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Abstract
A library of 52 distyryl and 9 mono-styryl cationic dyes was synthesized and investigated with respect to their optical properties,
propensity to aggregation in aqueous medium, and capacity to serve as fluorescence “light-up” probes for G-quadruplex (G4) DNA
and RNA structures. Among the 61 compounds, 57 dyes showed preferential enhancement of fluorescence intensity in the presence
of one or another G4-DNA or RNA structure, while no dye displayed preferential response to double-stranded DNA or single-
stranded RNA analytes employed at equivalent nucleotide concentration. Thus, preferential fluorimetric response towards G4 struc-
tures appears to be a common feature of mono- and distyryl dyes, including long-known mono-styryl dyes used as mitochondrial
probes or protein stains. However, the magnitude of the G4-induced “light-up” effect varies drastically, as a function of both the
molecular structure of the dyes and the nature or topology of G4 analytes. Although our results do not allow to formulate compre-
hensive structure–properties relationships, we identified several structural motifs, such as indole- or pyrrole-substituted distyryl
dyes, as well as simple mono-stryryl dyes such as DASPMI [2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide] or its
4-isomer, as optimal fluorescent light-up probes characterized by high fluorimetric response (I/I0 of up to 550-fold), excellent selec-
tivity with respect to double-stranded DNA or single-stranded RNA controls, high quantum yield in the presence of G4 analytes (up
to 0.32), large Stokes shift (up to 150 nm) and, in certain cases, structural selectivity with respect to one or another G4 folding
topology. These dyes can be considered as promising G4-responsive sensors for in vitro or imaging applications. As a possible ap-
plication, we implemented a simple two-dye fluorimetric assay allowing rapid topological classification of G4-DNA structures.
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Introduction
Development of fluorescent probes for G-quadruplex (G4)
DNA and RNA is an active research area. In fact, these non-
canonical nucleic acid structures appear to be biologically rele-

vant, although a complete understanding of their roles is still
missing [1-3]. At the same time, they represent versatile build-
ing blocks for artificial nano-architectures and nanodevices
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Figure 1: Some di- and mono-styryl dyes previously reported as fluorescent “light-up” probes for G4-DNA and RNA. Counter-ions are omitted for the
sake of clarity.

[4,5]. In this context, small-molecule fluorescent probes find
applications for in vitro detection of G4 structures and their dif-
ferentiation from other DNA or RNA forms [6-10], topological
characterization of G4 structures [11-14], real-time detection of
G4 formation [15], and implementation of G4-based molecular
devices [16,17] and biosensors [18-23]. Also, there have been
promising reports on cellular imaging of G4-DNA [24-29] and
G4-RNA [30-33] structures using small-molecule probes. A
large number of fluorescent probes for G4-DNA and RNA have
thus emerged in the last years, as summarized in several recent
reviews on this subject [34-39]. Moreover, novel probes
continue to be regularly reported. However, in most cases, the
discovery of novel probes is based on serendipitous findings or
limited variations of already established fluorogenic scaffolds.
This provokes a flood of “one-molecule” papers that report on
novel exciting probes, but do not compare their performance
with that of already established ones [40-51]. Systematic ap-
proaches to the development of fluorescent probes are still rare
and explore only a limited range of the chemical space [52-57].
This is a major hurdle to the establishment of solid
structure–properties relationships. Therefore, the choice of the

best probe for a particular application, as well as the develop-
ment of novel probes with improved or tailored properties, still
remain problematic tasks.

Along these lines, we have previously reported that cationic
styryl-type dyes, such as distyrylpyridinium derivatives 1a and
2a (Figure 1) represent a promising starting point for the devel-
opment of fluorescent probes selective for a variety of G4-DNA
structures [58]. Another distyryl dye, namely coumarin deriva-
tive 1y (BCVP), provides a bimodal (colorimetric and fluori-
metric) output towards G4-DNA through the selective disrup-
tion of H-aggregates formed in buffered solution [59]. In the
meantime, numerous other styryl derivatives were reported as
efficient “light-up” probes for G4-DNA and RNA, validating
the potential of this molecular scaffold (Figure 1) [22,33,60-63].
Nevertheless, the structural determinants for the desired proper-
ties of the probes (i.e., high selectivity for G4-DNA or G4-RNA
with respect to double-stranded or single-stranded nucleic acids,
high fluorimetric response and quantum yield, low background
fluorescence) are still poorly understood, mostly due to the lack
of comparative studies. To explore this aspect, we report the
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synthesis and systematic study of a library of 61 di- and mono-
styryl dyes, as potential “light-up” probes for G4 structures. The
study aims at the improvement of photophysical properties of
the dyes and the establishment of structure–properties relation-
ships.

Results
Design and synthesis of the dye library
On the basis of the previously established distyryl scaffold, we
designed 49 novel derivatives through systematic variation of
the electron-donating lateral aromatic groups Ar (a–Þ), the
cationic heterocyclic core Het+ (1–16) and, in the case of 2,4-
disubstituted derivatives (1–6), the substituent R (Figure 2).
Among these, several distyryl dyes (1o, 1x, 7x [64] and 10a
[65]) have been previously reported as fluorescent probes for
detection of double-stranded DNA. Compounds 15a and 16a
are homo-dimeric derivatives, featuring two distyryl moieties
connected via a C3 (15a) or a C4 (16a) linker. In addition, we
included 9 mono-styryl derivatives. Among these, compounds
17a and 18a are long-known [66,67]; however, to the best of
our knowledge, they have not been studied as fluorescent
probes for G4 structures so far. On the contrary, dye 17n
(Figure 1) was reported as a fluorescent probe for G4-DNA
during the preparation of the present work earlier this year [61].
Of note, numerous mono-styryl dyes combining indole and
quinolinium or pyridinium fragments have been described as
bright, photostable stains for double-stranded DNA, although
their interaction with G4 structures has not been assessed [68-
70].

All dyes, except for distyryl derivative 6a and mono-styryl de-
rivative 19a, were obtained through a piperidine-catalyzed
Knoevenagel condensation of the corresponding heterocyclic
precursors I1–5 and I7–16 with 1.5 molar equivalents (per
styryl unit) of aromatic aldehydes ArCHO (Scheme 1A,B). The
synthesis of precursors I3–5 and I15 is presented in Scheme 2
and detailed in Supporting Information File 1. Dyes 6a and 19a,
which could not be obtained by this route, were synthesized
through quaternization of the corresponding neutral styryl pre-
cursors with alkyl halides (Scheme 1C,D).

Most dyes of the library were prepared and handled as iodide
salts. However, in the case of very lipophilic dyes, the solu-
bility of iodide salts in the high-ionic-strength aqueous buffer
required for native G4 structures was insufficient. In these
cases, ion exchange to bromide (1b, 1ð, 1u, 6a, 7b, 7n) or chlo-
ride (1d, 1k–1q, 1t, 1w, 7ð, as well as 8a–12a and 14a–16a)
was performed using ion-exchange resins (cf. Supporting Infor-
mation File 1 and Table 1), in order to achieve a satisfactory
level of solubility in aqueous buffer (i.e., no visible precipita-
tion at a dye concentration of 10 µM in K-100 buffer: 10 mM

LiAsO2Me2, 100 mM KCl, pH 7.2). Dyes containing side-chain
substituents (2a–6a) were obtained directly as bromide salts,
sufficiently soluble in the aqueous buffer. All dyes were rigor-
ously purified by recrystallization and their identity and purity
were confirmed by 1H and 13C NMR, LC–MS and elemental
analysis data.

Optical properties
The library of styryl dyes covers a broad spectral range, with
absorption maxima ranging, in MeOH, from 407 nm (1j) to
605 nm (1þ), and molar extinction coefficients from around
45,000 to 60,000 cm−1 M−1 (Table 1). Several representative
absorption spectra are shown in Figure 3. In aqueous buffer
solutions (K-100: 10 mM LiAsO2Me2, 100 mM KCl, pH 7.2)
and at dye concentration of 10 µM, the absorption bands of
most dyes are blue-shifted by 10 to 30 nm and undergo a
hypochromic effect, compared with organic solvents such as
MeOH or DMSO. This behavior evidences a more or less sig-
nificant aggregation propensity of dyes in aqueous medium,
even though, in all tested cases, no visible precipitation
occurred. In addition, some dyes (1c, 1ð, 1Þ, 9a, 10a) display
even larger (>50 nm) blue shifts of their absorption bands
(Figure 3B). This is a characteristic feature for the formation of
H-aggregates, as already described for dye 1y [59]. On the other
hand, several dyes displayed new, strong absorption bands, red-
shifted by ≈70 nm (14p) or more than 100 nm (1d and 12a) in
aqueous buffer solution, with respect to organic solvents. These
could be ascribed to the formation of J-aggregates (Figure 3A
and 3F). This phenomenon was already observed, although at a
lower extent, with dye 1a [58]. With respect to the molecular
structure of dyes, it may be concluded that lipophilic substitu-
ents (1c, 1d, 1ð, 1y, 1Þ) and/or π-expanded heterocyclic cores
(9a, 10a, 12a, 14p) promote the dye aggregation, but the nature
of the resulting aggregate (H vs J) is unpredictable. Conversely,
small or hydrophilic substituents (1e, 1f, 1h, 1x, 7e, 7x) or
charged aminoalkyl chains (3a, 4a) reduce the tendency
of the dyes to self-aggregate, as suggested by the reduced
hypochromism of their absorption bands in aqueous solutions.
Of note, our assessment of the aggregation behavior of the dyes
is only preliminary, as it was performed at a single concentra-
tion (10 µM) and fixed ionic strength of the medium (110 mM).
A complete investigation of this phenomenon is outside the
scope of the present work. Finally, as typically observed for
styryl dyes, most of the library members displayed very weak
fluorescence both in organic solvents (MeOH, DMSO) and in
aqueous buffer, as assessed by visual inspection of the respec-
tive solutions.

In non-aggregating conditions, the influence of the molecular
structure of the dyes on their absorption bands can be clearly
observed. Thus, when Ar contains poor electron-donating sub-
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Figure 2: Design of a library of di- and mono-styryl dyes. Counter-ions are omitted for the sake of clarity.
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Scheme 1: A, B) General synthesis of A) distyryl and B) mono-styryl dyes via Knoevenagel condensation route. C) Synthesis of the dye 6a. D) Syn-
thesis of the dye 19a.

Scheme 2: Synthesis of I3–5 and I15.
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Table 1: Positions of maxima and intensity of long-wavelength absorption bands of dyes in MeOH and K-100 aqueous buffer.a

Dye Anion MeOH Buffer K-100
λmax [nm]b ε [103 cm−1 M−1] λmax [nm]b ε [103 cm−1 M−1]

distyryl dyes

1a I– 507 61.7 476, 616 (sh) (J) 39.9, 1.4
1b Br– 551 61.4 510 28.7
1c I– 472 53.7 422 (H) 43.6
1d Cl– 521 67.7 620 (J), 531 (sh) 34.5, 27.5
1ð Br– 524 65.9 459 (H) 43.3
1e I– 508 63.7 486 53.6
1f I– 510 61.9 486 45.6
1g I– 418 50.4 404 40.6
1h I– 422 44.6 403 40.8
1i I– 425 54.7 414 23.2
1j I– 407 46.7 393 393
1k Cl– 533 66.4 510 26.3
1l Cl– 468 32.8 443 22.4
1m Cl– 493 61.0 479 38.3
1o Cl– 466, 409 (sh) 56.2, 32.6 458 27.0
1p Cl– 474 57.2 465 29.3
1q Cl– 457, 404 (sh) 55.3, 34.0 487 27.3
1r I– 473, 417 (sh) 56.9, 32.2 462 28.8
1s I– 482 33.4 456 24.6
1t Cl– 476 55.5 455 20.8
1u Br– 472, 418 (sh) 52.2, 31.6 459 31.0
1v I– 435, 391 (sh) 48.8, 33.6 413, 367 22.0, 19.9
1w Cl– 410 32.8 404 22.5
1x I– 473, 419 (sh) 50.9, 32.5 455 42.7
1y I– 527 95.3 580, 460 (H) 14.9, 44.0
1z I– 423 55.9 416 45.3
1Þ I– 605 62.6 542 (H) 30.4
2a 2 Br– 516 62.9 483 43.1
2i 2 Br– 430 53.2 411 32.8
2n 2 Br– 508 56.9 475 28.3
3a 2 Br– 523 65.1 493 44.9
4a 2 Br– 524 57.4 493 48.1
5a 3 Br– 528 64.5 495 43.3
6a Br– 520 64.7 491 25.0
7a I– 494 70.3 465 44.9
7b Br– 535 66.4 507 29.0
7ð Cl– 511 79.5 480 43.4
7e I– 497 73.5 475 60.2
7f I– 497 68.9 474 52.3
7i I– 420 62.5 400 20.1
7n Br– 489 64.0 480 21.2
7x I– 467 57.3 448 48.7
8a Cl– 512 62.1 476 38.6
9a Cl– 565, 497 56.6, 48.3 492 (H) 33.5
10a Cl– 516 87.0 463 (H) 28.7
11a Cl– 473 61.1 432 32.8
12a Cl– 551 56.7 659 (J), 471 42.8, 16.8
13a Tos– 597, 512 53.9, 42.0 570 (sh), 515 24.9, 27.0
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Table 1: Positions of maxima and intensity of long-wavelength absorption bands of dyes in MeOH and K-100 aqueous buffer.a (continued)

14a Cl– 569, 471 82.3, 29.7 564 54.4
14p Cl– 523, 420 74.4, 20.5 590 (J) 67.5
15a 2 Cl– 520 115.2 523 61.4
16a 2 Cl– 510 111.7 490 69.1

mono-styryl dyes

17a I– 475 47.1 448 31.5
17n I– 473 37.1 422 29.1
17p I– 444 42.3 422 35.5
17s I– 449 33.2 424 32.2
17x I– 440 35.1 424 24.3
17y I– 495 61.2 491 54.1
18a I– 461 42.1 435 28.4
18n I– 459 33.4 409 26.0
19a I– 466 45.9 438 31.2

other

ThTc Cl– 415 28.1 410 24.7
a10 mM LiAsMe2O2, 100 mM KCl, pH 7.2. bsh: shoulder, H: H-aggregate band, J: J-aggregate band. cThioflavin T.

