equally spaced in stretched period, with a
spacing close to ∆Π1. However, the core rotation perturbs
this regular pattern so that the stretched period spacing
between consecutive g-m modes with the same azimuthal
order slightly differs from ∆Π1, with the small departure
depending on the mean core rotational splitting as (Mosser
et al. 2015)

∆τm = ∆Π1

(
1 + 2mζ

δνrot,core

ν

)
. (8)

As the mean value of ζ depends on the mixed-mode density
N , we can avoid the calculation of ζ by approximating

∆τm ' ∆Π1

(
1 + 2m

N
N + 1

δνrot,core

ν

)
. (9)

The mixed-mode density represents the number of gravity
modes per ∆ν-wide frequency range and is defined as

N =
∆ν

∆Π1 ν2
max

. (10)

Red giants are slow rotators, presenting low rotation fre-
quencies of the order of 2 µHz or less. In these conditions,
the centrifugal acceleration can be neglected everywhere in
red giants (Goupil et al. 2013). Besides, Ω(r)/2π < ∆ν �
νmax throughout the whole star and Coriolis effects are neg-
ligible. Thus, rotation can be treated as a first-order per-
turbation of the hydrostatic equilibrium (Ouazzani et al.
2013), and the rotational splitting can be written as (Unno
et al. (1989), see also Goupil et al. (2013) for the case of
red giants)

δνrot =

∫ 1

0

K(x)
Ω(x)

2π
dx, (11)

where x = r/R is the normalized radius, K(x) is the rota-
tional kernel, and Ω(x) is the angular velocity at normalized
radius x. In a first approximation we can separate the core
and envelope contributions of the rotational splitting as

δνrot = βcore

〈
Ω

2π

〉

core

+ βenv

〈
Ω

2π

〉

env

, (12)

with

βcore =

∫ xcore

0

K(x)dx, (13)

βenv =

∫ 1

xcore

K(x)dx, (14)

〈Ω〉core =

∫ xcore

0
Ω(x)K(x)dx∫ xcore

0
K(x)dx

, (15)

〈Ω〉env =

∫ 1

xcore
Ω(x)K(x)dx

∫ 1

xcore
K(x)dx

, (16)

xcore = rcore/R being the normalized radius of the g-mode
cavity.
If we assume that dipole g-m modes are mainly sensitive
to the core, we can neglect the envelope contribution as
βcore/βenv � 1 in these conditions. Moreover, βcore ' 1/2
for dipole g-m modes (Ledoux 1951). In these conditions, a
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Fig. 1. Stretching function ζ (blue line) computed with ∆ν = 11 µHz,
∆Π1 = 80 s, and q = 0.12. The asymptotic behaviours of ζ for g-m and
p-m modes are indicated by a red and green line, respectively.

are the pure dipole gravity mode frequencies, with ng being the
gravity radial order, usually defined as a negative integer.

We can approximate

ζ '
∆P
∆Π1

, (7)

where ∆P is the bumped period spacing between consecutive
dipole mixed modes. In these conditions, ζ gives information on
the trapping of dipole mixed modes. Gravity-dominated mixed
modes (g-m modes) have a period spacing close to ∆Π1 and rep-
resent the local maxima of ζ, while pressure-dominated mixed
modes (p-m modes) have a lower period spacing decreasing with
frequency and represent the local minima of ζ (Fig. 1).

2.2. Revealing the rotational components

Pressure-dominated mixed modes are not only sensitive to the
core but also to the envelope. The next step thus consists in
removing p-m modes from the spectra through Eq. (2), leaving
only g-m modes. In practice, g-m modes with a height-to-
background ratio larger than six are considered as significant in
a first step; then this threshold is manually adapted in order to
obtain the best compromise between the number of significant
modes and background residuals. All dipole g-m modes with
the same azimuthal order m should then be equally spaced in
stretched period, with a spacing close to ∆Π1. However, the
core rotation perturbs this regular pattern so that the stretched
period spacing between consecutive g-m modes with the same
azimuthal order slightly differs from ∆Π1, with the small
departure depending on the mean core rotational splitting as
(Mosser et al. 2015)

∆τm = ∆Π1

(
1 + 2 m ζ

δνrot,core

ν

)
. (8)

As the mean value of ζ depends on the mixed-mode density N ,
we can avoid the calculation of ζ by approximating

∆τm ' ∆Π1

(
1 + 2 m

N

N + 1
δνrot,core

ν

)
. (9)

The mixed-mode density represents the number of gravity
modes per ∆ν-wide frequency range and is defined as

N =
∆ν

∆Π1 ν
2
max

. (10)

Red giants are slow rotators, presenting low rotation fre-
quencies of the order of 2 µHz or less. In these conditions,
the centrifugal acceleration can be neglected everywhere in
red giants (Goupil et al. 2013). Besides, Ω(r)/2π<∆ν� νmax
throughout the whole star and Coriolis effects are negligible.
Thus, rotation can be treated as a first-order perturbation of the
hydrostatic equilibrium (Ouazzani et al. 2013), and the rotational
splitting can be written as follows (Unno et al. 1989; see also
Goupil et al. 2013 for the case of red giants):

δνrot =

∫ 1

0
K(x)

Ω(x)
2π

dx, (11)

where x = r/R is the normalized radius, K(x) is the rotational
kernel, and Ω(x) is the angular velocity at normalized radius x.
In a first approximation, we can separate the core and envelope
contributions of the rotational splitting as

δνrot = βcore

〈
Ω

2π

〉
core

+ βenv

〈
Ω

2π

〉
env
, (12)

with

βcore =

∫ xcore

0
K(x)dx, (13)

βenv =

∫ 1

xcore

K(x)dx, (14)

〈Ω〉core =

∫ xcore

0 Ω(x)K(x)dx∫ xcore

0 K(x)dx
, (15)

〈Ω〉env =

∫ 1
xcore

Ω(x)K(x)dx∫ 1
xcore

K(x)dx
, (16)

xcore = rcore/R being the normalized radius of the g-mode cavity.
If we assume that dipole g-m modes are mainly sensi-

tive to the core, we can neglect the envelope contribution
as βcore/βenv � 1 in these conditions. Moreover, βcore ' 1/2 for
dipole g-m modes (Ledoux 1951). In these conditions, a linear
relation connects the core rotational splitting to the mean core
angular velocity as follows (Goupil et al. 2013; Mosser et al.
2015)

δνrot,core '
1
2

〈
Ω

2π

〉
core

. (17)

The departure of ∆τm from ∆Π1 is small, on the order of a few
percent of ∆Π1. This allows us to fold the stretched spectrum
with ∆Π1 in order to build stretched period échelle diagrams
(Mosser et al. 2015), in which the individual rotational com-
ponents align according to their azimuthal order and become
easy to identify (Fig. 2). When the star is seen pole-on, the
m = 0 components line up on a unique and almost vertical ridge.
Rotation modifies this scheme by splitting mixed modes into
two or three components, depending on the stellar inclination.

In these échelle diagrams, rotational splittings and mixed
modes are now disentangled. It is possible to identify the
azimuthal order of each component of a rotational multiplet,
even in a complex case like KIC 10866415 where the rotational
splitting is much larger than the mixed-mode frequency spacing.
In such cases, the ridges cross each other (Fig. 2).
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Fig. 2. Stretched period échelle diagrams for red giant branch stars with different inclinations. The rotational components are
identified in an automatic way through a correlation of the observed spectrum with a synthetic one constructed using Eq. 9. The
colours indicate the azimuthal order: the m = {−1, 0,+1} rotational components are represented in green, light blue, and red,
respectively. The symbol size varies as the power spectral density. Left: Star seen pole-on where only them = 0 rotational component
is visible. Middle: Star seen equator-on where them = {−1,+1} components are visible. Right: Star with an intermediate inclination
angle where all the three components are visible.

linear relation connects the core rotational splitting to the
mean core angular velocity as (Goupil et al. 2013; Mosser
et al. 2015)

δνrot,core '
1

2

〈
Ω

2π

〉

core

. (17)

The departure of ∆τm from ∆Π1 is small, on the order of a
few percent of ∆Π1. This allows us to fold the stretched
spectrum with ∆Π1 in order to build stretched period
échelle diagrams (Mosser et al. 2015), in which the indi-
vidual rotational components align according to their az-115
imuthal order and become easy to identify (Fig. 2). When
the star is seen pole-on, the m = 0 components line up on
a unique and almost vertical ridge. Rotation modifies this
scheme by splitting mixed modes into two or three compo-
nents, depending on the stellar inclination.120
In these échelle diagrams, rotational splittings and mixed
modes are now disentangled. It is possible to identify the
azimuthal order of each component of a rotational multi-
plet, even in a complex case like KIC 10866415 where the
rotational splitting is much larger than the mixed-mode fre-125
quency spacing. In such cases, the ridges cross each other
(Fig. 2).