Figure 3: Representative absorption spectra of distyryl dyes: A) 1d, B) 1ð, C) 1f, D) 1u, E) 10a and F) 12a in DMSO (blue), MeOH (black) and K-100
aqueous buffer (red lines); c = 10 µM in all cases. Band assignment (when possible): M, monomer; H, H-aggregate; J, J-aggregate.

stituents (1g–1j), the absorption spectra of the dyes are blue-
shifted with respect to the prototype dye 1a. Conversely,
strongly electron-donating (1b, 1d) or π-extended (1k, 1Þ) Ar

units lead to bathochromic shifts of absorption bands (Table 1
and Figure 4A). The influence of the heterocyclic core is
equally important: replacement of the 2,4-pyridinium unit in
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Figure 4: Representative absorption spectra of the distyryl dyes (c = 10 µM in MeOH) demonstrating the influence of the molecular structure on the
optical properties. A) Variation of Ar groups. B) Variation of the Het+ core.

dye 1a with a 2,6-pyridinium (7a) or a 2,4-quinolizinium
moiety (11a) leads to a blue shift of the absorption maximum,
whereas all other heterocyclic units lead to significantly
stronger (10a, 14a) and/or red-shifted (9a, 12a, 13a) absorption
bands (Table 1 and Figure 4B). On the other hand, the nature of
the substituent R in the 2,4-pyridinium unit has only a minor in-
fluence on the optical properties, and the absorption bands of
the dyes 2a–6a are only slightly red-shifted (by 10–20 nm in
MeOH) with respect to that of 1a.

Fluorimetric response of dyes towards DNA
and RNA structures
The fluorimetric response of the dye library was investigated
against a set of 14 diverse nucleic acid structures (Table 2), in-
cluding ten G4-DNA structures of different topologies (parallel
G4: c-kit2, 25CEB, c-kit87up, c-myc, c-src1; parallel dimer G4:
c-myb; hybrid G4: 22AG, 46AG; antiparallel G4: TBA, HRAS),
two G4-RNA structures (TERRA and NRAS), as well as
genomic double-stranded DNA (calf thymus DNA, ct DNA) and
RNA from calf liver (cl RNA). Screened samples contained
fixed concentrations of dyes (2.5 µM) and nucleic acids (5 µM).
Corrections to the concentration of nucleic acids were made to
take into account the peculiarities of some of the samples.
In particular, 46AG was tested at 2.5 µM, to account for
its dimeric G4 nature, and ct DNA and cl RNA were tested at
110 µM nucleotide concentration, which is equivalent to the

total nucleotide concentration in a 5 µM sample of a 22 nt
oligonucleotide. All samples were prepared in a K+-rich buffer
solution (K-100, see Table 1 footnote). Thioflavin T (ThT),
which is widely used for detection of G4 structures, was
included for comparison. The fluorescence intensity was
measured using a microplate reader. In order to screen a large
panel of dyes against a number of analytes, the measurements
were performed at fixed excitation and emission wavelengths,
selected with a set of filters and adapted to the absorption and
emission characteristics of each dye (Supporting Information
File 1, Table S1).

The results of the screening, presented as relative enhancement
of fluorescence intensity in the presence of nucleic acids (I/I0,
where I is the fluorescence intensity of the dye in the presence
of two equivalents of nucleic acid and I0 is the fluorescence of
the dye alone), are shown in the form of a heat-map in Figure 5
(for numeric values cf. Supporting Information, Table S1). In
addition, group-average data, i.e., average fluorescence
response of each dye towards 12 G4 (DNA and RNA) analytes
vs average response to non-G4 (ct DNA and cl RNA) controls,
are presented in Figure 6. This plot facilitates the identification
of the most promising probes, disregarding the differences in
response of dyes with respect to individual analytes within each
group. The inspection of these data leads to a number of inter-
esting observations. 1) Most dyes of the library display signifi-
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Table 2: Nucleic acid samples used in the first screening round.

Acronym Sequence (5′ → 3′) Topology Number of
G-tetrads

Ref.

G4-DNA

c-kit2 GGGCGGGCGCGAGGGAGGGG parallel 3 [71]
25CEB AGGGTGGGTGTAAGTGTGGGTGGGT parallel with a long loop 3 [72]
c-kit87up AGGGAGGGCGCTGGGAGGAGGG parallel with a snap-back loop 3 [73]
c-myc TGAGGGTGGGTAGGGTGGGTAA parallel 3 [74]
c-src1 GGGCGGCGGGCTGGGCGGGG parallel 3 [75,76]
c-myb GGAGGAGGAGGA parallel (dimer) 2 [77]
22AG A(GGGTTA)3GGG hybrid (mixture of isoforms) 3 [78]
46AG A(GGGTTA)7GGG hybrid (dimeric G4)a 2 × 3 [79]
HRAS TCGGGTTGCGGGCGCAGGGCACGGGCG antiparallel 3 [80]
TBA GGTTGGTGTGGTTGG antiparallel 2 [81]

G4-RNA

TERRA r(AGGGUUAGGGUUAGGGUUAGGGU) parallel 3 [82]
NRAS r(GGGAGGGGCGGGUCUGGG) parallel 3 [83]

controls

ct DNA calf thymus DNA double-stranded DNA N/A
cl RNA calf liver RNA single-stranded RNA N/A

aUsed at half of the oligonucleotide concentration with respect to other G4 samples.

cant fluorescence enhancement (I/I0 > 10) in the presence of at
least one DNA or RNA target. Only 9 of 61 styryl dyes (1j–m,
1w, 1z, 1þ, 7n and 7ð) displayed weak or no fluorescence en-
hancement with all nucleic acid analytes. 2) Most remarkably,
the fluorescence of all dyes, with the exception of a few most
“unresponsive” ones (1j, 1l, 1z, and 7ð), is preferentially en-
hanced in the presence of G4-DNA or G4-RNA structures, al-
though to a varying extent. In fact, among the 61 tested dyes,
none showed preferential response to double-stranded DNA (ct
DNA) or single-stranded RNA (cl RNA) controls. 3) Com-
pared to the prototype dye 1a, modifications of the core (Het+)
unit (7a–14a) within the distyryl scaffold do not produce signif-
icant variations in the fluorimetric response of the dyes. The
same holds true for the homo-distyryl compounds 15a and 16a,
which do not outperform dye 1a. 4) Likewise, in the 2,4-pyri-
dinium series of dyes, introduction of an aminoalkyl (3a) or
benzyl substituent (6a) does not significantly improve the per-
formance of the probes, as was already described for the dye 2a
[58]. Instead, introduction of a DABCO fragment (bringing two
additional positive charges) in 4a and 5a leads to higher fluori-
metric response of the probes to G4-DNA (e.g., for 5a,
I/I0 = 330 with 22AG), although accompanied by a concomitant
loss of selectivity with respect to ds DNA (I/I0 = 25 for 5a).
5) In contrast, modification of Ar units strongly influences the
fluorimetric response of the dyes. In particular, dyes containing

indole residues (1o–s, 1u and 1v; red dots in Figure 6) show
particularly large fluorescence enhancement in the presence of
most G4-DNA and G4-RNA targets (1p: up to 550-fold with
22AG) and thus represent a significant improvement with
respect to dye 1a (I/I0 < 170, with all analytes) and ThT
(I/I0 ≤ 200, with all analytes). Distyryl dyes containing pyrrole
residues (1x, 7x: blue dots in Figure 6) also demonstrate out-
standing fluorescence enhancement in the presence of G4-DNA
analytes (1x: up to 690-fold with TERRA; 7x: up to 220-fold
with c-kit2). However, in the case for 1x, a marked loss of
selectivity with respect to non-G4 analytes can be observed
(I/I0 = 40 in the presence of ct DNA and 60 in the presence
cl RNA; cf. Figure 6). Conversely, as mentioned above, the dyes
containing benzothiophene (1w) or benzofuran (1z, 1þ) residues
perform poorly as fluorescent probes. 6) Strongly aggregating
dyes (i.e., 1d, 1ð, 10a and 12a) generally do not show higher
light-up effects than weakly aggregating analogues 1a or 1e. As
a remarkable exception, dye 1d shows strong and highly selec-
tive response towards the dimeric G4-DNA 46AG (I/I0 = 350),
which can be attributed to higher-affinity binding of the dye at
the interface between two G4 units, leading to efficient disag-
gregation. 7) Finally, several mono-styryl dyes, especially 17a,
17p, 18a and 19a also display significant fluorescence enhance-
ments in the presence of G4 structures (e.g., 17a: up to 340-
fold, 18a: up to 300-fold, both in the presence of c-myc), even
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Figure 5: Heat map of the relative emission intensity enhancement (I/I0) of styryl dyes and thioflavin T (ThT) (c = 2.5 µM in K-100 buffer) in the pres-
ence of 2 molar equiv of G4-DNA (46AG: 1 molar equivalent), G4-RNA, or ct DNA and cl RNA controls used at equivalent nucleotide concentration.
Darker cells indicate higher I/I0 values (see legend). For the numeric data, excitation and emission wavelengths see Supporting Information File 1,
Table S1.
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Figure 6: Analysis of the light-up response matrix of the dyes. The average light-up factor of each dye with respect to non-G4 targets (ct DNA and
cl RNA) is plotted against the corresponding average light-up factor obtained with 12 G4 targets. The grouping of dyes is arbitrary and serves to high-
light some of the structural motifs. Of note, x and y axes display different scales.

higher than those of the distyryl analogues 1a and 7a, and good
selectivity with respect to double-stranded DNA.

A number of patterns could also be revealed with respect to the
differential response of the probes towards various G4 targets.
1) Remarkably, G4-RNA TERRA systematically induces the
highest fluorimetric response of most probes from the distyryl
series, but not from the mono-styryl one. 2) In contrast, TBA
and c-myb (i.e., both two-quartet quadruplexes) are poorly
detected by most dyes (including ThT), in agreement with what
was observed with other probes [6,14,57]. Nonetheless, several
indole-containing dyes enable sensitive detection of these
targets (with I/I0 up to 100, 1u and 1v), with an excellent selec-
tivity with respect to double-stranded DNA. 3) Several dyes
display preferential response towards one or another topolog-
ical group of analytes. The first group (dyes 1a, 1d, 1p, 1x) is
selective towards hybrid (22AG, 46AG) and antiparallel (HRAS)
G4-DNA, whereas the second group (dyes 1s, 1u, 1v, 17a and
18a) shows fluorimetric selectivity for parallel G4-DNA forms
(c-kit2, c-kit87up, c-myc). To verify the preferences of the dyes
with respect to the conformation of the G4 analytes, we
analysed the data matrix presented in Figure 5 using principal
component analysis (PCA). TBA and c-myb, which had proven
mostly unresponsive, were excluded from the analysis. The
response pattern of each dye is represented as a dot in the plot
of the two first principal components (PC1 vs PC2, Figure 7). In

this plot, PC1 (x axis) correlates with the overall light-up inten-
sity observed for each dye with the tested targets. On the con-
trary, PC2 (y axis) correlates with the intra-G4 selectivity of
each compound, with compounds selective for hybrid and
antiparallel G4s locating in the lower part of the plot and com-
pounds selective for parallel G4s locating in the upper part.
Interestingly, the loading vectors for parallel G4-RNA (NRAS
and TERRA) fall in between those of parallel and hybrid/
antiparallel DNA G4s, suggesting an impact of the ribose back-
bone on the interaction. As can be inferred from the dot distri-
bution in the plot, the mono-styryl motif and the pyrrole substit-
uent within the distyryl motif (1x, 7x) clearly promote the selec-
tivity for the parallel G4 structures. On the other side, the effect
of the indole motif is less clear, with most of the dyes not
displaying any well-defined preference, except for 1p. This
latter compound displays a marked selectivity for hybrid and
antiparallel topologies, and in particular for the 22AG target.

Topological classification of G4-DNA by dual-
dye analysis
On the basis of screening results, two dyes, namely 1p and 18a,
were selected to build a fluorimetric test for conformational
classification of DNA oligonucleotides. As discussed above,
they present complementary preferences with respect to the
analyte groups, with 1p preferentially responding to hybrid and
18a to parallel G4-DNA structures. Moreover, both dyes
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Figure 7: PC1 vs PC2 plot obtained from the principal component analysis of the light-up data matrix for all dyes (ct DNA and cl RNA were excluded,
as well as TBA and c-myb due to their low light-up factors). Color coding highlights the distribution of the dyes sharing similar structural motifs.

showed excellent light-up response and selectivity for G4
targets over controls. The concomitant analysis of the response
of both dyes should thus allow the sensitive discrimination of
different G4 topologies. The response of two dyes was tested
against a panel of 33 DNA analytes (Supporting Information
File 1, Table S2), comprising some of the previously tested
oligonucleotides (c-myc, 25CEB, 22AG, 46AG, TBA, ct DNA).
Altogether, the panel of analytes comprehended five conforma-
tional groups of roughly equal size, representing the three G4
topologies (parallel, antiparallel and hybrid) as well as single
and double strands. RNA targets were excluded from this ex-
periment, even though G4-RNA TERRA triggered the highest
fluorescence responses for many dyes. On one side, the interest
of G4-RNA topology investigation is limited. In fact, to date,
they have never been shown to adopt a structure other than
parallel one [84,85]. On the other side, PCA proved that the
response of the dyes to RNA targets differs from that to parallel
G4-DNA, which might complicate data interpretation.

Emission intensities of both dyes were measured for the new
DNA panel in the conditions previously utilized for the
screening (2.5 µM dye, 5 µM DNA oligonucleotide, K-100
buffer). The data points corresponding to the oligonucleotides
in the set are displayed in a 2D scatter plot (Figure 8), featuring
normalized emission intensities of 1p and 18a dyes as x and y
axes, respectively. Notably, the oligonucleotides appeared to be

grouped in clusters broadly mirroring their conformations.
Specifically, parallel G4s cluster in the upper left part of the
plot (red dots), as a result of high fluorescence response with
18a and moderate-to-low response with 1p. Hybrid G4s (green
dots) produce moderate light-up values for 18a and high ones
for 1p, thus clustering on the right side of the plot. Finally,
antiparallel G4s (blue dots) locate in the lower left part of the
plot, corresponding to almost null emission enhancement by
18a and low one by 1a. Despite the low response to antiparallel
G4 structures, these can be still clearly distinguished from
double- and single-stranded controls (pink and black dots), to
which none of the two dyes proves responsive. A few G4 struc-
tures located relatively far from the areas occupied by the
respective groups. This is the case of G4CT, Bcl2Mid and, at
least partially, UpsB-Q3. In the case of G4CT, previous studies
report the existence of an equilibrium between a monomolec-
ular antiparallel form and a bimolecular parallel one, affected
by K+ and oligonucleotide concentration [86]. As already sug-
gested, this oligonucleotide is probably present as a mixture of
conformations in our working conditions [14]. It is thus likely
that the parallel one strongly influences the position of the data
in the plot, being better stained by dye 18a. For both Bcl2Mid
and UpsB-Q3, CD spectra are partially different from those ob-
tained with typical hybrid G4s, normally related to the telom-
eric sequence [14]. This might indicate the presence of peculiar
structural elements that might as well play a role in deter-
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Figure 8: Dual-dye conformational analysis of an extended panel of 33 DNA oligonucleotides. This is performed on normalized datasets (data refer-
ring to each of the two dyes are normalized separately), plotting the resulting fluorescence of compound 18a against that of compound 1p. Data for
each target are presented as independent triplicates.

Figure 9: Selected probes featuring high fluorimetric response towards G4 structures.

mining the probes response. On the overall, the combination of
the two probes proved quite efficacious at both (1) distin-
guishing G4 forming DNA sequences from controls, compre-
hending randomly generated single strands with varying
content of guanine and a wealth of duplex structures, and (2)
discriminating G4 structures based on their topology, with the
exception of a few notable cases presenting structural peculiari-
ties.

Quantum yield and brightness of the probes
Four highly responsive and G4-selective dyes, namely 1p, 1u,
17a and 18a (Figure 9), were chosen for fluorescence quantum
yield and brightness measurements, in order to assess their
potential for imaging applications. The quantum yield of dyes
was measured in the 1.2–3 µM concentration range, in the
absence or in the presence of an excess of two G4-DNA
analytes, namely c-myc (parallel G4) or 22AG (hybrid G4), and
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Table 3: Optical parameters (absorption and emission maxima, Stokes shift, molar absorptivity coefficient at the absorption maximum, fluorescence
quantum yield and brightness) of dyes 1p, 1u, 17a and 18a in the absence of DNA or in the presence of G4-DNA structures (c-myc and 22AG).

Properties Conditionsa 1p 1u 17a 18a

λmax (abs) [nm]b c-myc 501 504 463 450
22AG 508 497 455 447

λmax (em) [nm]c c-myc 571 560 611 584
22AG 570 560 606 582

∆λ [nm]d c-myc 70 56 148 134
22AG 62 63 151 135

εmax [103 cm−1 M−1]e no DNA 29.3 31.0 31.5 28.4
c-myc 32.6 35.7 26.8 24.3
22AG 30.6 29.2 28.6 26.6

Φf no DNA 0.0041 0.0114 0.0015 0.0056
c-myc 0.124 0.319 0.085 0.079
22AG 0.227 0.293 0.047 0.040

B [103, cm−1 M−1]g no DNA 0.12 0.35 0.047 0.16
c-myc 4.04 11.4 2.27 1.92
22AG 6.95 8.56 1.34 1.06

aWhenever indicated: in the presence of 6 µM of the respective G4-DNA. bAbsorption maximum in K-100 buffer, in the concentration range of
1.2–3 µM. cFluorescence emission maximum (λex = 500 nm). dStokes shift. eMolar absorptivity coefficient at the absorbance maximum for the dye
alone or the dye-G4 complex. fFluorescence quantum yield (integration range: 510–800 nm, reference: rhodamine 6G in EtOH). gBrightness
(B = εmax × Φ).

Figure 10: Photographs of solutions of A) distyryl dyes 1p and 1u; B) mono-styryl dyes 17a and 18a, in the absence or in the presence of G4 (22AG
or c-myc, 10 µM) or ds DNA (ct DNA, 250 µM bp) upon bottom illumination with UV light (λ = 312 nm); in all cases, c(dye) = 5 µM in K-100 buffer.

brightness data were obtained from the multiplication of
the corresponding quantum yield by the molar absorptivity
coefficient at absorption maxima (εmax) values, for dyes alone
and dye–G4 complexes. The obtained data are presented in
Table 3. The images of dyes in the absence and in the presence
of selected DNA samples are shown in Figure 10.

All dyes display moderate to good quantum yields and bright-
nesses upon complexation with both G4 analytes. In more
detail, distyryl dyes 1p and 1u prove more performant in this
sense, displaying higher quantum yield and brightness (Φ =
0.12 to 0.32, B = (4.0–11.4) × 103 cm−1 M−1) than mono-styryl
dyes (Φ = 0.040–0.085, B = (1.1–2.3) × 103 cm−1 M−1). It must
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be noted that the increase of fluorescence quantum yields ob-
served in the presence of G4-DNA (Φ/Φ0) is significantly lower
(up to five-fold) than the corresponding light-up factor
measured at a single wavelength (Table S1, Supporting Infor-
mation File 1). This is typically due to red shifts of absorption
and emission spectra of dyes in the presence of nucleic acids,
leading to the overestimation of the light-up effect. Neverthe-
less, single-wavelength light-up factors are of primordial impor-
tance for imaging applications, which are performed with a
single set of excitation of emission filters. As can be inferred
from the data in Table 3, Φ values mirror the selectivity patterns
already observed in the screening experiments. In fact, dye 1p
in the presence of hybrid G4 (22AG) is roughly twice as fluo-
rescent as its complex with c-myc (Φ = 0.227 and 0.124, respec-
tively). On the other side, complexes of 1u, 17a and 18a
with c-myc are more fluorescent than those with 22AG.
Among these, 1u certainly forms the brightest and most
fluorescent complexes (Φ = 0.32 and 0.29; B = 11.4 and
8.6 × 103 cm−1 M−1 for c-myc and 22AG, respectively).
However, the differences observed between the two G4
analytes are narrow, with respect to those observed with the
other dyes.

The analysis of absorption spectra also allowed us to quantify
the red-shift effect observed for all dyes upon complexation to
G4 structures, which is more pronounced for distyryl dyes 1p
and 1u (36–45 nm, cf. Table 1 and Table 3) than for mono-
styryl dyes 17a and 18a (7–15 nm, cf. Table 1 and Table 3).
Moreover, comparison of the absorption maxima with the corre-
sponding emission ones enabled us to calculate the Stokes shifts
for the samples. Of note, all compounds display remarkable
shifts, ranging from 56 to 151 nm, although these are more pro-
nounced for distyryl dyes (142 nm on average) than for mono-
styryl ones (63 nm on average). The combination of the absorp-
tion maxima redshift and these high Stokes shifts contributes to
make the selected styryl dyes excellent tools for optical
imaging.

Discussion
Despite the wealth of scaffolds already reported for the fluori-
metric detection of G4 structures, the published studies usually
lack a systematic investigation of the factors governing their
interaction with DNA and sensing capabilities. In fact, al-
though it is known in broad terms that some molecular features
(e.g., size and shape of the aromatic scaffold, charge, redox
potential) influence the interaction of dyes with G4-DNA, a
thorough assessment of such phenomena by comparative
studies is lacking in most reports. In this work, we address this
gap within the family of styryl dyes, trying to establish how to
construct an optimized dye for G4 sensing. In particular, we
studied the optical properties and the fluorimetric response of

61 in-house synthesized compounds against a set of G4-DNA
and G4-RNA analytes, as well as the respective non-G4
controls. The data were analyzed aiming at the identification of
structural motifs or physical properties (such as aggregation in
aqueous medium) of dyes which could govern their fluori-
metric response towards one or another group of analytes. Most
remarkably, our results demonstrated that a large majority of
the dyes (57 out of 61) undergo preferential fluorescence en-
hancement in the presence of G4 structures, compared with
double-stranded (DNA) and single-stranded (RNA) controls
(the remaining four dyes did not undergo a fluorescence en-
hancement with any of the analytes). Can it be considered as a
general rule? Considering the significant structural diversity of
our library and the related works [41,49], this is highly prob-
able, with regard to mono- and distyryl scaffolds. This implies
that styryl-based fluorescent probes initially developed for
detection or visualization of DNA, RNA, or other analytes,
either in vitro or in cellular imaging applications, must be
reassessed in view of their potential strong bias for G4 motifs.
Indeed, a remarkable “light-up” effect of SYPRO Orange, a
widely used protein stain belonging to the mono-styryl dye
family, in the presence of G4-DNA has been reported earlier
this year [49]. Moreover, mono-styryls 17a and 18a (the latter
also known as DASPMI) are long-known and widely used as
mitochondrial stains [87,88] and groove-binding fluorescent
probes for double-stranded DNA [89,90]. Herein, we report that
the fluorescence enhancement of these dyes induced
by parallel G4 structures is dramatically higher compared to ds
DNA.

Although the preferential response to G4 structures seems to be
an inherent feature of the styryl scaffold, the magnitude of the
“light-up” effect drastically varies within the series. Our results
clearly point to several structural motifs that appear advanta-
geous for high fluorimetric response and high quantum yield of
the probes. First of all, indole substituents, including core-
substituted indoles, emerge as the most efficient in this sense, as
demonstrated by several distyryls (1o–v) with superior proper-
ties with respect to the prototype compound 1a. A similar effect
of indole substituents was already observed in the family of
mono-styryl dyes developed for detection of double-stranded
DNA [68,70,91]. Moreover, pyrrole-substituted distyryls (1x
and 7x) also display very high fluorimetric response (up to
I/I0 = 690, for 1x–TERRA complex), albeit at the expense of
somewhat lower selectivity with respect to ds DNA and ss
RNA. It may be suggested that electron-rich heterocyclic sub-
stituents (indole and pyrrole) act by lowering the reduction
potential of dyes, rendering the photoinduced electron-transfer
reaction with guanine residues in DNA energetically disfa-
vored and resulting in higher fluorescence quantum yields.
However, in the absence of redox potential data, this assump-
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tion could not be experimentally verified. Finally, we showed
that the mono-styryl design can yield probes with interesting
properties, such as high light-up factors (up to 340, for
17a–c-myc complex) and a clear-cut selectivity for parallel-
stranded G4 motifs. Interestingly, in the mono-styryl family,
dyes containing indole (17p, 17s) or pyrrole (17x) substituents
did not perform better than the simplest styryl derivatives, i.e.,
17a and 18a. This fact demonstrates that our data are still insuf-
ficient to formulate generalized structure–properties relation-
ships.