3. Disentangling and measuring rotational
splittings

We use stretched period échelle diagrams to develop an au-130
tomated identification of rotational multiplet components.
The method is based on a correlation between the observed
spectrum and a synthetic one.

3.1. Construction of synthetic spectra

Synthetic spectra are built from Eqs. 9 and 10. Frequencies
corresponding to pure gravity modes unperturbed by
rotation, associated to the azimuthal order m = 0, are
first constructed through Eq. (6). Rotation perturbs and
shifts oscillation frequencies of g-m modes associated to
azimuthal orders m such as ν −mζδνrot,core (Mosser et al.
2015). Once frequencies have been built for g-m modes
associated to m = {−1, 0,+1}, periods are calculated
through P = 1/ν and are used to construct synthetic
stretched periods through Eqs. 9 and 10.

Figure 3 shows examples of such synthetic échelle di-
agrams for two different δνrot,core values, where the
rotational components present many crossings. These
crossings between multiplet rotational components with
different azimuthal orders are similar to what was shown
by Ouazzani et al. (2013) for theoretical red giant spectra.
However, they occur here at a smaller core pulsation fre-
quency, for 200 < 〈Ωcore〉/2π < 2000 nHz, while Ouazzani
et al. (2013) found the first crossings to happen around
〈Ωcore〉/2π = 8µHz.
The frequencies where crossings occur can be expressed as
(Gehan et al. 2017)

νk =

√
δνrot,core

k∆Π1
, (18)

where k is a positive integer representing the crossing 135
order. We can define whether a red giant is a slow or a
rapid rotator by comparing δνrot,core to half the mixed-
mode frequency spacing, which can be approximated by
∆Π1 ν

2
max / 2 (Gehan et al. 2017). In these conditions, the

échelle diagram shown in Fig. 3 for the largest rotational 140
splitting can be understood as follows. The upper part
corresponds to slow rotators with no crossing, where
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Fig. 2. Stretched period échelle diagrams for red giant branch stars with different inclinations. The rotational components are identified in an
automatic way through a correlation of the observed spectrum with a synthetic one constructed using Eq. (9). The colours indicate the azimuthal
order: the m = {−1, 0,+1} rotational components are represented in green, light blue, and red, respectively. The symbol size varies as the power
spectral density. Left panel: star seen pole-on where only the m = 0 rotational component is visible. Middle panel: star seen equator-on where the
m = {−1,+1} components are visible. Right panel: star with an intermediate inclination angle where all the three components are visible.

3. Disentangling and measuring rotational
splittings

We use stretched period échelle diagrams to develop an auto-
mated identification of rotational multiplet components. The
method is based on a correlation between the observed spectrum
and a synthetic one.

3.1. Construction of synthetic spectra

Synthetic spectra are built from Eqs. (9) and (10). Frequencies
corresponding to pure gravity modes unperturbed by rotation,
associated with the azimuthal order m = 0, are first constructed
through Eq. (6). Rotation perturbs and shifts oscillation frequen-
cies of g-m modes associated with azimuthal orders m such as
ν−m ζδνrot,core (Mosser et al. 2015). Once frequencies have been
built for g-m modes associated with m = {−1, 0,+1}, periods are
calculated through P = 1/ν and are used to construct synthetic
stretched periods through Eqs. (9) and (10).

Figure 3 shows examples of such synthetic échelle diagrams
for two different δνrot,core values, where the rotational compo-
nents present many crossings. These crossings between multiplet
rotational components with different azimuthal orders are simi-
lar to what was shown by Ouazzani et al. (2013) for theoretical
red giant spectra. However, they occur here at a smaller core
pulsation frequency, for 200 < 〈Ωcore〉/2π < 2000 nHz, while
Ouazzani et al. (2013) found the first crossings to happen around
〈Ωcore〉/2π = 8 µHz.

The frequencies where crossings occur can be expressed as
(Gehan et al. 2017)

νk =

√
δνrot,core

k∆Π1
, (18)

where k is a positive integer representing the crossing order. We
can define whether a red giant is a slow or a rapid rotator by

comparing δνrot,core to half the mixed-mode frequency spacing,
which can be approximated by ∆Π1 ν

2
max / 2 (Gehan et al. 2017).

In these conditions, the échelle diagram shown in Fig. 3 for
the largest rotational splitting can be understood as follows. The
upper part corresponds to slow rotators with no crossing, where
δνrot,core � ∆Π1 ν

2
max / 2. These cases can be found on the lower

giant branch. The medium part, where the first crossing occurs,
corresponds to moderate rotators where δνrot,core ' ∆Π1 ν

2
max / 2.

Such complicated cases are found at lower frequencies, corre-
sponding to most of the evolved stars in the Kepler sample,
where rotational components can now be clearly disentangled
through the use of the stretched period. The lower part cor-
responds to rapid rotators, where δνrot,core ≥ ∆Π1 ν

2
max and too

many crossings occur to allow the identification of the multiplet
components in the unperturbed frequency spectra. Nevertheless,
rotational components can still be disentangled using stretched
period spectra. The lowest part corresponds to very rapid rotators
with too many crossings to allow the identification of the multi-
plet rotational components, for which currently no measurement
of the core rotation is possible.

For fixed νmax and ∆Π1 values, the more δνrot,core increases,
the more δνrot,core becomes larger compared to ∆Π1 ν

2
max. Thus,

the pattern presented in Fig. 3 is shifted upwards towards higher
frequencies. In practice, if we consider stars that have the same
∆Π1 and νmax, the larger the rotational splitting, the higher
the crossing frequencies, and the larger the number of visible
crossings.

Such synthetic échelle diagrams were originally used to
identify the crossing order for stars with overlapping multiplet
rotational components (Gehan et al. 2017). Combined with the
measurement of at least one frequency where a crossing occurs,
the identification of the crossing order provides us with a mea-
surement of the mean core rotational splitting. In this study, we
base our work on this method, extending it to allow for the iden-
tification of the rotational multiplet components whether these
components overlap or not.
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Fig. 3. Synthetic stretched period échelle diagram built from Eqs. 9 and 10. The colours indicate the azimuthal order: the
m = {−1, 0,+1} rotational components are given by green triangles, blue dots, and red crosses, respectively. The small black dots
represent τ = (±∆Π1/2) mod ∆Π1. The numbers mark the crossing order k (Eq. 18). As the number of observable modes is
limited, they cover only a limited frequency range in the diagram.

δνrot,core � ∆Π1 ν
2
max / 2. These cases can be found on

the lower giant branch. The medium part, where the
first crossing occurs, corresponds to moderate rotators145
where δνrot,core ' ∆Π1 ν

2
max / 2. Such complicated cases

are found at lower frequencies, corresponding to most of
the evolved stars in the Kepler sample, where rotational
components can now be clearly disentangled through the
use of the stretched period. The lower part corresponds to150
rapid rotators, where δνrot,core ≥ ∆Π1 ν

2
max and too many

crossings occur to allow the identification of the multiplet
components in the unperturbed frequency spectra. Nev-
ertheless, rotational components can still be disentangled
using stretched period spectra. The lowest part corresponds155
to very rapid rotators with too many crossings to allow
the identification of the multiplet rotational components,
for which currently no measurement of the core rotation is
possible.
For fixed νmax and ∆Π1 values, the more δνrot,core in-160
creases, the more δνrot,core becomes larger compared to
∆Π1 ν

2
max. Thus the pattern presented in Fig. 3 is shifted

upwards towards higher frequencies. In practice, if we
consider stars that have the same ∆Π1 and νmax, the larger
the rotational splitting, the higher the crossing frequencies,165
and the larger the number of visible crossings.

Such synthetic échelle diagrams were originally used
to identify the crossing order for stars with overlapping
multiplet rotational components (Gehan et al. 2017).170
Combined with the measurement of at least one frequency
where a crossing occurs, the identification of the crossing

order provides us with a measurement of the mean core
rotational splitting. In this study, we base our work on
this method, extending it to allow for the identification 175
of the rotational multiplet components whether these
components overlap or not.