Conclusion
To summarize, a systematic analysis enabled us to select the
optimal probes within the styryl dye family (i.e., those
displaying high quantum yield and brightness, excellent light-
up factor, and remarkable selectivity for a certain G4 class). A
comparison with literature data demonstrates that dyes 1p and
1u largely outperform, in terms of brightness and quadruplex-
vs-duplex selectivity, the widely used fluorescent probes, such
as thioflavin T (ThT, Φ = 0.25, in the presence of 22AG/K+

conditions) and thiazole orange (TO, Φ = 0.19 in the presence
of 22AG/K+ conditions) [92], and approach the brightest
G4-DNA probes developed so far, such as trialryimidazole
IZCM-7 (Φ = 0.52, in the presence of c-myc) [52] and the NIR-
emitting squaraine dye CAS-C1 (Φ of up to 0.74 with parallel
G4-DNA) [93]. Applications of these dyes can be multiple. As
an example, we proposed herein the implementation of a simple
two-dye array to classify G4-DNA structures based on their
topology. Applications in the design of G4-based logic gates
could also be envisaged. Taking into account the favorable
optical properties, in particular high brightness and large Stokes
shift, the same probes could be utilized to proceed to cellular
imagining of G4 structures, certainly with caution regarding the
inherent propensity of cationic dyes to accumulate in mitochon-
dria. At the same time, our work establishes an approach to op-
timize the structure of renowned scaffolds and achieve maximal
performances in G4 sensing.

Supporting Information
Supporting Information File 1
Experimental details and supplementary Tables S1 and S2.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-15-183-S1.pdf]
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EXPERIMENTAL SECTION 


Synthesis of dyes 


General remarks. All commercially available chemicals were reagent grade and used without 


further purification. NMR spectra were recorded with a Bruker Avance 300 spectrometer (1H: 


300 MHz, 13C: 75 MHz) at 25 °C; chemical shifts are given in ppm (δ) values and calibrated 


with respect to the signal of the solvent (DMSO: δH = 2.50, δC = 39.52 ppm) or MeOH (in D2O, 


δH = 3.34, δC = 49.50 ppm). Multiplicities of 13C NMR signals were determined from DEPT135 


or APT experiments. The melting points were determined on a Kofler bench (Wagner & Munz). 


Elemental microanalysis of all novel compounds was performed by Service de Microanalyse, 


CNRS–ICSN, Gif-sur-Yvette, France. The purity of final compounds was assessed by LC–MS 


analysis (Waters Alliance 2695 equipped with a Waters XBridge C18-3.5 µm column and a 


photodiode array detector; eluent A: water with 0.05% TFA, eluent B: MeCN with 0.05% TFA, 


gradient elution with 2 to 100% of eluent B, flow rate: 0.8 mL min–1). Mass spectra (MS, ESI 


in the positive-ion mode) were recorded with a Waters ZQ instrument. In the assignment of 


mass spectra of salts, M refers to the organic cation or dication. 


Intermediates. Precursor I17 was purchased from Sigma-Aldrich. Intermediates I1 [1], I2 [2], 


I7 [1], I10 [3] and I18 [1] were prepared as described in the literature. The synthesis of other 


precursors is described below. 


 


2,4-Dimethyl-1-(3-trimethylammoniopropyl)pyridinium dibromide (I3): A solution of (3-


bromopropyl)trimethylammonium bromide (2.26 g, 8.65 mmol) in MeCN (25 mL) was brought 


to reflux, and 2,4-lutidine (1.00 mL, 0.93 g, 8.65 mmol) was added. After heating at reflux for 


24 h, the reaction mixture was cooled and the solvent was evaporated to a half of the initial 


volume under vacuum. The precipitated solid was collected and washed twice with MeCN and 







S2 
 


Et2O, to yield I3 (1.50 g, 47%) as a pale-rose solid, m.p. 221–222 °C; 1H NMR (300 MHz, 


DMSO): δ 9.04 (d, J = 6.5 Hz, 1H), 7.97 (s, 1H), 7.88 (d, J = 6.4 Hz, 1H), 4.59 (t, J = 7.7 Hz, 


2H), 3.52 (dd, J = 9.8, 6.6 Hz, 2H), 3.13 (s, 9H), 2.85 (s, 3H), 2.56 (s, 3H), 2.42–2.21 (m, 2H); 


13C NMR (75 MHz, DMSO): δ 158.5 (Cq), 154.2 (Cq), 144.6 (CH), 130.1 (CH), 126.2 (CH), 61.7 


(CH2), 53.1 (CH2), 52.5 (CH3), 23.3 (CH2), 21.2 (CH3), 19.7 (CH3); MS (ESI+): 321.2 [M + 


CF3COO−]+, 207.2 [M − H]+, 148.2 [M – NMe3 − H]+. 


1-(3-Bromopropyl)-2,4-dimethylpyridinium bromide: A mixture of 2,4-lutidine (5.4 mL, 


5.0 g, 47 mmol), 1,3-dibromopropane (9.5 mL, 18.8 g, 93 mmol) and tetra-n-butylammonium 


iodide (0.43 g, 1.17 mmol) in acetone (50 mL) was heated at reflux for 24 h. After cooling, the 


suspension was filtered and the precipitate was washed with acetone and dried, to give I15 


(2.0 g, 10%) as a white solid (characterization data below). The filtrate was concentrated under 


vacuum. The resulting oily residue was triturated several times with a large volume of Et2O 


and then dried under vacuum, to give 1-(3-bromopropyl)-2,4-dimethylpyridinium bromide (7.0 


g, 49%) as a yellow viscous oil, which was used for the synthesis of I4 without further 


purification. 1H NMR (300 MHz, DMSO): δ 8.85 (d, J = 6.5 Hz, 1H), 7.90 (s, 1H), 7.80 (d, J = 


6.3 Hz, 1H), 4.56 (t, J = 7.3 Hz, 2H), 3.46 (t, J = 5.8 Hz, 2H), 2.78 (s, 4H), 2.54 (s, 3H), 1.98 


(td, J = 12.6, 6.1 Hz, 2H); 13C NMR (75 MHz, DMSO): δ 158.1 (Cq), 154.0 (Cq), 144.7 (CH), 


130.0 (CH), 126.1 (CH), 57.2 (CH2), 54.2 (CH2), 32.3 (CH2), 21.1 (CH3), 19.4 (CH3); MS (ESI+): 


m/z = 228.1 [M]+. 


1,1′-(1,3-Propanediyl)-bis(2,4-dimethylpyridinium) dibromide (I15): White solid, m.p. 225–


226 °C; 1H NMR (300 MHz, DMSO): δ 9.03 (d, J = 6.5 Hz, 2H), 7.94 (s, 2H), 7.86 (d, J = 6.4 


Hz, 2H), 4.69 (t, J = 7.8 Hz, 4H), 2.85 (s, 6H) 2.55 (s, 6H), 2.50–2.35 (m, 2H); 13C NMR (75 


MHz, DMSO): δ 158.5 (Cq), 154.3 (Cq), 144.5 (CH), 130.1 (CH), 126.1 (CH), 53.1 (CH2), 29.6 


(CH2), 21.2 (CH3), 19.7 (CH3); MS (ESI+): m/z = 255.2 [M − H]+, 128.2 [M]2+. 


1-(3-(4-aza-1-azoniabicyclo[2.2.2]octyl)propyl)-2,4-dimethylpyridinium dibromide (I4): A 


mixture of 1-(3-bromopropyl)-2,4-dimethylpyridinium dibromide (0.535 g, 1.73 mmol) and 1,4-


diazabicyclo[2.2.2]octane (0.388 g, 3.46 mmol) in MeCN (20 mL) was stirred at reflux for 16 


h, then cooled to room temperature and poured into Et2O (200 mL). The precipitate was 


collected by filtration and washed with Et2O, to give I4 (0.30 g, 41%) as a white, very 


hygroscopic solid; 1H NMR (300 MHz, D2O): δ 8.57 (d, J = 6.5 Hz, 1H), 7.76 (s, 1H), 7.72 (d, 


J = 6.4 Hz, 1H), 4.58 (t, J = 7.9 Hz, 2H), 3.55–3.44 (m, 8H), 3.23 (dt, J = 11.8, 6.1 Hz, 6H), 


2.81 (s, 3H), 2.58 (s, 3H), 2.53–2.38 (m, 2H); 13C NMR (75 MHz, D2O): δ 160.9 (Cq), 154.8 


(Cq), 144.2 (CH), 131.3 (CH), 127.4 (CH), 61.0 (CH2), 53.9 (CH2), 53.0 (CH2), 44.8 (CH2), 23.0 


(CH2), 21.7 (CH3), 20.0 (CH3); MS (ESI+): m/z = 260.3 [M – H]+, 148.2 [M – C6H12N2 – H]+, 


130.7 [M]2+. 
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1-(3-(4-ethyl-1,4-diazoniabicyclo[2.2.2]octyl)propyl)-2,4-dimethylpyridinium tribromide 


(I5): A mixture of I4 (2.00 g, 4.75 mmol) and ethyl bromide (0.35 mL, 0.52 g, 4.75 mmol) in 


MeCN (50 mL) was heated at 70 °C for 18 h. After cooling, the precipitated solid was collected, 


washed with MeCN and Et2O and dried under vacuum, to give I5 (0.80 g, 32%) as a white 


solid, m.p. 216–217 °C; 1H NMR (300 MHz, D2O): δ 8.58 (d, J = 6.5 Hz, 1H), 7.77 (s, 1H), 7.72 


(d, J = 6.4 Hz, 1H), 4.62 (t, J = 7.9 Hz, 2H), 4.05 (td, J = 13.7, 7.9 Hz, 12H), 3.91 – 3.83 (m, 


2H), 3.68 (q, J = 7.3 Hz, 2H), 2.81 (s, 3H), 2.58 (s, 3H), 2.57 – 2.47 (m, 2H), 1.43 (t, J = 7.3 


Hz, 3H); 13C NMR (75 MHz, D2O): δ 161.1 (Cq), 154.8 (Cq), 144.3 (CH), 131.4 (CH), 127.4 


(CH), 61.8 (CH2), 53.4 (CH2), 52.2 (CH2), 51.2 (CH2), 44.8 (CH2), 23.3 (CH2), 21.7 (CH3), 20.0 


(CH3), 7.7 (CH3); MS (ESI+): m/z = 288.4 [M – 2H]+, 260.3 [M – Et – H]+, 148.1 [M – (C6H12N2)Et 


– H]+, 130.7 [M – Et]2+. 


1,2,4-Trimethyl-6-phenylpyridinium iodide (I8): A solution of 2,4-dimethyl-6-phenylpyridine 


[4] (0.30 g, 1.64 mmol) and iodomethane (1.02 mL, 2.32 g, 16.4 mmol) in acetone (5 mL) was 


stirred under reflux for 60 h and cooled to room temperature. The precipitated solid was 


collected, washed twice with acetone and dried under vacuum, to give I8 (0.15 g, 28%) as a 


white solid; 1H NMR (300 MHz, DMSO): δ 7.95 (s, 1H), 7.78 (s, 1H), 7.70–7.57 (m, 5H), 3.88 


(s, 3H), 2.81 (s, 3H), 2.57 (s, 3H); 13C NMR (75 MHz, DMSO): δ 157.0 (Cq), 155.4 (Cq), 154.6 


(Cq), 132.9 (Cq), 130.8 (CH), 129.1 (CH), 129.0 (CH), 128.5 (CH), 128.0 (CH), 42.1 (CH3), 21.2 


(CH3), 20.9 (CH3); MS (ESI+): m/z = 198.2 [M]+. 


1,2,4-Trimethylquinolinium iodide (I9): A solution of 2,4-dimethylquinoline (4.76 mL, 5.00 g, 


31.8 mmol) and iodomethane (1.99 mL, 4.51 g, 31.8 mmol) in acetone (50 mL) was stirred at 


reflux for 18 h and then cooled to room temperature. The precipitated solid was collected, 


washed twice with acetone and dried under vacuum, to give I9 (7.30 g, 77%) as a white solid, 


m.p. 265–266 °C (lit. 254–256 °C [5]); 1H NMR (300 MHz, DMSO): δ 8.56 (d, J = 9.0 Hz, 1H), 


8.45 (dd, J = 8.4, 1.2 Hz, 1H), 8.20 (ddd, J = 8.8, 7.0, 1.4 Hz, 1H), 8.06 (s, 1H), 7.98 (t, J = 7.4 


Hz, 1H), 4.40 (s, 3H), 3.03 (s, 3H), 2.93 (s, 3H); 13C NMR (75 MHz, DMSO): δ 159.6 (Cq), 


155.9 (Cq), 138.7 (Cq), 134.6 (CH), 128.7 (CH), 127.2 (Cq), 126.7 (CH), 125.6 (CH), 119.3 


(CH), 39.4 (CH3), 22.9 (CH3), 19.3 (CH3); MS (ESI+): m/z = 172.2 [M]+. 


2,4-Dimethylquinolizinium hexafluorophosphate (I11): A solution of 2-picoline (4.28 mL, 


4.02 g, 43.2 mmol) in dry Et2O (36 mL) was cooled in an ice bath under argon. PhLi (1.9 M 


solution in Bu2O, 23.9 mL, 45.4 mmol) was subsequently added in small portions via a syringe. 


The dark-yellow solution was stirred in the ice bath for 20 min, then at room temperature for 


1 h and finally cooled again in the ice bath. A solution of 1-(2-methyl-1,3-dioxolan-2-yl)propan-


2-one [6] (9.34 g, 64.8 mmol) in dry Et2O (12 mL) was added. The reaction mixture was stirred 


in the ice bath for 15 min and then at room temperature for 30 min and finally poured into an 







S4 
 


ice-water mixture (100 mL). The organic phase was separated and the aqueous layer was 


extracted with MTBE (3 × 50 mL). The combined organic phases were washed with water and 


brine, dried over Na2SO4. The volatiles were removed in vacuo, yielding a brown residue 


containing the crude 2-methyl-1-(2-methyl-1,3-dioxolan-2-yl)-3-(pyridin-2-yl)propan-2-ol (4.44 


g). The residue was dissolved in Ac2O (10 mL) and H2SO4 (96%, 0.50 mL) was carefully 


added. The mixture was heated at reflux (bath temp. 150 °C) for 3 h, then cooled to room 


temperature. Ice-water (20 mL) was subsequently added and the resulting mixture was left to 


stir overnight. Charcoal (1 g) was then added and the mixture was filtered. The filter cake was 


then rinsed with water. NH4PF6 (6.30 g, 38.6 mmol) dissolved in a small amount of water was 


added to the filtrate. The precipitated solid was collected by filtration, washed with water (3x), 


dried under vacuum and recrystallized from EtOH, to give I11 (1.82 g, 14% yield) as a white 


crystalline solid. 1H NMR (300 MHz, DMSO): δ 9.16 (d, J = 7.1 Hz, 1H), 8.46 (dd, J = 8.3, 1.3 


Hz, 1H), 8.38–8.27 (m, 2H), 8.03 (dd, J = 7.0 Hz, 1H), 7.99 (s, 1H), 2.97 (s, 3H), 2.64 (s, 3H); 


13C NMR (75 MHz, DMSO): δ 148.7 (Cq), 144.0 (Cq), 142.8 (Cq), 135.7 (CH), 132.6 (CH), 127.0 


(CH), 126.8 (CH), 124.5 (CH), 122.7 (CH), 21.0 (CH3), 19.8 (CH3); MS (ESI+): m/z = 158.1 


[M+]. 


2,4-Dimethyl-1-azaquinolizinium hexafluorophosphate (I12) [7]: A mixture of 2-


aminopyridine (1.00 g, 10.6 mmol) and 2,4-pentanedione (1.31 mL, 1.28 g, 12.8 mmol) with 


polyphosphoric acid (10 mL) was stirred at 90 °C for 3 h and then poured into ice (60 g). A 


solution of NH4PF6 (6.93 g, 42.5 mmol) in a minimal volume of water was added to the melt. 


The resulting precipitate was collected by suction filtration, washed with water, and dried to 


give I12 (2.90 g, 90%) as a white solid, m.p. 207–208 °C; 1H NMR (300 MHz, DMSO): δ 9.25 


(d, J = 6.9 Hz, 1H), 8.61 (ddd, J = 8.5, 7.1, 1.2 Hz, 1H), 8.44 (dd, J = 8.7, 1.0 Hz, 1H), 8.15–


8.07 (m, 2H), 2.99 (s, 3H), 2.83 (s, 3H); 13C NMR (75 MHz, DMSO): δ 170.3 (Cq), 152.3 (Cq), 


148.5 (Cq), 141.4 (CH), 133.0 (CH), 127.3 (CH), 123.0 (CH), 120.6 (CH), 24.9 (CH3), 19.4 


(CH3); MS (ESI+): m/z = 159.2 [M]+. 


1,2,4-Trimethyl-1,8-naphthyridinium tosylate (I13): A mixture of 2,4-dimethyl-1,8-


naphthyridine [8,9] (0.791 mg, 5 mmol) and methyl p-toluenesulfonate (1.39 g, 7.5 mmol) was 


put under argon atmosphere, immersed into a preheated (120 °C) oil bath, and heated upon 


stirring for 45 min. After cooling, acetone (20 mL) was added, and the solid was collected by 


suction filtration, washed with acetone and dried, to give I13 (0.305 g, 35%) as a pale-rose 


solid, m.p. (from 2-PrOH) 210–212 °C; 1H NMR (300 MHz, DMSO): δ 9.33 (d, J = 4.2, 1.6 Hz, 


1H), 8.98 (dd, J = 8.4, 1.6 Hz, 1H), 8.11 (s, 1H), 8.08 (dd, J = 8.4, 4.3 Hz, 1H), 7.45 (d, J = 8.0 


Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 4.48 (s, 3H), 3.05 (s, 3H), 2.94 (s, 3H), 2.28 (s, 3H); 13C 


NMR (75 MHz, DMSO): δ 162.6 (Cq), 157.1 (Cq), 155.5 (CH), 146.5 (Cq), 145.9 (Cq), 137.5 


(Cq), 136.9 (CH), 128.0 (CH), 126.0 (CH), 125.4 (CH), 124.7 (CH), 122.4 (Cq), 36.2 (CH3), 22.7 
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(CH3), 20.8 (CH3), 18.7 (CH3); MS (ESI+): m/z = 173.2 [M]+. Structure assignment was 


confirmed by a characteristic NOE signal between the methyl substituents at N(1) (δH 4.48 


ppm) and C(2) (δH 3.05 ppm). 


1,4,6-Trimethylpyrimidinium iodide (I14): A mixture of 4,6-dimethylpyrimidine (2.16 g, 20 


mmol) and iodomethane (1.88 mL, 4.26 g, 30 mmol) in acetone (20 mL) was stirred under 


reflux for 18 h and then cooled to room temperature. The precipitated solid was collected, 


washed twice with acetone and dried under vacuum, to give I14 (3.82 g, 76%) as a white solid. 


1H NMR (300 MHz, DMSO): δ 9.57 (s, 1H), 8.09 (s, 1H), 4.11 (s, 3H), 2.75 (s, 3H), 2.69 (s, 


3H); 13C NMR (75 MHz, DMSO): δ 174.4 (Cq), 162.6 (Cq), 153.7 (CH), 123.4 (CH), 41.3 (CH3), 


24.3 (CH3), 19.6 (CH3); MS (ESI+): m/z = 123.2 [M]+. 


1,1′-(1,4-Butanediyl)-bis(2,4-dimethylpyridinium) dibromide (I16): A mixture of 2,4-lutidine 


(5.4 mL, 5.0 g, 47 mmol), 1,4-dibromobutane (2.8 mL, 5.0 g, 23.5 mmol) and tetra-n-


butylammonium iodide (0.43 g, 1.17 mmol) in acetone (50 mL) was heated under reflux for 24 


h. After cooling, the suspension was filtered and the resulting precipitate was washed with 


acetone and dried, to give I16 (2.80 g, 28%) as a white solid; 1H NMR (300 MHz, DMSO): δ 


8.94 (d, J = 6.4 Hz, 2H), 7.93 (s, 2H), 7.82 (dd, J = 6.4, 1.4 Hz, 2H), 4.59 (br s, 4H), 2.82 (s, 


6H) 2.54 (s, 6H), 1.95 (br s, 4H); 13C NMR (75 MHz, DMSO): δ 158.2 (Cq), 153.9 (Cq), 144.4 


(CH), 130.1 (CH), 126.1 (CH), 55.7 (CH2), 26.0 (CH2), 21.1 (CH3), 19.5 (CH3); MS (ESI+): m/z 


= 269.2 [M − H]+, 162.2 [M – C7H9N – H]+, 135.2 [M]2+. 


 


Synthesis of dyes. Dyes 1a, 7a, 17a and 18a were prepared according to the published 


procedures and gave satisfactory 1H and 13C NMR, MS, and elemental analysis data [1]. The 


synthesis of the dyes 1y (BCVP) [10] and 2a [2] was described elsewhere. The purity of all 


dyes was confirmed by the HPLC analysis. 


General procedure for the synthesis of distyryl dyes by Knoevenagel condensation1: A 


mixture of the heterocyclic salt I1–I16 (2.5 mmol), aldehyde (7.5 mmol, 3 molar equiv, unless 


otherwise stated) and piperidine (0.50 mL, 5 mmol, 2 molar equiv) in EtOH (25 mL) was heated 


under reflux for 2.5 h. After cooling to room temperature, the precipitated solid was collected 


by filtration, washed with EtOH (2 × 5 mL) and Et2O (2 × 5 mL) and dried. The crude iodide 


salt was either purified through a recrystallization from a suitable solvent (as indicated below) 


to give an analytically pure sample, or subjected to anion exchange to bromide or chloride, as 


described below. 


                                                
1 Except for the dye 6a whose preparation is detailed below. 
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Procedure for anion exchange: Ion-exchange resin (Amberlite IRA-402, Cl– form, or Amberlite 


IRA-400, Br– form, about 20 mmol equiv) was thoroughly rinsed with a mixture of MeCN and 


MeOH (1:1, v/v) and charged into a short glass column. The dye (iodide salt) was dissolved 


in a minimal amount of a mixture of MeCN and MeOH (1:1, v/v) and loaded in the column. The 


product was then eluted with the same solvent mixture (about 50 mL). The solvents were 


removed in vacuo and the residue was recrystallized from a suitable solvent (as indicated 


below), to give an analytically pure dye. 


 
2,4-Bis((E)-2-(julolidin-9-yl)vinyl]-1-methylpyridinium bromide (1b): Prepared in 62% 


yield from I1 and julolidine-9-carbaldehyde, followed by ion exchange to prepare the bromide 


salt and recrystallization from MeOH. Black solid, m.p. 247–248 °C; 1H NMR (300 MHz, 


DMSO): δ 8.43 (d, J = 6.8 Hz, 1H), 8.25 (s, 1H), 7.75 (d, J = 15.7 Hz, 2H), 7.62 (d, J = 6.1 Hz, 


1H), 7.24 (s, 2H), 7.12 (s, 2H), 7.02 (d, J = 15.3 Hz, 1H), 6.98 (d, J = 15.7 Hz, 1H), 4.10 (s, 


3H), 3.29–3.07 (m, 8H), 2.87–2.60 (m, 8H), 2.22–1.68 (m, 8H); 13C NMR (75 MHz, DMSO): δ 


152.1 (Cq), 151.6 (Cq), 145.1 (Cq), 144.8 (Cq), 144.1 (CH), 143.0 (CH), 140.5 (CH), 128.0 (CH), 


127.3 (CH), 121.7 (Cq), 121.4 (Cq), 120.7 (Cq), 120.6 (Cq), 117.8 (CH), 117.5 (CH), 116.6 (CH), 


109.6 (CH), 49.3 (CH2), 44.1 (CH3), 27.1 (CH2), 21.0 (CH2); MS (ESI+): m/z = 488.6 [M]+; anal. 


calcd. for C34H38BrN3 × 0.5 H2O (577.6): C 70.7, H 6.81, N 7.27; found: C 70.79, H 6.42, N 


7.01. 


 
1-Methyl-2,4-bis((E)-4-(4-methylpiperazin-1-yl)styryl)pyridinium iodide (1c): Prepared in 


47% yield from I1 and 4-(4-methylpiperazin-1-yl)benzaldehyde, followed by recrystallization 


from EtOH. Cherry-red solid, m.p. 228–229 °C; 1H NMR (300 MHz, DMSO): δ 8.59 (d, J = 6.7 


Hz, 1H), 8.42 (s, 1H), 7.94–7.81 (m, 3H), 7.72 (d, J = 8.5 Hz, 2H), 7.59 (d, J = 8.4 Hz, 2H), 


7.27 (d, J = 16.2 Hz, 1H), 7.20 (d, J = 16.6 Hz, 1H) 7.03 (d, J = 7.2, 4H), 4.19 (s, 3H), 3.38–


3.25 (m, 8H), 2.48–2.39 (m, 8H), 2.23 (s, 6H); 13C NMR (75 MHz, DMSO): δ 152.4 (Cq), 152.2 


(Cq), 152.1 (Cq), 151.9 (Cq), 144.7 (CH), 142.4 (CH), 140.0 (CH), 130.2 (CH), 129.5 (CH), 


124.9 (Cq), 124.6 (Cq), 119.3 (CH), 119.0 (CH), 114.5 (CH), 114.3 (CH), 112.7 (CH), 54.4 (2 


CH2), 46.8 (CH2), 46.7 (CH2), 45.7 (2 CH3), 44.5 (CH3); MS (ESI+): m/z = 494.6 [M]+, 247.9 [M 
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+ H]+, 165.7 [M + 2H]3+; anal. calcd. for C32H40IN5 × 0.5 H2O (630.6): C 60.95, H 6.55, N 11.11; 


found: C 60.91, H 6.42, N 11.40. 