3.2. Correlation of the observed spectrum with synthetic ones

The observed spectrum is correlated with different syn-
thetic spectra constructed with different δνrot,core and ∆Π1 180
values, through an iterative process. The position of the
synthetic spectra is based on the position of important
peaks in the observed spectra, defined as having a power
spectral density greater than or equal to 0.25 times the
maximal power spectral density of g-m modes. 185
We test δνrot,core values ranging from 100 nHz to 1µHz
with steps of 5 nHz. In fact, the method is not adequate
for δνrot,core < 100 nHz and for δνrot,core > 1µHz: when
δνrot,core is too low, the multiplet rotational components
are too close to be unambiguously distinguished in échelle 190
diagrams; when δνrot,core is too high, the multiplet rota-
tional components overlap over several g-m mode orders,
making their identification challenging.
We also considered ∆Π1 as a flexible parameter. We used
the ∆Π1 measurements of Vrard et al. (2016) as a first guess 195
and tested ∆Π1,test in the range ∆Π1 (1± 0.03) with steps
of 0.1 s. Indeed, inaccurate ∆Π1 measurements can occur
when only a low number of g-m modes are observed, due
to suppressed dipole modes (Mosser et al. 2017) or high up
the giant branch where g-m modes have a very high inertia 200
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Fig. 3. Synthetic stretched period échelle diagram
built from Eqs. (9) and (10). The colours indicate
the azimuthal order: the m = {−1, 0,+1} rotational
components are given by green triangles, blue dots,
and red crosses, respectively. The small black dots
represent τ = (±∆Π1/2) mod ∆Π1. The numbers
mark the crossing order k (Eq. (18)). As the num-
ber of observable modes is limited, they cover only
a limited frequency range in the diagram.

3.2. Correlation of the observed spectrum with synthetic ones

The observed spectrum is correlated with different synthetic
spectra constructed with different δνrot,core and ∆Π1 values,
through an iterative process. The position of the synthetic spec-
tra is based on the position of important peaks in the observed
spectra, defined as having a power spectral density greater than
or equal to 0.25 times the maximal power spectral density of
g-m modes.

We test δνrot,core values ranging from 100 nHz to 1 µHz
with steps of 5 nHz. In fact, the method is not adequate for
δνrot,core < 100 nHz and for δνrot,core > 1 µHz: when δνrot,core
is too low, the multiplet rotational components are too close
to be unambiguously distinguished in échelle diagrams; when
δνrot,core is too high, the multiplet rotational components over-
lap over several g-m mode orders, making their identification
challenging.

We also considered ∆Π1 as a flexible parameter. We used
the ∆Π1 measurements of Vrard et al. (2016) as a first guess and
tested ∆Π1,test in the range ∆Π1 (1 ± 0.03) with steps of 0.1 s.
Indeed, inaccurate ∆Π1 measurements can occur when only a
low number of g-m modes are observed, due to suppressed dipole
modes (Mosser et al. 2017) or high up the giant branch where
g-m modes have a very high inertia and cannot be observed
(Grosjean et al. 2014). Moreover, even small variations of the
folding period ∆Π1 modify the inclination of the observed ridges
in the échelle diagram. They are then no longer symmetric with
respect to the vertical m = 0 ridge if the folding period ∆Π1 is not
precise enough, and the correlation with synthetic spectra may
fail. Thus, our correlation method not only gives high-precision
δνrot,core measurements, but also allows us to improve the pre-
cision on the measurement of ∆Π1, expected to be as good as
0.01%.

Furthermore, the stellar inclination is not known a priori and
impacts the number of visible rotationally split frequency com-
ponents in the spectum. Thus, three types of synthetic spectra are
tested at each time step, containing one, two, and three rotational
multiplet components.

3.3. Selection of the best-fitting synthetic spectrum

For each configuration tested, namely for synthetic spectra
including one, two, or three components, the best fit is selected
in an automated way by maximizing the number of peaks aligned
with the synthetic ridges. After this automated step, an individ-
ual check is performed to select the best solution, depending
on the number of rotational components. This manual operation
allows us to correct for the spurious signatures introduced by
short-lived modes or ` = 3 modes.

We define τpeak and τsynt as the observed and synthetic
stretched periods of any given peak, respectively. We empirically
consider that a peak is aligned with a synthetic ridge if∣∣∣τpeak − τsynth

∣∣∣ ≤ ∆Π1

30
. (19)

We further define

χ2 =

∑n
i=1

(
τpeak,i − τsynth,i

)2

n
, (20)

where n is the total number of aligned peaks along the synthetic
ridges and χ2 is the mean residual squared sum for peaks belong-
ing to the synthetic rotational multiplet components. The χ2

quantity thus represents an estimate of the spread of the observed
τpeak values around the synthetic τsynth. If several δνrot,core and
∆Π1,test values give the same number of aligned peaks, then the
best fit corresponds to the minimum χ2 value.

This step provides us with the best values of ∆Π1,test and
δνrot,core for each of the three stellar inclinations tested. At this
stage, at most three possible synthetic spectra remain, corre-
sponding to fixed ∆Π1,test and δνrot,core values: a spectrum with
one, two, or three rotational multiplet components. The final fit
corresponding to the actual configuration is selected manually.
Such final fits shown in Fig. 2 provide us with a measurement of
the mean core rotational splitting, except when the star is nearby
pole-on.
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Fig. 4. Comparison of the present results with those from
Mosser et al. (2012b) for stars on the red giant branch. The
solid red line represents the 1:1 relation. The red dashed lines
represent the 1:2 and 2:1 relations.

and cannot be observed (Grosjean et al. 2014). Moreover,
even small variations of the folding period ∆Π1 modify the
inclination of the observed ridges in the échelle diagram.
They are then no longer symmetric with respect to the ver-
tical m = 0 ridge if the folding period ∆Π1 is not precise205
enough, and the correlation with synthetic spectra may fail.
Thus, our correlation method not only gives high-precision
δνrot,core measurements, but also allows us to improve the
precision on the measurement of ∆Π1, expected to be as
good as 0.01 %.210
Furthermore, the stellar inclination is not known a priori
and impacts the number of visible rotationally split fre-
quency components in the spectum. Thus, three types of
synthetic spectra are tested at each time step, containing
one, two, and three rotational multiplet components.215

3.3. Selection of the best-fitting synthetic spectrum

For each configuration tested, namely for synthetic spectra
including one, two, or three components, the best fit is
selected in an automated way by maximizing the number
of peaks aligned with the synthetic ridges. After this
automated step, an individual check is performed to select
the best solution, depending on the number of rotational
components. This manual operation allows us to correct for
the spurious signatures introduced by short-lived modes or
` = 3 modes.

We define τpeak and τsynt as the observed and syn-
thetic stretched periods of any given peak, respectively. We
empirically consider that a peak is aligned with a synthetic
ridge if

|τpeak − τsynth| ≤
∆Π1

30
. (19)

We further define

χ2 =

∑n
i=1 (τpeak,i − τsynth,i)

2

n
, (20)

where n is the total number of aligned peaks along
the synthetic ridges and χ2 is the mean residual

squared sum for peaks belonging to the synthetic
rotational multiplet components. The χ2 quantity 220
thus represents an estimate of the spread of the
observed τpeak values around the synthetic τsynth. If
several δνrot,core and ∆Π1,test values give the same number
of aligned peaks, then the best fit corresponds to the mini-
mum χ2 value. 225
This step provides us with the best values of ∆Π1,test and
δνrot,core for each of the three stellar inclinations tested.
At this stage, at most three possible synthetic spectra re-
main, corresponding to fixed ∆Π1,test and δνrot,core values:
a spectrum with one, two, or three rotational multiplet com- 230
ponents. The final fit corresponding to the actual configu-
ration is selected manually. Such final fits shown in Fig. 2
provide us with a measurement of the mean core rotational
splitting, except when the star is nearby pole-on.

3.4. Uncertainties 235

The uncertainty σ on the measurement of δνrot,core is cal-
culated through Eq. 20, except that peaks with

|τpeak − τsynth| >
∆Π1

3
(21)

are considered as non-significant and are discarded from the
estimation of the uncertainties. They might be due to back-
ground residuals, to ` = 1 p-m modes that were not fully
discarded, or to ` = 3 modes. The obtained uncertainties
are on the order of 10 nHz or smaller. 240

4. Comparison with other measurements

Mosser et al. (2012b) measured the mean core rotation of
about 300 stars, both on the red giant branch (RGB) and
in the red clump. We apply our method to the RGB stars
of Mosser et al. (2012b) sample, representing 85 stars. The
method proposed a satisfactory identification of the rota-
tional components in 79% of cases. Nevertheless, for some
cases our method detects only the m = 0 component while
Mosser et al. (2012b) obtained a measurement of the mean
core rotation, which requires the presence of m = ± 1 com-
ponents in the observations. Finally, our method provides
δνrot,core measurements for 67% of the stars in the sample.
Taking as a reference the measurements of Mosser et al.
(2012b), we can thus estimate that we miss about 12% of
the possible δνrot,core measurements by detecting only the
m = 0 rotational component, while the m = ± 1 com-
ponents are also present but remain undetected by our
method. This mostly happens at low inclination values,
when the visibility of the m = ± 1 components is very low
compared to that of m = 0. In such cases, the components
associated to m = ± 1 appear to us lost in the background
noise.
We calculated the relative difference between the present
measurements and those of Mosser et al. (2012b) as

dr =

∣∣∣∣
δνrot − δνrot,2012

δνrot,2012

∣∣∣∣ . (22)

We find that dr < 10% for 74% of stars (Fig. 4). We expect
our correlation method to provide more accurate measure-
ments because we use stretched periods based on ζ, while
Mosser et al. (2012b) chose a Lorentzian profile to repro- 245
duce the observed modulation of rotational splittings with
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Fig. 4. Comparison of the present results with those from Mosser et al.
(2012b) for stars on the red giant branch. The solid red line represents
the 1:1 relation. The red dashed lines represent the 1:2 and 2:1 relations.