 
1-Methyl-2,4-bis((E)-4-(pyrrolidin-1-yl)styryl)pyridinium chloride (1d): Prepared in 65% 


yield from I1 and 4-(pyrrolidin-1-yl)benzaldehyde, followed by ion exchange to prepare the 


chloride salt. Shiny black crystals, m.p. 248–249 °C; 1H NMR (300 MHz, DMSO): δ 8.49 (d, J 


= 6.8 Hz, 1H), 8.32 (s, 1H), 7.87 (d, J = 16.1 Hz, 1H), 7.86 (d, J = 15.7 Hz, 1H), 7.75–7.66 (m, 


3H), 7.57 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 15.7 Hz, 1H), 7.08 (d, J = 16.1 Hz, 1H), 6.68–6.61 


(m, 4H), 4.14 (s, 3H), 3.49–3.45 (m, 8H), 2.24–1.83 (m, 8H); 13C NMR (75 MHz, DMSO): δ 


152.2 (Cq), 151.8 (Cq), 149.3 (Cq), 149.1 (Cq), 144.2 (CH), 142.9 (CH), 140.5 (CH), 130.5 (CH), 


129.9 (CH), 122.2 (Cq), 121.9 (Cq), 118.4 (CH), 117.9 (CH), 116.9 (CH), 112.0 (CH), 111.8 


(CH), 110.5 (CH), 47.3 (CH2), 44.2 (CH3), 24.9 (CH2); MS (ESI+): m/z = 436.3 [M]+; anal. calcd. 


for C30H34ClN3 × 1.5 H2O (499.1): C 72.20, H 7.47, N 8.42; found: C 72.53, H 7.43, N 8.24. 


 
2,4-Bis((E)-4-(dibutylamino)styryl)-1-methylpyridinium bromide (1ð): Prepared in 13% 


yield from I1 and 4-(dibutylamino)benzaldehyde, followed by ion exchange to prepare the 


bromide salt and recrystallization from MeCN. Brick-red solid, m.p. 246–247 °C; 1H NMR (300 


MHz, DMSO): δ 8.49 (d, J = 6.9 Hz, 1H), 8.32 (s, 1H), 7.86 (d, J = 15.8 Hz, 2H), 7.74 (d, J = 


6.0 Hz, 1H), 7.66 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 15.4 Hz, 1H), 7.07 


(d, J = 15.8 Hz, 1H), 6.72 (d, J = 8.2 Hz, 4H), 4.13 (s, 3H), 3.44–3.30 (m, 8H), 1.62–1.44 (m, 


8H), 1.44–1.23 (m, 8H), 0.93 (t, J = 7.2 Hz, 12H); 13C NMR (75 MHz, DMSO): δ 152.2 (Cq), 


151.8 (Cq), 149.8 (Cq), 149.5 (Cq), 144.2 (CH), 142.7 (CH), 140.4 (CH), 130.7 (CH), 130.0 


(CH), 121.9 (Cq), 121.7 (Cq), 118.5 (CH), 117.9 (CH), 117.1 (CH), 111.5 (CH), 111.3 (CH), 


110.5 (CH), 49.8 (CH2), 44.2 (CH3), 29.0 (CH2), 19.6 (CH2), 13.9 (CH3); MS (ESI+): m/z = 552.0 


[M]+; anal. calcd. for C38H54BrN3 × 1.2 H2O (654.4): C 69.75, H 8.69, N 6.42; found: C 69.62, 


H 8.56, N 6.36. 
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2,4-Bis((E)-4-(bis(2-hydroxyethyl)amino)styryl)-1-methylpyridinium iodide (1e): 


Prepared in 53% yield from I1 and 4-[bis(2-hydroxyethyl)amino]benzaldehyde, followed by 


recrystallization from CHCl3–EtOH. Shiny crimson crystals, m.p. 150–151 °C; 1H NMR (300 


MHz, DMSO): δ 8.50 (d, J = 6.8 Hz, 1H), 8.33 (s, 1H), 7.91–7.82 (m, 2H), 7.74 (d, J = 6.6 Hz, 


1H), 7.66 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 15.7 Hz, 1H), 7.09 (d, J = 


16.1 Hz, 1H), 6.80 (dd, J = 8.8 Hz, 4H), 4.84–4.79 (m, 4H, OH), 4.14 (s, 3H), 3.64–3.47 (m, 


16H); 13C NMR (75 MHz, DMSO): δ 152.2 (Cq), 151.9 (Cq), 150.3 (Cq), 150.0 (Cq), 144.3 (CH), 


142.7 (CH), 130.5 (CH), 129.9 (CH), 122.2 (Cq), 122.1 (Cq), 118.5 (CH), 118.1 (CH), 117.3 


(CH), 111.7 (CH), 111.5 (CH), 110.8 (CH), 58.1 (CH2), 53.1 (CH2), 44.3 (CH3); MS (ESI+): m/z 


= 504.6 [M]+, 252.8 [M + H]2+, 243.9 [M – H2O + H]2+; anal. calcd. for C30H38IN3O4 × H2O 


(649.6): C 55.47, H 6.21, N 6.47; found: C 55.70, H 6.51, N 6.19. 


 
2,4-Bis((E)-4-((2-hydroxyethyl)(methyl)amino)styryl)-1-methylpyridinium iodide (1f): 


Prepared in 14% yield from I1 and N-methyl-N-(2-hydroxyethyl)-4-aminobenzaldehyde, 


followed by recrystallization from MeCN–MeOH. Shiny black solid, m.p. 239–240 °C; 1H NMR 


(300 MHz, DMSO): δ 8.50 (d, J = 6.7 Hz, 1H), 8.35 (s, 1H), 7.88 (d, J = 15.9 Hz, 2H), 7.74 (d, 


J = 6.1 Hz, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 15.4 Hz, 1H), 


7.10 (d, J = 15.8 Hz, 1H), 6.79 (d, J = 7.8 Hz, 4H), 4.83–4.66 (m, 2H, OH), 4.15 (s, 3H), 3.66–


3.54 (m, 4H), 3.54–3.44 (m, 4H), 3.04 (s, 3H), 3.03 (s, 3H); 13C NMR (75 MHz, DMSO): δ 


152.2 (Cq), 151.9 (Cq), 151.1 (Cq), 150.8 (Cq), 144.3 (CH), 142.8 (CH), 140.4 (CH), 130.5 (CH), 


129.8 (CH), 122.4 (Cq), 122.2 (Cq), 118.6 (CH), 118.1 (CH), 117.4 (CH), 111.7 (CH), 111.6 


(CH), 110.8 (CH), 58.2 (CH2), 53.9 (CH2), 44.3 (CH3), 38.8 (2 CH3); MS (ESI+): m/z = 444.4 


[M]+, 222.8 [M + H]2+, 213.8 [M – H2O + H]2+; anal. calcd. for C28H34IN3O2 (571.5): C 58.85, H 


6.00, N 7.35; found: C 58.53, H 5.98, N 7.55. 


 
1-Methyl-2,4-bis((E)-4-(methylthio)styryl)pyridinium iodide (1g): Prepared in 20% yield 


from I1 and 4-(methylthio)benzaldehyde, followed by recrystallization from MeCN–H2O. Dark-
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yellow crystals, m.p. 292–293 °C; 1H NMR (300 MHz, DMSO): δ 8.76 (d, J = 6.7 Hz, 1H), 8.57 


(s, 1H), 8.06–7.96 (m, 2H), 7.92 (d, J = 15.8 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 


Hz, 2H), 7.54 (d, J = 16.0 Hz, 1H), 7.47–7.34 (m, 5H), 4.27 (s, 3H), 2.55 (s, 3H), 2.54 (s, 3H); 


13C NMR (75 MHz, DMSO): δ 152.0 (Cq), 151.9 (Cq), 145.5 (CH), 142.2 (Cq), 141.8 (CH), 141.6 


(Cq), 139.5 (CH), 131.6 (Cq), 131.3 (Cq), 128.9 (CH), 128.4 (CH), 125.8 (CH), 125.6 (CH), 


122.4 (CH), 120.7 (CH), 116.6 (CH), 45.0 (CH3), 14.2 (2 CH3); MS (ESI+): m/z = 390.3 [M]+; 


anal. calcd. for C24H24INS2 (517.5): C 55.70, H 4.67, N 2.71; found: C 55.74, H 4.70, N 2.76. 


 
2,4-Bis((E)-3,4-dimethoxystyryl)-1-methylpyridin-1-ium iodide (1h): Prepared in 63% 


yield from I1 and 3,4-dimethoxybenzaldehyde, followed by recrystallization from MeCN–H2O. 


Yellow solid, m.p. > 280 °C; 1H NMR (300 MHz, DMSO): δ 8.72 (d, J = 6.7 Hz, 1H), 8.52 (s, 


1H), 8.00 (d, J = 16.3 Hz, 1H), 7.97–7.90 (m, 2H), 7.51–7.35 (m, 5H), 7.30 (dd, J = 8.3, 1.6 


Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 4.26 (s, 3H), 3.88 (s, 3H), 3.86 (s, 


3H), 3.84 (s, 3H), 3.83 (s, 3H); 13C NMR (75 MHz, DMSO): δ 152.2 (Cq), 152.0 (Cq), 151.3 


(Cq), 151.0 (Cq), 149.1 (Cq), 149.1 (Cq), 145.3 (CH), 142.5 (CH), 140.1 (CH), 128.2 (Cq), 127.9 


(Cq), 123.4 (CH), 122.8 (CH), 121.1 (CH), 120.2 (CH), 120.1 (CH), 115.2 (CH), 111.8 (CH), 


111.7 (CH), 110.6 (CH), 109.7 (CH), 55.9 (CH3), 55.7 (CH3), 55.65 (CH3), 55.6 (CH3), 44.9 


(CH3); MS (ESI+): m/z = 418.4 [M]+; anal. calcd. for C26H28NIO4 × 0.5 H2O (554.4): C 56.33, H 


5.27, N 2.53; found: C 56.45, H 5.21, N 2.43. 


 
2,4-Bis((E)-2-(6-methoxynaphthalen-2-yl)vinyl)-1-methylpyridinium iodide (1i): Prepared 


in 39% yield from I1 and 6-methoxy-2-naphthaldehyde, followed by recrystallization from 


MeOH–MeNO2. Yellow microcrystalline solid, m.p. > 280 °C; 1H NMR (300 MHz, DMSO): δ 


8.78 (d, J = 6.8 Hz, 1H), 8.65 (s, 1H), 8.28–8.04 (m, 5H), 8.01 (d, J = 5.5 Hz, 1H), 7.98–7.85 


(m, 5H), 7.63 (d, J = 15.9 Hz, 1H), 7.55 (d, J = 16.3 Hz, 1H), 7.40 (dd, J = 8.0, 2.2 Hz, 2H), 


7.29–7.18 (m, 2H), 4.31 (s, 3H), 3.92 (s, 3H), 3.91 (s, 3H); 13C NMR (75 MHz, DMSO): δ 158.7 


(Cq), 158.6 (Cq), 152.0 (Cq), 151.9 (Cq), 145.5 (CH), 142.5 (CH), 140.2 (CH), 135.6 (Cq), 135.3 


(Cq), 130.7 (Cq), 130.5 (Cq), 130.3 (CH), 130.2 (CH), 130.1 (CH), 129.5 (CH), 128.3 (Cq), 128.2 


(Cq), 127.7 (CH), 127.6 (CH), 124.7 (CH), 124.1 (CH), 122.7 (CH), 120.8 (CH), 120.6 (CH), 


119.5 (CH), 119.4 (CH), 116.8 (CH), 106.4 (CH), 55.4 (2 CH3), 45.1 (CH3); MS (ESI+): m/z = 


458.3 [M]+; anal. calcd. for C32H28INO2 (585.5): C 65.65, H 4.82, N 2.39; found: C 65.37, H 


4.98, N 2.38. 
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2,4-Bis((E)-4-methoxystyryl)-1-methylpyridinium iodide (1j): Prepared in 77% yield from 


I1 and 4-methoxybenzaldehyde, followed by recrystallization from MeCN–H2O. Lemon-yellow 


needles, m.p. 278–279 °C; 1H NMR (300 MHz, DMSO): δ 8.72 (d, J = 6.7 Hz, 1H), 8.52 (s, 


1H), 8.09–7.88 (m, 3H), 7.84 (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.7 Hz, 2H), 7.42 (d, J = 15.9 


Hz, 1H), 7.33 (d, J = 16.3 Hz, 1H), 7.17–6.98 (m, 4H), 4.25 (s, 3H), 3.85 (s, 3H), 3.83 (s, 3H); 


13C NMR (75 MHz, DMSO): δ 161.4 (Cq), 161.1 (Cq), 152.2 (Cq), 152.1 (Cq), 145.3 (CH), 142.1 


(CH), 139.8 (CH), 130.4 (CH), 129.7 (CH), 127.9 (Cq), 127.7 (Cq), 121.0 (CH), 120.2 (CH), 


115.2 (CH), 114.7 (CH), 114.6 (CH), 55.5 (CH3), 55.4 (CH3), 44.9 (CH3); MS (ESI+): m/z = 


358.3 [M]+; anal. calcd. for C24H24INO2 (485.4): C 59.39, H 4.98, N 2.89; found: C 59.41, H 


4.97, N 2.93. 