3.4. Uncertainties

The uncertainty σ on the measurement of δνrot,core is calculated
through Eq. (20), except that peaks with∣∣∣τpeak − τsynth

∣∣∣ > ∆Π1

3
(21)

are considered as non-significant and are discarded from the esti-
mation of the uncertainties. They might be due to background
residuals, to ` = 1 p-m modes that were not fully discarded, or
to ` = 3 modes. The obtained uncertainties are on the order of
10 nHz or smaller.

4. Comparison with other measurements

Mosser et al. (2012b) measured the mean core rotation of about
300 stars, both on the red giant branch (RGB) and in the red
clump. We apply our method to the RGB stars of Mosser et al.
(2012b) sample, representing 85 stars. The method proposed a
satisfactory identification of the rotational components in 79%
of cases. Nevertheless, for some cases our method detects only
the m = 0 component while Mosser et al. (2012b) obtained a
measurement of the mean core rotation, which requires the pres-
ence of m = ± 1 components in the observations. Finally, our
method provides δνrot,core measurements for 67% of the stars in
the sample. Taking as a reference the measurements of Mosser
et al. (2012b), we can thus estimate that we miss about 12% of
the possible δνrot,core measurements by detecting only the m = 0
rotational component, while the m = ± 1 components are also
present but remain undetected by our method. This mostly hap-
pens at low inclination values, when the visibility of the m = ± 1
components is very low compared to that of m = 0. In such cases,
the components associated with m = ± 1 appear to us lost in the
background noise.

We calculated the relative difference between the present
measurements and those of Mosser et al. (2012b) as

dr =

∣∣∣∣∣∣δνrot − δνrot,2012

δνrot,2012

∣∣∣∣∣∣ . (22)

We find that dr < 10% for 74% of stars (Fig. 4). We expect
our correlation method to provide more accurate measurements

because we use stretched periods based on ζ, while Mosser et al.
(2012b) chose a Lorentzian profile to reproduce the observed
modulation of rotational splittings with frequency, which has no
theoretical basis.

On the 57 δνrot,core measurements that we obtained for the
RGB stars in the Mosser et al. (2012b) sample, only seven
lie away from the 1:1 comparison. We can easily explain this
discrepancy for three of these stars, lying either on the lines
representing a 1:2 or a 2:1 relation. When the rotational split-
ting exceeds half the mixed-mode spacing, rotational multiplet
components with different azimuthal orders are entangled. The
rotational components associated with m = ± 1 are no longer
close to the m = 0 component. In these conditions, it is possible
to misidentify the oscillation spectrum by considering rotational
components with different radial orders and measure half the
rotational splitting. Additionally, two cases result in very simi-
lar frequency spectra. Indeed, a star that has a rotational splitting
equal to one quarter of the mixed-mode spacing and an incli-
nation angle close to 90◦ will present equidistant components
associated with m = ± 1. But a star that has a rotational splitting
equal to one third of the mixed-mode spacing and an inclina-
tion angle close to 55◦ will also present an equipartition of the
rotational components associated with m = {−1, 0,+1}. In these
two configurations, all rotational components almost have the
same visibility. In these conditions, it is possible to misidentify
these two configurations by identifying a m = ± 1 component
as a m = 0 component. Such a misidentification results in the
measurement of twice the rotational splitting. Our method based
on stretched periods deals with complicated cases corresponding
to large splittings with more accuracy compared to the method
of Mosser et al. (2012b), avoiding a misidentification of the
rotational components. We note that Mosser et al. (2012b) mea-
sured maximum splittings values around 600 nHz while our
measurements indicate values as high as 900 nHz.

5. Large-scale measurements of the red giant core
rotation in the Kepler sample

We selected RGB stars where Vrard et al. (2016) obtained mea-
surements of ∆Π1. These measurements were used as input
values for ∆Π1,test in the correlation method. The method pro-
posed a satisfactory identification of the rotational multiplet
components for 1183 RGB stars, which represents a success
rate of 69%. We obtained mean core rotation measurements for
875 stars on the RGB (Fig. 5), roughly increasing the size of
the sample by a factor of ten compared to Mosser et al. (2012b).
The impossibility of fitting the rotational components increases
when ∆ν decreases: 70% of the unsuccessful cases correspond to
∆ν ≤ 9 µHz (Fig. 6). Low ∆ν values correspond to evolved RGB
stars. During the evolution along the RGB, the g-m mode inertia
increases and mixed modes are less visible, making the identifi-
cation of the rotational components more difficult (Dupret et al.
2009; Grosjean et al. 2014). The method also failed to propose a
satisfactory identification of the rotational components where the
mixed-mode density is too low: 10% of the unsuccessful cases
correspond toN ≤ 5 (Fig. 6). These cases correspond to stars on
the low RGB presenting only a few ` = 1 g-m modes, where
it is hard to retrieve significant information on the rotational
components.

5.1. Monitoring the evolution of the core rotation

The stellar masses and radii can be estimated from the global
asteroseismic parameters ∆ν and νmax through the scaling

A24, page 6 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832822&pdf_id=0


C. Gehan et al.: Core rotation braking on the red giant branch for various mass ranges

C. Gehan et al.: Core rotation braking on the red giant branch for various mass ranges

0 5 10 15 20 25 30
N

102

103

δν
ro
t,
co
re

 (n
Hz

)

1.0 1.3 1.6 1.9 2.2 2.5
M/M¯

Fig. 5. Mean core rotational splitting as a function of the mixed-mode density measured through Eqs. 9 and 10. The colour
code indicates the stellar mass estimated from the asteroseismic global parameters. Coloured triangles represent the measurements
obtained in this study. Black crosses and coloured dots represent the measurements of Mosser et al. (2012b) for stars on the red
giant branch and in the red clump, respectively.
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Fig. 6. Large separation as a function of the mixed-mode den-
sity for red giant branch stars where our method failed to pro-
pose a satisfactorily identification of the rotational components.
Stars that have N ≤ 5 are represented in yellow, stars that have
∆ν ≤ 9 µHz are represented in red.

frequency, which has no theoretical basis.
On the 57 δνrot,core measurements that we obtained for
the RGB stars in the Mosser et al. (2012b) sample, only
seven lie away from the 1:1 comparison. We can easily ex-250
plain this discrepancy for three of these stars, lying either
on the lines representing a 1:2 or a 2:1 relation. When the
rotational splitting exceeds half the mixed-mode spacing,
rotational multiplet components with different azimuthal
orders are entangled. The rotational components associated255
to m = ± 1 are no longer close to the m = 0 component.

In these conditions, it is possible to misidentify the oscil-
lation spectrum by considering rotational components with
different radial orders and measure half the rotational split-
ting. Additionally, two cases result in very similar frequency 260
spectra. Indeed, a star that has a rotational splitting equal
to one quarter of the mixed-mode spacing and an incli-
nation angle close to 90◦ will present equidistant compo-
nents associated to m = ± 1. But a star that has a rota-
tional splitting equal to one third of the mixed-mode spac- 265
ing and an inclination angle close to 55◦ will also present
an equipartition of the rotational components associated to
m = {−1, 0,+1}. In these two configurations, all rotational
components almost have the same visibility. In these condi-
tions, it is possible to misidentify these two configurations 270
by identifying am = ± 1 component as am = 0 component.
Such a misidentification results in the measurement of twice
the rotational splitting. Our method based on stretched pe-
riods deals with complicated cases corresponding to large
splittings with more accuracy compared to the method of 275
Mosser et al. (2012b), avoiding a misidentification of the
rotational components. We note that Mosser et al. (2012b)
measured maximum splittings values around 600 nHz while
our measurements indicate values as high as 900 nHz.

5. Large-scale measurements of the red giant core 280

rotation in the Kepler sample

We selected RGB stars where Vrard et al. (2016) obtained
measurements of ∆Π1. These measurements were used as
input values for ∆Π1,test in the correlation method. The
method proposed a satisfactory identification of the rota- 285
tional multiplet components for 1183 RGB stars, which rep-
resents a success rate of 69%. We obtained mean core ro-
tation measurements for 875 stars on the RGB (Fig. 5),
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Fig. 5. Mean core rotational splitting as a function of the
mixed-mode density measured through Eqs. (9) and (10).
The colour code indicates the stellar mass estimated from
the asteroseismic global parameters. Coloured triangles
represent the measurements obtained in this study. Black
crosses and coloured dots represent the measurements of
Mosser et al. (2012b) for stars on the red giant branch and
in the red clump, respectively.
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frequency, which has no theoretical basis.
On the 57 δνrot,core measurements that we obtained for
the RGB stars in the Mosser et al. (2012b) sample, only
seven lie away from the 1:1 comparison. We can easily ex-250
plain this discrepancy for three of these stars, lying either
on the lines representing a 1:2 or a 2:1 relation. When the
rotational splitting exceeds half the mixed-mode spacing,
rotational multiplet components with different azimuthal
orders are entangled. The rotational components associated255
to m = ± 1 are no longer close to the m = 0 component.

In these conditions, it is possible to misidentify the oscil-
lation spectrum by considering rotational components with
different radial orders and measure half the rotational split-
ting. Additionally, two cases result in very similar frequency 260
spectra. Indeed, a star that has a rotational splitting equal
to one quarter of the mixed-mode spacing and an incli-
nation angle close to 90◦ will present equidistant compo-
nents associated to m = ± 1. But a star that has a rota-
tional splitting equal to one third of the mixed-mode spac- 265
ing and an inclination angle close to 55◦ will also present
an equipartition of the rotational components associated to
m = {−1, 0,+1}. In these two configurations, all rotational
components almost have the same visibility. In these condi-
tions, it is possible to misidentify these two configurations 270
by identifying am = ± 1 component as am = 0 component.
Such a misidentification results in the measurement of twice
the rotational splitting. Our method based on stretched pe-
riods deals with complicated cases corresponding to large
splittings with more accuracy compared to the method of 275
Mosser et al. (2012b), avoiding a misidentification of the
rotational components. We note that Mosser et al. (2012b)
measured maximum splittings values around 600 nHz while
our measurements indicate values as high as 900 nHz.

5. Large-scale measurements of the red giant core 280

rotation in the Kepler sample

We selected RGB stars where Vrard et al. (2016) obtained
measurements of ∆Π1. These measurements were used as
input values for ∆Π1,test in the correlation method. The
method proposed a satisfactory identification of the rota- 285
tional multiplet components for 1183 RGB stars, which rep-
resents a success rate of 69%. We obtained mean core ro-
tation measurements for 875 stars on the RGB (Fig. 5),
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Fig. 6. Large separation as a function of the mixed-mode density for red
giant branch stars where our method failed to propose a satisfactorily
identification of the rotational components. Stars that have N ≤ 5 are
represented in yellow, stars that have ∆ν ≤ 9 µHz are represented in red.

relations (Kjeldsen & Bedding 1995; Kallinger et al. 2010;
Mosser et al. 2013)

M
M�

=

(
νmax

νmax,�

)3 (
∆ν

∆ν�

)−4 (
Teff

T�

)3/2

, (23)

R
R�

=

(
νmax

νmax,�

) (
∆ν

∆ν�

)−2 (
Teff

T�

)1/2

, (24)

where νmax,� = 3050 µHz, ∆ν� = 135.5 µHz, and T� = 5777 K
are the solar values chosen as references.

When available, we used the effective temperatures provided
from the APOKASC catalogue, where spectroscopic paramaters
provided from the Apache Point Observatory Galactic Evolution
Experiment (APOGEE) are complemented with asteroseismic
parameters determined by members of the Kepler Asteroseis-
mology Science Consortium (KASC; Pinsonneault et al. 2014).
Otherwise, we used a proxy of the effective temperature given
by (Mosser et al. 2012a)

Teff = 4800
(
νmax

40

)0.06
, (25)

with νmax in µHz.
We observe a significant correlation between the stellar mass

and radius in our sample (Fig. 7) with a Pearson correlation
coefficient of 0.55, indicating that the radius is not an appro-
priate parameter to monitor the evolution of the core rotation, as
one could expect. Indeed, at fixed ∆ν, the higher the mass, the
higher the expected radius on the RGB. In these conditions, the
observed correlation between the stellar mass and radius is a bias
induced by stellar evolution.

In order to illustrate the main characteristics of structure and
pulsation behaviour on the RGB, we produced a set of mod-
els with M = {1.0, 1.3, 1.6, 1.9, 2.2, 2.5}M� using the stellar
evolutionary code Modules for Experiments in Stellar Astro-
physics (MESA; Paxton et al. 2011, 2013, 2015). The abundances
mixture follows Grevesse & Noels (1993) and we chose a metal-
licity close to the solar one (Z = 0.02, Y = 0.28). Convection is
described with the mixing length theory (Böhm-Vitense 1958) as
presented by Cox & Giuli (1968), using a mixing length param-
eter αMLT = 2. We use the OPAL 2005 equation of state (Rogers
& Nayfonov 2002) and the OPAL opacities (Iglesias & Rogers
1996), complemented by the Ferguson et al. (2005) opacities
at low temperatures. The nuclear reaction rates come from the
NACRE compilation (Angulo et al. 1999). The surface boundary
conditions are based on the classical Eddington gray T – τ rela-
tionship. Since we only aim at sketching out general features, the
effect of elements’ diffusion and convective core overshooting
are ignored. These models confirm that stars with higher masses
enter the RGB with higher radii (Fig. 8). We further observe
this trend in our sample when superimposing our data onto the
computed evolutionary tracks.

We stress that the mixed-mode densityN is a possible proxy
of stellar evolution instead of the radius, as models show that
N increases when stars evolve along the RGB (Fig. 8). In fact,
the computed evolutionary sequences indicate that while stars
enter the RGB with a radius depending dramatically on the stel-
lar mass, they show closeN values between 0.6 and 2.6. We note
that models confirm that all stars in our sample have already
entered the RGB, as we cannot obtain seismic information for
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roughly increasing the size of the sample by a factor of
ten compared to Mosser et al. (2012b). The impossibil-290
ity of fitting the rotational components increases when ∆ν
decreases: 70 % of the unsuccessful cases correspond to
∆ν ≤ 9 µHz (Fig. 6). Low ∆ν values correspond to evolved
RGB stars. During the evolution along the RGB, the g-
m mode inertia increases and mixed modes are less visi-295
ble, making the identification of the rotational components
more difficult (Dupret et al. 2009; Grosjean et al. 2014).
The method also failed to propose a satisfactory identifi-
cation of the rotational components where the mixed-mode
density is too low: 10 % of the unsuccessful cases correspond300
to N ≤ 5 (Fig. 6). These cases correspond to stars on the
low RGB presenting only a few ` = 1 g-m modes, where it
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is hard to retrieve significant information on the rotational
components.

5.1. Monitoring the evolution of the core rotation 305

The stellar masses and radii can be estimated from the
global asteroseismic parameters ∆ν and νmax through the
scaling relations (Kjeldsen & Bedding 1995; Kallinger et al.
2010; Mosser et al. 2013)

M

M�
=

(
νmax

νmax,�

)3(
∆ν

∆ν�

)−4(
Teff

T�

)3/2

, (23)
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Fig. 7. Mass distribution of red giant branch stars where the rotational multiplet components have been identified. The darkness of the dots is
positively correlated with the number of superimposed dots. Left panel: mass as a function of the radius. Right panel: mass as a function of the
mixed-mode density.
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m mode inertia increases and mixed modes are less visi-295
ble, making the identification of the rotational components
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is hard to retrieve significant information on the rotational
components.

5.1. Monitoring the evolution of the core rotation 305

The stellar masses and radii can be estimated from the
global asteroseismic parameters ∆ν and νmax through the
scaling relations (Kjeldsen & Bedding 1995; Kallinger et al.
2010; Mosser et al. 2013)
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Fig. 8. Evolution of the radius as a function of the mixed-mode density
on the red giant branch. Coloured triangles represent the measurements
obtained in this study, the colour coding represents the mass estimated
from the asteroseismic global parameters. Evolutionary tracks are com-
puted with MESA for different masses. The coloured dots indicate the
bottom of the RGB for the different masses. The vertical black dashed
line indicates the lower observational limit for the mixed-mode density,
N = 2.7.

stars below N = 2.7 with Kepler long-cadence data. We further
observe an apparent absence of correlation between the stellar
mass and the mixed-mode density in our sample (Fig. 7) with a
Pearson correlation coefficient of 0.15, indicating thatN is a less
biased proxy of stellar evolution than the radius.

As shown by our models, the mixed-mode density remark-
ably monitors the fraction of the stellar radius occupied by the
inert helium core along the RGB (Fig. 9). This is valid for the
various stellar masses considered, as the relative difference in
rcore/R between models with different masses remains below 1%.
We thus use the mixed-mode density as an unbiased marker of
stellar evolution on the RGB (Fig. 5).