 
2,4-Bis((1E,3E)-4-(4-(dimethylamino)phenyl)buta-1,3-dien-1-yl)-1-methylpyridinium 


chloride (1k): Prepared in 42% yield through the reaction of I1 with 4-(dimethylamino)


cinnamaldehyde in a mixture EtOH (30 mL) and CHCl3 (5 mL) as described above, followed 


by ion exchange to prepare the chloride salt and recrystallization from MeCN–EtOH. Black 


metal-shiny solid, m.p. 233–234 °C; 1H NMR (300 MHz, DMSO): δ 8.56 (d, J = 6.8 Hz, 1H), 


8.31 (s, 1H), 7.90–7.76 (m, 2H), 7.73 (d, J = 6.8 Hz, 1H), 7.47 (d, J = 8.8 Hz, 4H), 7.18–6.96 


(m, 4H), 6.88 (d, J = 15.0 Hz, 1H), 6.75 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 6.67 (d, 


J = 15.4 Hz, 1H), 4.09 (s, 3H), 2.99 (s, 6H), 2.98 (s, 6H); 13C NMR (75 MHz, DMSO): δ 151.6 


(Cq), 151.4 (Cq), 151.1 (Cq), 151.0 (Cq), 144.6 (CH), 144.1 (CH), 142.2 (CH), 142.0 (CH), 141.2 


(CH), 129.0 (CH), 129.0 (CH), 123.7 (Cq), 123.7 (CH), 123.5 (Cq), 123.3 (CH), 123.2 (CH), 


119.0 (CH), 118.8 (CH), 117.2 (CH), 112.1 (CH), 112.0 (CH), 44.2 (CH3), 39.8 (CH3); MS 


(ESI+): m/z = 436.5 [M]+; anal. calcd. for C30H34ClN3 × 0.5 H2O (481.1): C 74.90, H 7.33, N 


8.73; found: C 75.20, H 7.31, N 8.65. 


 
2,4-Bis((E)-2-(4-(dimethylamino)naphtalen-1-yl)vinyl)-1-methylpyridinium chloride (1l): 


Prepared in 50% yield from I1 and 4-dimethylamino-1-naphthaldehyde, followed by ion 


exchange to prepare the chloride salt and recrystallization from EtOAc–MeOH. Black 


microcrystalline solid, m.p. 224–225 °C; 1H NMR (300 MHz, DMSO): δ 8.88 (s, 1H), 8.85–8.70 


(m, 3H), 8.61 (t, J = 8.3 Hz, 2H), 8.30 (dd, J = 6.7, 1.3 Hz, 1H), 8.25–8.14 (m, 3H), 8.05 (d, J 
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= 8.1 Hz, 1H), 7.71–7.59 (m, 4H), 7.54 (d, J = 15.6 Hz, 1H), 7.52 (d, J = 16.0 Hz, 1H), 7.21 (d, 


J = 8.1Hz, 1H), 7.20 (d, J = 8.1Hz, 1H), 4.32 (s, 3H), 2.94 (s, 6H), 2.92 (s, 6H); 13C NMR (75 


MHz, DMSO): δ 153.2 (Cq), 152.8 (Cq), 151.9 (Cq), 151.8 (Cq), 145.0 (CH), 138.7 (CH), 136.3 


(CH), 132.5 (Cq), 127.5 (Cq), 127.4 (Cq), 126.9 (CH), 126.7 (CH), 126.4 (CH), 126.1 (Cq), 125.7 


(Cq), 125.4 (2 CH), 124.9 (CH), 124.8 (CH), 124.3 (CH), 124.2 (CH), 123.7 (CH), 121.8 (CH), 


120.2 (CH), 117.6 (CH), 113.7 (CH), 113.5 (CH), 44.8 (CH3), 44.5 (2 CH3); MS (ESI+): m/z = 


484.6 [M]+, 242.8 [M + H]2+; anal. calcd. for C34H34ClN3 × 2 H2O (556.1): C 73.43, H 6.89, N 


7.56; found: C 73.30, H 6.49, N 7.29. 


 
2,4-Bis((E)-4-(diphenylamino)styryl)-1-methylpyridinium chloride (1m): Prepared in 10% 


yield through the reaction of I1 and 4-(N,N-diphenylamino)benzaldehyde in a mixture EtOH 


(25 mL) and CHCl3 (10 mL) as described above, followed by ion exchange to prepare the 


chloride salt and recrystallization from MeCN–EtOH. Orange-red solid, m.p. 293–294 °C; 1H 


NMR (300 MHz, DMSO): δ 8.67 (d, J = 6.4 Hz, 1H), 8.48 (s, 1H), 8.07–7.82 (m, 3H), 7.73 (d, 


J = 8.2 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 7.45–7.28 (m, 10H), 7.27–7.04 (m, 12H), 7.02–6.92 


(m, 4H), 4.21 (s, 3H). A 13C NMR spectrum could not be obtained due to insufficient solubility; 


MS (ESI+): m/z = 632.4 [M]+; anal. calcd. for C46H38ClN3 × 0.2 H2O (671.9): C 82.23, H 5.76, 


N 6.25; found: C 82.22, H 5.73, N 6.26. 


 
2,4-Bis((E)-2-(1H-indol-3-yl)vinyl)-1-methylpyridinium chloride (1o): Prepared in 11% 


yield from I1 and indole-3-carbaldehyde, followed by ion exchange to prepare the chloride salt 


and recrystallization from MeCN–EtOH. Brick-red solid, m.p. 310–311 °C; 1H NMR (300 MHz, 


DMSO): δ 12.17 (br s, 1H), 12.03 (br s, 1H), 8.56 (d, J = 6.9 Hz, 1H), 8.51 (s, 1H), 8.29–8.08 


(m, 5H), 7.93 (s, 1H), 7.84 (dd, J = 6.8, 1.3 Hz, 1H), 7.58–7.48 (m, 2H), 7.36–7.19 (m, 6H), 


4.21 (s, 3H); 13C NMR (75 MHz, DMSO): δ 152.7 (Cq), 152.6 (Cq), 144.1 (CH), 137.6 (Cq), 


137.4 (Cq), 136.6 (CH), 134.9 (CH), 131.8 (CH), 131.7 (CH), 125.0 (Cq), 124.9 (Cq), 122.9 


(CH), 122.8 (CH), 121.1 (CH), 120.9 (CH), 120.5 (CH), 120.2 (CH), 118.1 (CH), 117.5 (CH), 


117.3 (CH), 113.5 (Cq), 113.4 (Cq), 112.6 (2 CH), 110.8 (CH), 44.1 (CH3); MS (ESI+): m/z = 


376.4 [M]+; anal. calcd. for C26H22ClN3 × 1.2 H2O (433.6): C 72.03, H 5.67, N 9.69; found: C 


71.99, H 5.70, N 9.60. 
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2,4-Bis((E)-2-(5-methoxy-1H-indol-3-yl)vinyl)-1-methylpyridinium chloride (1p): 


Prepared in 28% yield from I1 and 5-methoxyindole-3-carbaldehyde, followed by ion exchange 


to prepare the chloride salt and recrystallization from MeCN–MeOH. Bright-orange solid, m.p. 


230–231 °C; 1H NMR (300 MHz, DMSO): δ 11.95 (br s, 1H), 11.83 (br s, 1H), 8.54 (d, J = 6.9 


Hz, 1H), 8.48 (d, J = 1.4 Hz, 1H), 8.25 (d, J = 15.8 Hz, 1H), 8.23 (d, J = 16.3 Hz, 1H), 8.11 (s, 


1H), 7.90 (s, 1H), 7.84 (dd, J = 8.4, 1.5 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.58 (d, J = 2.3 Hz, 


1H), 7.43 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.21 (d, J = 16.3 Hz, 1H), 7.18 (d, J = 


15.8 Hz, 1H), 6.96–6.85 (m, 2H), 4.21 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H); 13C NMR (75 MHz, 


DMSO): δ 153.8 (Cq), 153.7 (Cq), 151.5 (Cq), 151.4 (Cq), 142.8 (CH), 135.3 (CH), 133.6 (CH), 


131.2 (Cq), 131.0 (Cq), 130.3 (2 CH), 124.8 (Cq), 124.6 (Cq), 116.7 (CH), 116.0 (CH), 115.7 


(CH), 112.2 (Cq), 112.1 (CH), 112.0 (CH), 111.1 (CH), 110.9 (CH), 109.1 (CH), 101.9 (CH), 


101.3 (CH), 54.6 (CH3), 54.4 (CH3), 42.8 (CH3); MS (ESI+): m/z = 436.0 [M]+; anal. calcd. for 


C28H26ClN3O2 × H2O (490.0): C 68.63, H 5.76, N 8.58; found: C 68.89, H 6.02, N 8.76. 


 
2,4-Bis((E)-2-(5-fluoro-1H-indol-3-yl)vinyl)-1-methylpyridinium chloride (1q): Prepared in 


42% yield from I1 and 5-fluoroindole-3-carbaldehyde, followed by ion exchange to prepare the 


chloride salt and recrystallization from MeCN–MeOH. Tangerine solid, m.p. > 310 °C; 1H NMR 


(300 MHz, DMSO): δ 12.30 (br s, 1H), 12.17 (br s, 1H), 8.58 (d, J = 6.9 Hz, 1H), 8.51 (d, J = 


1.2 Hz, 1H), 8.27–8.15 (m, 3H), 8.05–7.91 (m, 3H), 7.86 (dd, J = 6.8, 1.4 Hz, 1H), 7.54 (dt, J 


= 8.8, 4.4 Hz, 2H), 7.26 (d, J = 16.7 Hz, 1H), 7.20 (d, J = 16.1 Hz, 1H), 7.16–7.06 (m, 2 H), 


4.22 (s, 3H); 13C NMR (75 MHz, DMSO): δ 158.2 (d, JCF = 234 Hz, Cq), 158.1 (d, JCF = 233 


Hz, Cq), 152.6 (Cq), 144.2 (CH), 136.1 (CH), 134.3 (CH), 134.1 (Cq), 133.9 (Cq), 132.9 (CH), 


132.8 (CH), 125.5 (d, JCF = 10.3 Hz, Cq), 125.2 (d, JCF = 10.3 Hz, Cq), 118.4 (CH), 117.7 (CH), 


117.6 (CH), 113.7 (d, JCF = 9.8 Hz, CH), 113.6 (d, JCF = 9.9 Hz, CH), 113.5 (Cq), 113.4 (Cq), 


111.1 (CH), 110.8 (d, JCF = 25.8 Hz, CH), 110.7 (d, JCF = 26.0 Hz, CH), 105.5 (d, JCF = 21.3 


Hz, CH), 105.2 (d, JCF = 21 Hz, CH), 44.2 (CH3); MS (ESI+): m/z = 412.4 [M]+; anal. calcd. for 


C26H20ClF2N3 (447.9): C 69.72, H 4.50, N 9.38; found: C 69.46, H 4.65, N 9.34. 


 
1-Methyl-2,4-bis((E)-2-(6-methyl-1H-indol-3-yl)vinyl)pyridinium iodide (1r): Prepared in 


54% yield from I1 and 6-methylindole-3-carbaldehyde, followed by recrystallization from 
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MeCN–MeOH. Orange crystals, m.p. > 310 °C; 1H NMR (300 MHz, DMSO): δ 11.73 (br s, 


2H), 8.45 (d, J = 6.9 Hz, 1H), 8.41 (s, 1H), 8.27–8.12 (m, 2H), 8.12–7.94 (m, 3H), 7.85 (s, 1H), 


7.76 (d, J = 6.0 Hz, 1H), 7.30 (d, J = 3.3 Hz, 2H), 7.23 (d, J = 16.3 Hz, 1H), 7.16–7.01 (m, 3H), 


4.14 (s, 3H), 2.43 (s, 6H); 13C NMR (75 MHz, DMSO): δ 152.5 (Cq), 143.8 (CH), 138.0 (Cq), 


137.9 (Cq), 136.7 (CH), 134.8 (CH), 132.2 (Cq), 132.1 (Cq), 131.6 (CH), 131.4 (CH), 122.8 


(CH), 122.7 (Cq), 122.6 (CH), 120.3 (CH), 120.0 (CH), 117.9 (CH), 117.3 (CH), 117.0 (CH), 


113.6 (Cq), 113.5 (Cq), 112.4 (2 CH), 110.3 (CH), 44.1 (CH3), 21.3 (2 CH3); MS (ESI+): m/z = 


404.3 [M]+; anal. calcd. for C28H26IN3 × 0.3 CH3CN × 0.3 H2O (549.2): C 62.55, H 5.05, N 8.42; 


found: C 62.50, H 4.97, N 8.63. 