5.2. Investigating the core slow-down rate as a function of the
stellar mass

On the one hand, Eggenberger et al. (2017) explored the influ-
ence of the stellar mass on the efficiency of the angular
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ten compared to Mosser et al. (2012b). The impossibil-290
ity of fitting the rotational components increases when ∆ν
decreases: 70 % of the unsuccessful cases correspond to
∆ν ≤ 9 µHz (Fig. 6). Low ∆ν values correspond to evolved
RGB stars. During the evolution along the RGB, the g-
m mode inertia increases and mixed modes are less visi-295
ble, making the identification of the rotational components
more difficult (Dupret et al. 2009; Grosjean et al. 2014).
The method also failed to propose a satisfactory identifi-
cation of the rotational components where the mixed-mode
density is too low: 10 % of the unsuccessful cases correspond300
to N ≤ 5 (Fig. 6). These cases correspond to stars on the
low RGB presenting only a few ` = 1 g-m modes, where it
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components.

5.1. Monitoring the evolution of the core rotation 305

The stellar masses and radii can be estimated from the
global asteroseismic parameters ∆ν and νmax through the
scaling relations (Kjeldsen & Bedding 1995; Kallinger et al.
2010; Mosser et al. 2013)

M
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νmax
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)3(
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Fig. 9. Evolution of the relative position of the core boundary, namely
the radius of the core normalized to the total stellar radius, as a function
of the mixed-mode density N , for different stellar masses, computed
with MESA. The colour code for the evolutionary sequences and dots
locating the bottom of the red giant branch is the same as in Fig. 8. The
vertical black dashed line has the same meaning as in Fig. 8. The tracks
corresponding to M ≥ 1.6 M� are superimposed.

momentum transport, but they only considered two stars with
different masses. On the other hand, the measurements of
Mosser et al. (2012b) actually included a small number of stars
on the RGB and the highest mass was around 1.7 M�, with only
three high-mass stars. We now have a much larger dataset cov-
ering a broad mass range, from 1 up to 2.5 M�, allowing us to
investigate how the mean core rotational splitting and the slow-
down rate of the core rotation depend on the stellar parameters.
We considered different mass ranges, chosen in order to ensure a
sufficiently large number of stars in each mass interval. We then
measured for each mass range the mean value of the core
rotational splitting 〈δνrot,core〉 and investigated a relationship of
the type

δνrot,core ∝ N
a, (26)

with the a values resulting from a non-linear least squares fit
on each mass interval (Fig. 10). The measured 〈δνrot,core〉 and
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Fig. 10. Mean core rotational splitting as a function of the mixed-mode density for different mass ranges. Coloured triangles
represent the measurements obtained in this study while grey crosses represent the measurements of Mosser et al. (2012b) on the
red giant branch. The coloured lines represent the corresponding fits of the core slow-down obtained from Eq. 26. Upper left: M
≤ 1.4 M�. Upper right: 1.4 < M ≤ 1.6 M�. Lower left: 1.6 < M ≤ 1.9 M�. Lower right: M > 1.9 M�.

Table 1. Slow-down rates and mean core rotational splittings.

M Number of stars a 〈δνrot,core〉 (nHz)
M ≤ 1.4M� 224 −0.01± 0.05 331± 127

1.4 < M ≤ 1.6M� 383 0.08± 0.04 355± 140
1.6 < M ≤ 1.9M� 187 −0.07± 0.07 359± 164

M > 1.9M� 81 −0.05± 0.13 329± 170

Notes. Fit of δνrot,core as a function of N a (Eq. (26)).

R

R�
=

(
νmax

νmax,�

)(
∆ν

∆ν�

)−2(
Teff

T�

)1/2

, (24)

where νmax,� = 3050µHz, ∆ν� = 135.5µHz, and T� =
5777K are the solar values chosen as references.
When available, we used the effective temper-
atures provided from the APOKASC catalogue,
where spectroscopic paramaters provided from the
Apache Point Observatory Galactic Evolution Ex-
periment (APOGEE) are complemented with as-
teroseismic parameters determined by members of
the Kepler Asteroseismology Science Consortium
(KASC) (Pinsonneault et al. 2014). Otherwise, we

used a proxy of the effective temperature given by
(Mosser et al. 2012a)

Teff = 4800
(νmax

40

)0.06

, (25)

with νmax in µHz.

We observe a significant correlation between the stel-
lar mass and radius in our sample (Fig. 7) with a Pearson
correlation coefficient of 0.55, indicating that the radius 310
is not an appropriate parameter to monitor the evolution
of the core rotation, as one could expect. Indeed, at fixed
∆ν, the higher the mass, the higher the expected radius
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Fig. 10. Mean core rotational splitting as a function of the mixed-mode density for different mass ranges. Coloured triangles represent the mea-
surements obtained in this study while grey crosses represent the measurements of Mosser et al. (2012b) on the red giant branch. The coloured
lines represent the corresponding fits of the core slow-down obtained from Eq. (26). Upper left panel: M ≤ 1.4 M�. Upper right panel: 1.4 < M ≤
1.6 M�. Lower left panel: 1.6 < M ≤ 1.9 M�. Lower right panel: M > 1.9 M�.

a values are summarized in Table 1 as a function of the mass
range. The results indicate that the mean core rotational splittings
and core rotation slow-down rate are the same, to the precision of
our measurements, for all stellar mass ranges considered in this
study (Table 1 and Fig. 11). Moreover, the mean slow-down rate
measured in this study is lower than what we derive when using
all the Mosser et al. (2012b) measurements on the RGB (Table 2).

6. Discussion

We selected the 57 RGB stars for which we and Mosser et al.
(2012b) obtained mean core rotation measurements. We then
considered either the radius or the mixed-mode density as a
proxy of stellar evolution. In the following, we explore the ori-
gin of the discrepancy found between the mean slow-down rate
of the core rotation measured in this work and the mean slope
measured when using Mosser et al. (2012b) results. We then
address the mass dependence of the core slow-down rate. We
finally discuss the limitations and implications of our results.

6.1. Origin of the observed discrepancies

We first compared the slow-down rates obtained with our mea-
surements and those of Mosser et al. (2012b) as a function of the

Table 1. Slow-down rates and mean core rotational splittings.

M Number a 〈δνrot,core〉 (nHz)
of stars

M ≤ 1.4 M� 224 −0.01 ± 0.05 331 ± 127
1.4 < M ≤ 1.6 M� 383 0.08 ± 0.04 355 ± 140
1.6 < M ≤ 1.9 M� 187 −0.07 ± 0.07 359 ± 164

M > 1.9 M� 81 −0.05 ± 0.13 329 ± 170

Notes. Fit of δνrot,core as a function of Na (Eq. (26)).

radius (Fig. 12). The measured slopes strongly differ from each
other, the slow-down rate we obtained with our measurements
being lower (Table 3). The significant differences between these
two sets of measurements arise from the two stars with a radius
larger than 9.5 R�, for which Mosser et al. (2012b) underesti-
mated the mean core rotational splittings. We checked that we
recover slopes that are in agreement when excluding these stars
from the two datasets.

We also made the same comparison using the mixed-
mode density N as a proxy of stellar evolution (Fig. 13) and
found slopes in agreement (Table 3). The smaller discrepancy
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dashed lines indicate the value of the slow-down rate and the associated error bars measured in this study from a fit to all stars
〈a〉 and derived from all Mosser et al. (2012b) measurements on the red giant branch aN ,2012, respectively.

on the RGB. In these conditions, the observed correlation
between the stellar mass and radius is a bias induced by315
stellar evolution.
In order to illustrate the main characteristics of structure
and pulsation behaviour on the RGB, we produced a set
of models with M = {1.0, 1.3, 1.6, 1.9, 2.2, 2.5}M� using
the stellar evolutionary code Modules for Experiments320
in Stellar Astrophysics (MESA) (Paxton et al. 2011,
2013, 2015). The abundances mixture follows Grevesse
& Noels (1993) and we chose a metallicity close to the
solar one (Z=0.02, Y=0.28). Convection is described
with the mixing length theory (Böhm-Vitense 1958) as325
presented by Cox & Giuli (1968), using a mixing length
parameter αMLT = 2. We use the OPAL 2005 equation of
state (Rogers & Nayfonov 2002) and the OPAL opacities
(Iglesias & Rogers 1996), complemented by the Ferguson
et al. (2005) opacities at low temperatures. The nuclear330
reaction rates come from the NACRE compilation (Angulo
et al. 1999). The surface boundary conditions are based
on the classical Eddington gray T – τ relationship. Since
we only aim at sketching out general features, the effect
of elements’ diffusion and convective core overshooting335
are ignored. These models confirm that stars with higher
masses enter the RGB with higher radii (Fig. 8). We fur-
ther observe this trend in our sample when superimposing
our data onto the computed evolutionary tracks.
We stress that the mixed-mode density N is a possible340
proxy of stellar evolution instead of the radius, as models
show that N increases when stars evolve along the RGB
(Fig. 8). In fact, the computed evolutionary sequences
indicate that while stars enter the RGB with a radius
depending dramatically on the stellar mass, they show345
close N values between 0.6 and 2.6. We note that models

Table 2. Slow-down rates on the red giant branch.

aN ,2012 〈a〉
−0.19± 0.06 0.01± 0.03

Notes. Fit of δνrot,core as a function of the mixed-mode density.
The value taken by aN ,2012 is derived from Mosser et al. (2012b)
measurements while 〈a〉 is derived from the measurements ob-
tained in this study for a much larger sample.

confirm that all stars in our sample have already entered
the RGB, as we cannot obtain seismic information for stars
below N = 2.7 with Kepler long-cadence data. We further
observe an apparent absence of correlation between the 350
stellar mass and the mixed-mode density in our sample
(Fig. 7) with a Pearson correlation coefficient of 0.15,
indicating that N is a less biased proxy of stellar evolution
than the radius.
As shown by our models, the mixed-mode density remark- 355
ably monitors the fraction of the stellar radius occupied by
the inert helium core along the RGB (Fig. 9). This is valid
for the various stellar masses considered, as the relative
difference in rcore/R between models with different masses
remains below 1 %. We thus use the mixed-mode density 360
as an unbiased marker of stellar evolution on the RGB
(Fig. 5).

5.2. Investigating the core slow-down rate as a function of
the stellar mass

On the one hand, Eggenberger et al. (2017) explored the
influence of the stellar mass on the efficiency of the angular
momentum transport, but they only considered two stars

Article number, page 10 of 13

Fig. 11. Slopes of the core slow-down a when consider-
ing the evolution of the core rotation as a function of the
mixed-mode density N measured through Eq. (10) for dif-
ferent mass ranges. Our measurements and the associated
error bars are represented in blue. Vertical black dashed
lines mark the boundaries between the different mass ranges
considered. The green and red solid and dashed lines indi-
cate the value of the slow-down rate and the associated error
bars measured in this study from a fit to all stars 〈a〉 and
derived from all Mosser et al. (2012b) measurements on the
red giant branch aN ,2012, respectively.

Table 2. Slow-down rates on the red giant branch.

aN ,2012 〈a〉

−0.19 ± 0.06 0.01 ± 0.03

Notes. Fit of δνrot,core as a function of the mixed-mode density. The value
taken by aN ,2012 is derived from Mosser et al. (2012b) measurements
while 〈a〉 is derived from the measurements obtained in this study for a
much larger sample.

comes from the redistribution of the repartition of δνrot,core
measurements induced byN , which probes the stellar evolution-
ary stage, compared to what is observed when using the radius.
These slopes are in agreement but are significantly larger than
what we derive from a sample ten times larger. The discrepancy
thus comes from a sample effect. Hence, the sample of Mosser
et al. (2012b) is somehow biased. This is not surprising because
their method was limited to simple cases, that is, to small split-
tings. This confusion limit is more likely reached when ∆ν
decreases, which corresponds in average to more evolved stars.
Thus, in the approach followed by Mosser et al. (2012b), it is
easier to measure large splittings at low N since they are work-
ing with frequency instead of stretched periods. On the contrary,
whenN increases it is harder to measure large splittings because
the rotational multiplet components are entangled. In these con-
ditions, stars showing a non-ambiguous rotational signature are
more likely to present low splittings. This deficit in large split-
tings at large N tends to result in a negative slope, suggesting a
slow-down of the core rotation. Working with stretched periods
allows us to measure reliable splittings well beyond the confu-
sion limit. Thus, our measurements, encompassing a much larger
sample, allow us to refine the diagnosis of Mosser et al. (2012b)
on the evolution of the core rotation along the RGB and to reveal
that this evolution is independent of the stellar mass. They con-
firm low core-rotation rates on the low RGB, and indicate that
the core rotation seems to remain constant on the part of the
RGB covered by our sample, instead of slightly slowing down.
This reinforces the need to find physical mechanisms to coun-
terbalance the core contraction along the RGB, which should
lead to an acceleration of the core rotation in the absence of

angular momentum transport. Furthermore, models still need to
reconcile with observations as they predict core rotation rates at
least ten times higher than those measured.

6.2. Mass dependence of the core slow-down rate

Our results suggest a similar evolution of the core rotation
for various masses on the red giant branch. This constitutes a
striking feature and hopefully a fruitful indication in the search
for the physical process at work. It is not in contradiction with
the conclusion made by Eggenberger et al. (2017) that the
efficiency of the angular momentum transport would increase
with stellar mass, since a 2.5 M� star evolves 100 times faster
than a 1 M� star on the RGB (Table 4). However, things are not
so simple as the evolutionary timescale is not the only parameter
at stake. More modelling work will be necessary to go from
these measurements to quantitative estimates in terms of angular
momentum transport and to bring tighter constraints on the
mechanisms at work. This goes beyond the scope of the present
work.

6.3. Mean core rotation

We must keep in mind that the measured δνrot,core are the
rotational splittings of the most g-dominated dipole modes,
which does not directly scale with the core rotation rate
(Eqs. (12)–(14)). In practice, βcore/βenv � 1 only on the high
RGB accessible with asteroseismology. On the lower RGB, the
envelope contribution to the splittings of g-m modes is not neg-
ligible. We thus need to introduce a correction factor η into
Eq. (17) to derive an accurate estimation of the mean core
rotation rate (Mosser et al. 2012b) as

〈Ω〉core = 4 π η δνrot,core, (27)

with

η = 1 +
0.65
N

. (28)

However, the relative deviation between 〈Ω〉core values derived
with and without the η correction factor remains limited to

A24, page 10 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832822&pdf_id=0


C. Gehan et al.: Core rotation braking on the red giant branch for various mass ranges

C. Gehan et al.: Core rotation braking on the red giant branch for various mass ranges

2 4 6 8 10 12 14
R/R¯

101

102

103

δν
ro
t,
co
re

 (n
Hz

)

δνrot,core ∝ R−0.38±0.15

δνrot,core ∝ R−0.17±0.19

1.0 1.3 1.6 1.9 2.2 2.5
M/M¯

Fig. 12. Mean core rotational splitting as a function of the ra-
dius estimated from the global asteroseismic parameters. Our
measurements are represented by coloured triangles, the colour
code being the same as in Fig. 5. Mosser et al. (2012b)’s mea-
surements on the RGB and on the clump are represented by
grey crosses and dots, respectively. RGB stars are common to
our study and to the Mosser et al. (2012b) study. The linear fit
resulting from our RGB measurements is plotted in black while
the fit resulting from Mosser et al. (2012b) RGB measurements
is represented in grey.

with different masses. On the other hand, the measurements
of Mosser et al. (2012b) actually included a small number
of stars on the RGB and the highest mass was around 1.7
M�, with only three high-mass stars. We now have a much
larger dataset covering a broad mass range, from 1 up to
2.5 M�, allowing us to investigate how the mean core rota-
tional splitting and the slow-down rate of the core rotation
depend on the stellar parameters. We considered different
mass ranges, chosen in order to ensure a sufficiently large
number of stars in each mass interval. We then measured
for each mass range the mean value of the core rotational
splitting 〈δνrot,core〉 and investigated a relationship of the
type

δνrot,core ∝ N a, (26)

with the a values resulting from a non-linear least squares365
fit on each mass interval (Fig. 10). The measured 〈δνrot,core〉
and a values are summarized in Table 1 as a function of the
mass range. The results indicate that the mean core rota-
tional splittings and core rotation slow-down rate are the
same, to the precision of our measurements, for all stellar370
mass ranges considered in this study (Table 1 and Fig. 11).
Moreover, the mean slow-down rate measured in this study
is lower than what we derive when using all the Mosser
et al. (2012b) measurements on the RGB (Table 2).

6. Discussion375

We selected the 57 RGB stars for which we and Mosser
et al. (2012b) obtained mean core rotation measurements.
We then considered either the radius or the mixed-mode
density as a proxy of stellar evolution. In the following, we
explore the origin of the discrepancy found between the380
mean slow-down rate of the core rotation measured in this
work and the mean slope measured when using Mosser et al.
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Fig. 13. Same as Fig. 12, this time representing the mean core
rotational splitting as a function of the mixed-mode density.

Table 3. Slow-down rates on the RGB.

Variable a2012,now aus

R/R� −0.38± 0.15 −0.17± 0.19
N −0.13± 0.07 −0.10± 0.09

Notes. Fit of the core rotational splitting is a function of either
the stellar radius or the mixed-mode density. These fits are
based on stars that are common to our study and to that of
Mosser et al. (2012b). The values taken by a2012,now are derived
from Mosser et al. (2012b) measurements while aus values are
derived from our measurements.

(2012b) results. We then address the mass dependence of
the core slow-down rate. We finally discuss the limitations
and implications of our results. 385

6.1. Origin of the observed discrepancies

We first compared the slow-down rates obtained with our
measurements and those of Mosser et al. (2012b) as a func-
tion of the radius (Fig. 12). The measured slopes strongly
differ from each other, the slow-down rate we obtained with 390
our measurements being lower (Table 3). The significant
differences between these two sets of measurements arise
from the two stars with a radius larger than 9.5 R�, for
which Mosser et al. (2012b) underestimated the mean core
rotational splittings. We checked that we recover slopes 395
that are in agreement when excluding these stars from the
two datasets.

We also made the same comparison using the mixed-
mode density N as a proxy of stellar evolution (Fig. 13) 400
and found slopes in agreement (Table 3). The smaller dis-
crepancy comes from the redistribution of the repartition
of δνrot,core measurements induced by N , which probes the
stellar evolutionary stage, compared to what is observed
when using the radius. These slopes are in agreement 405
but are significantly larger than what we derive from
a sample ten times larger. The discrepancy thus comes
from a sample effect. Hence, the sample of Mosser et al.
(2012b) is somehow biased. This is not surprising because
their method was limited to simple cases, that is, to small 410
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Fig. 12. Mean core rotational splitting as a function of the radius esti-
mated from the global asteroseismic parameters. Our measurements are
represented by coloured triangles, the colour code being the same as
in Fig. 5. Mosser et al. (2012b)’s measurements on the RGB and on
the clump are represented by grey crosses and dots, respectively. RGB
stars are common to our study and to the Mosser et al. (2012b) study.
The linear fit resulting from our RGB measurements is plotted in black
while the fit resulting from Mosser et al. (2012b) RGB measurements is
represented in grey.

Table 3. Slow-down rates on the RGB.

Variable a2012,now aus

R/R� −0.38 ± 0.15 −0.17 ± 0.19
N −0.13 ± 0.07 −0.10 ± 0.09

Notes. Fit of the core rotational splitting is a function of either the stellar
radius or the mixed-mode density. These fits are based on stars that are
common to our study and to that of Mosser et al. (2012b). The values
taken by a2012,now are derived from Mosser et al. (2012b) measurements
while aus values are derived from our measurements.

around 15% in absolute value. In these conditions, δνrot,core can
be used as a proxy of the red giant mean core rotation and pro-
vides clues on its evolution during the RGB stage. Moreover, the
η correction is only a proxy for the correction of the envelope
contribution. A complete interpretation in terms of the evolu-
tion of the red giant core rotation from the measured splittings
requires the computation of rotational kernels, which is left to
further studies.

6.4. Implications for the high RGB and the clump

We must also keep in mind that asteroseismology allows us to
probe stellar interiors for only a fraction of the time spent by
stars on the RGB (tobs/tRGB in Table 4). Thus, existing seismic
measurements cannot bring constraints on the evolution of the
core rotation on the high RGB, and we have to rely on modelling
in this evolutionary stage. We know that a significant braking
must occur in this evolutionary stage, unfortunately out of reach
of seismic measurements. Indeed, compared to what we measure
for RGB stars, the mean rotational splitting on the red clump is
divided by a factor of eight for M ≤ 1.2 M� stars and a factor of
four for M > 1.9 M� stars, as seen in Fig. 5.

Finally, the fact that N is a good proxy of stellar evolu-
tion on the RGB is not the case on the clump. Clump and
RGB stars have mixed-mode densities located in the same range
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M�, with only three high-mass stars. We now have a much
larger dataset covering a broad mass range, from 1 up to
2.5 M�, allowing us to investigate how the mean core rota-
tional splitting and the slow-down rate of the core rotation
depend on the stellar parameters. We considered different
mass ranges, chosen in order to ensure a sufficiently large
number of stars in each mass interval. We then measured
for each mass range the mean value of the core rotational
splitting 〈δνrot,core〉 and investigated a relationship of the
type

δνrot,core ∝ N a, (26)

with the a values resulting from a non-linear least squares365
fit on each mass interval (Fig. 10). The measured 〈δνrot,core〉
and a values are summarized in Table 1 as a function of the
mass range. The results indicate that the mean core rota-
tional splittings and core rotation slow-down rate are the
same, to the precision of our measurements, for all stellar370
mass ranges considered in this study (Table 1 and Fig. 11).
Moreover, the mean slow-down rate measured in this study
is lower than what we derive when using all the Mosser
et al. (2012b) measurements on the RGB (Table 2).
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We first compared the slow-down rates obtained with our
measurements and those of Mosser et al. (2012b) as a func-
tion of the radius (Fig. 12). The measured slopes strongly
differ from each other, the slow-down rate we obtained with 390
our measurements being lower (Table 3). The significant
differences between these two sets of measurements arise
from the two stars with a radius larger than 9.5 R�, for
which Mosser et al. (2012b) underestimated the mean core
rotational splittings. We checked that we recover slopes 395
that are in agreement when excluding these stars from the
two datasets.

We also made the same comparison using the mixed-
mode density N as a proxy of stellar evolution (Fig. 13) 400
and found slopes in agreement (Table 3). The smaller dis-
crepancy comes from the redistribution of the repartition
of δνrot,core measurements induced by N , which probes the
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when using the radius. These slopes are in agreement 405
but are significantly larger than what we derive from
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from a sample effect. Hence, the sample of Mosser et al.
(2012b) is somehow biased. This is not surprising because
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Fig. 13. Same as Fig. 12, this time representing the mean core rotational
splitting as a function of the mixed-mode density.

Table 4. Evolutionary timescales given by MESA for different stel-
lar masses, either on the whole RGB (tRGB) and accessible through
asteroseismology for 3 < N < 30 (tobs).

M/M� tRGB (Myr) tobs (Myr) tobs/tRGB (%)

1.0 640 200 31
1.3 420 160 38
1.6 280 120 43
1.9 110 50 46
2.2 44 13 30
2.5 8 6 75

of values, which seems to indicate that N decreases from the
tip of the RGB (Fig. 5). This is confirmed by models com-
puted with MESA, which indicate that N strongly decreases
when helium burning is firmly established in the core. More-
over, data emphasize that the dispersion of the N values met
in the clump rises from a mass effect and does not trace the
stellar evolution in the clump (Fig. 5). Higher mass stars have
lower N values on average. This trend is confirmed by models
that predict lower N values on the clump when the stellar mass
increases.

7. Conclusion

Mixed modes and splittings can now be disentangled in a simple
and almost automated way through the use of stretched period
spectra. This opens the era of large-scale measurements of the
core rotation of red giants necessary to prepare the analysis of
Plato data representing hundreds of thousands of potential red
giants. We developed a method allowing an automatic identi-
fication of the dipole gravity-dominated mixed-modes split by
rotation, providing us with a measurement of the mean core rota-
tional splitting δνrot,core for red giant branch stars, even when
mixed modes and splittings are entangled. As rotational com-
ponents with different azimuthal orders are now well identified
in the full power spectrum, we can now have access to large
rotational splitting values in a simple way.

We obtained mean core rotation measurements for 875 red
giant branch stars, covering a broad mass range from 1 to 2.5 M�.
This led to the possibility of unveiling the role of the stellar
mass in the core rotation slow-down rate. These measurements,
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obtained using a more elaborate method applied to a much larger
sample, allowed us to extend the results of Mosser et al. (2012b)
through a more precise characterization of the evolution of the
mean core rotation on the red giant branch, and to unveil how this
evolution depends on the stellar mass. As evolutionary sequences
calculated with MESA for various stellar masses emphasized
that the radius, used by Mosser et al. (2012b), is not a good
proxy of stellar evolution, we used instead the mixed-mode den-
sity N . Our results are not in contradiction with the conclusions
of Mosser et al. (2012b), as they confirm low core rotation rates
on the low red giant branch and indicate that the core rotation is
almost constant instead of slightly slowing down on the part of
the RGB to which we have access. It also appeared that this rota-
tion is independent of the mass and remains constant over the red
giant branch encompassed by our observational set. This conclu-
sion differs from previous results and is due to the combination
of the use of a larger and less biased dataset. As stars in our
sample evolve on the RGB with very different timescales, this
result implies that the mechanisms transporting angular momen-
tum should have different efficiencies for different stellar masses.
Quantifying the efficiency of the angular momentum transport
requires a deeper use of models. This is beyond the scope of this
paper and left to further studies.
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