 
1-Methyl-2,4-bis((E)-2-(5-(dimethylamino)-1H-indol-3-yl)vinyl)pyridinium iodide (1s): 


Prepared in 10% yield from I1 and 6-(dimethyl)indole-3-carbaldehyde [11], followed by 


recrystallization from MeCN–MeOH. Shiny black crystals, m.p. (decomp.) 146–148 °C; 1H 


NMR (300 MHz, DMSO): δ 11.73 (s, 1H), 11.61 (s, 1H), 8.48 (d, J = 6.6 Hz, 1H), 8.43 (s, 1H), 


8.25 (d, J = 15.3 Hz, 1H), 8.21 (d, J = 15.7 Hz, 1H), 8.03 (s, 1H), 7.84 (s, 1H), 7.79 (d, J = 6.6 


Hz, 1H), 7.40–7.28 (m, 4H), 7.13 (d, J = 16.1 Hz, 1H), 7.12 (d, J = 15.3 Hz, 1H), 6.88 (d, J = 


8.8 Hz, 2H), 4.17 (s, 3H), 2.97 (s, 12H); 13C NMR (75 MHz, DMSO): δ 152.5 (Cq), 152.4 (Cq), 


146.9 (Cq), 143.7 (CH), 136.6 (CH), 135.0 (CH), 130.9 (Cq), 130.7 (CH), 130.6 (Cq), 126.3 (Cq), 


126.2 (Cq), 117.3 (CH), 116.8 (CH), 116.3 (CH), 113.1 (Cq), 113.0 (Cq), 112.8 (CH), 112.7 


(CH), 111.9 (CH), 109.5 (CH), 103.2 (CH), 102.6 (CH), 43.8 (CH3), 41.9 (CH3), 41.6 (CH3); 


MS (ESI+): m/z = 462.5 [M]+, 231.8 [M + H]+; anal. calcd. for C30H32IN5 (589.5): C 61.12, H 


5.47, N 11.88; found: C 61.73, H 5.87, N 11.63. 


 
2,4-Bis((E)-2-(6-methoxy-1H-indol-3-yl)vinyl)-1-methylpyridinium chloride (1t): Prepared 


in 51% yield from I1 and 6-methoxyindole-3-carbaldehyde, followed by ion exchange to 


prepare the chloride salt and recrystallization from MeCN–MeOH. Crimson-red solid, m.p. 


305–306 °C; 1H NMR (300 MHz, DMSO): δ 11.87 (s, 1H), 11.75 (s, 1H), 8.53 (d, J = 6.9 Hz, 


1H), 8.45 (s, 1H), 8.16 (d, J = 15.7 Hz, 1H), 8.15 (d, J = 16.2 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 


8.00 (d, J = 8.8 Hz, 1H), 7.95 (d, J = 2.6 Hz, 1H), 7.82 (d, J = 6.7 Hz, 1H), 7.78 (d, J = 2.6 Hz, 


1H), 7.24 (d, J = 16.3 Hz, 1H), 7.15 (d, J = 15.8 Hz, 1H), 7.02 (dd, J = 3.7, 2.3 Hz, 2H), 6.93–


6.83 (m, 2H), 4.20 (s, 3H), 3.82 (s, 6H); 13C NMR (75 MHz, DMSO): δ 156.5 (Cq), 156.4 (Cq), 


152.7 (Cq), 152.6 (Cq), 144.0 (CH), 138.6 (Cq), 138.5 (Cq), 136.7 (CH), 134.9 (CH), 131.1 (CH), 
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130.9 (CH), 121.1 (CH), 120.9 (CH), 118.9 (Cq), 118.8 (Cq), 118.0 (CH), 117.2 (CH), 117.1 


(CH), 113.7 (Cq), 113.6 (Cq), 111.0 (CH), 110.8 (CH), 110.4 (CH), 95.6 (2 CH), 55.3 (2 CH3), 


44.0 (CH3). MS (ESI+): m/z = 436.4 [M]+; anal. calcd. for C28H26ClN3O2 × 0.3 H2O (477.4): C 


70.45, H 5.62, N 8.80; found: C 70.70, H 5.48, N 8.92. 


 
1-Methyl-2,4-bis((E)-2-(1-methyl-1H-indol-3-yl)vinyl)pyridinium bromide (1u): Prepared 


in 56% yield from I1 and 1-methylindole-3-carbaldehyde, followed by ion exchange to prepare 


the bromide salt and recrystallization from MeCN–EtOH. Shiny cherry red needles, m.p. 290–


291 °C; 1H NMR (300 MHz, DMSO): δ 8.52 (d, J = 6.9 Hz, 1H), 8.49 (d, J = 1.4 Hz, 1H), 8.28–


8.13 (m, 4H), 8.12 (s, 1H), 7.91 (s, 1H), 7.83 (dd, J = 6.8, 1.6 Hz, 1H), 7.62–7.54 (m, 2H), 


7.39–7.23 (m, 5H), 7.18 (d, J = 15.8 Hz, 1H), 4.19 (s, 3H), 3.91 (s, 3H), 3.88 (s, 3H); 13C NMR 


(75 MHz, DMSO): δ 152.4 (Cq), 144.0 (CH), 138.0 (Cq), 137.8 (Cq), 135.9 (CH), 135.0 (2 CH), 


134.1 (CH), 125.5 (Cq), 125.3 (Cq), 122.9 (CH), 122.8 (CH), 121.4 (CH), 121.2 (CH), 120.6 


(CH), 120.3 (CH), 118.1 (CH), 117.6 (CH), 117.3 (CH), 112.6 (Cq), 112.5 (Cq), 111.0 (CH), 


110.9 (CH), 110.7 (CH), 44.1 (CH3), 33.2 (CH3), 33.0 (CH3); MS (ESI+): m/z = 404.4 [M]+; anal. 


calcd. for C28H26BrN3 × H2O (502.5): C 66.93, H 5.62, N 8.36; found: C 67.28, H 6.00, N 8.12. 


 
1-Methyl-2,4-bis((E)-2-(7-aza-1H-indol-3-yl)vinyl)pyridinium iodide (1v): Prepared in 40% 


yield from I1 and 7-azaindole-3-carboxaldehyde, followed by recrystallization from MeCN. 


Dark orange solid, m.p. 294–295 °C; 1H NMR (300 MHz, DMSO): δ 12.42 (s, 2H), 8.68–8.54 


(m, 3H), 8.51 (s, 1H), 8.42–8.32 (m, 2H), 8.24 (s, 1H), 8.19 (d, J = 16.2 Hz, 2H), 8.05 (s, 1H), 


7.87 (d, J = 6.1 Hz, 1H), 7.43–7.18 (m, 4H), 4.24 (s, 3H); 13C NMR (75 MHz, DMSO): δ 152.5 


(Cq), 149.7 (Cq), 144.4 (CH), 144.2 (CH), 144.1 (CH), 136.1 (CH), 134.3 (CH), 132.1 (CH), 


131.7 (Cq), 128.9 (CH), 128.7 (CH), 118.6 (2 CH), 118.0 (CH), 117.3 (Cq), 117.2 (CH), 117.1 


(CH), 112.2 (Cq), 112.1 (Cq), 112.0 (CH), 44.4 (CH3); MS (ESI+): m/z = 378.4 [M]+, 189.8 [M + 


H]2+; anal. calcd. for C24H20IN5 × 0.5 H2O (514.4): C 56.04, H 4.12, N 13.62; found: C 56.28, 


H 4.12, N 13.98. 


 
1-Methyl-2,4-bis((E)-2-(1-benzothiophen-3-yl)vinyl)pyridinium chloride (1w): Prepared in 


20% yield from I1 and 1-benzothiophene-3-carbaldehyde, followed by ion exchange to 
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prepare the chloride salt and recrystallization from MeCN–MeOH. Wine-red solid, m.p. 243–


244 °C; 1H NMR (300 MHz, DMSO): δ 8.87 (s, 1H), 8.84 (d, J = 6.7 Hz, 1H), 8.67 (s, 1H), 


8.51–8.39 (m, 4H), 8.35 (d, J = 16.0 Hz, 1H), 8.21 (d, J = 6.8 Hz, 1H), 8.17–8.09 (m, 2H), 7.71 


(d, J = 16.0 Hz, 1H), 7.66–7.46 (m, 5H), 4.34 (s, 3H); 13C NMR (75 MHz, DMSO): δ 152.1 (Cq), 


151.9 (Cq), 145.5 (CH), 134.0 (Cq), 139.8 (Cq), 137.2 (Cq), 137.1 (Cq), 133.6 (CH), 132.4 (Cq), 


132.1 (Cq), 132.0 (CH), 129.6 (CH), 129.1 (CH), 125.4 (CH), 125.3 (CH), 125.2 (CH), 125.1 


(CH), 124.2 (CH), 123.4 (2 CH), 122.7 (CH), 122.5 (CH), 121.4 (CH), 120.9 (CH), 118.6 (CH), 


45.1 (CH3); MS (ESI+): m/z = 410.3 [M]+; anal. calcd. for C26H20ClNS2 × 0.5 H2O (455.0): C 


68.63, H 4.65, N 3.08; found: C 68.69, H 4.58, N 3.27. 


 
1-Methyl-2,4-bis((E)-2-(1-methylpyrrol-2-yl)vinyl)pyridinium iodide (1x): Prepared in 65% 


yield from I1 and 1-methylpyrrole-2-carboxaldehyde, followed by recrystallization from MeOH. 


Shiny green crystals, m.p. 264–266 °C; 1H NMR (300 MHz, DMSO): δ 8.54 (d, J = 6.9 Hz, 


1H), 8.40 (d, J = 1.7 Hz, 1H), 7.92 (dd, J = 6.8, 1.8 Hz, 1H), 7.86 (d, J = 16.0 Hz, 1H), 7.83 (d, 


J = 15.5 Hz, 1H), 7.14–6.99 (m, 5H), 6.82 (dd, J = 3.9, 1.5 Hz, 1H), 6.23 (dd, J = 3.9, 2.6 Hz, 


1H), 6.20 (dd, J = 3.9, 2.6 Hz, 1H), 4.14 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H); 13C NMR (75 MHz, 


DMSO): δ 152.0 (Cq), 151.8 (Cq), 144.2 (CH), 130.5 (Cq), 130.3 (CH), 128.7 (CH), 128.2 (CH), 


128.1 (CH), 119.3 (CH), 118.0 (CH), 117.7 (CH), 112.9 (CH), 111.4 (CH), 111.3 (CH), 109.8 


(CH), 109.7 (CH), 44.3 (CH3), 34.2 (CH3), 34.1 (CH3); MS (ESI+): m/z = 304.3 [M]+; anal. calcd. 


for C20H22IN3 (431.3): C 55.69, H 5.14, N 9.74; found: C 55.67, H 5.21, N 9.82. 


 
1-Methyl-2,4-bis((E)-2-(1-benzofuran-2-yl)vinyl)pyridinium iodide (1z): Prepared in 62% 


yield from I1 and 1-benzofuran-2-carbaldehyde, followed by recrystallization from MeCN–H2O. 


Dark-yellow crystals, m.p. > 280 °C; 1H NMR (300 MHz, DMSO): δ 8.86 (d, J = 6.7 Hz, 1H), 


8.76 (s, 1H), 8.23–8.03 (m, 3H), 7.84–7.73 (m, 2H), 7.68 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 8.3 


Hz, 1H), 7.52–7.39 (m, 5H), 7.39–7.27 (m, 3H), 4.32 (s, 3H); 13C NMR (75 MHz, DMSO): δ 


155.1 (Cq), 155.0 (Cq), 153.0 (Cq), 152.6 (Cq), 150.9 (Cq), 145.9 (CH), 128.9 (CH), 128.3 (Cq), 


128.2 (Cq), 127.2 (CH), 127.1 (CH), 126.9 (CH), 123.9 (CH), 123.8 (CH), 123.7 (CH), 122.4 


(CH), 122.3 (CH), 121.7 (CH), 121.4 (CH), 117.9 (CH), 112.4 (CH), 111.6 (CH), 111.4 (CH), 


111.2 (CH), 45.1 (CH3); MS (ESI+): m/z = 378.3 [M]+; anal. calcd. for C26H20INO2 (505.3): C 


61.79, H 3.99, N 2.77; found: C 61.72, H 4.13, N 2.77. 
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2,4-Bis((E)-2-(2,3,6,7-tetrahydro-1H,5H-furo[2,3-f]pyrido[3,2,1-ij]quinolin-10-yl)vinyl)-1-


methylpyridinium iodide (1Þ): Prepared in 54% yield from I1 and 2,3,6,7-tetrahydro-1H,5H-


furo[2,3-f]-pyrido[3,2,1-ij]quinoline-10-carboxaldehyde [12], followed by recrystallization from 


MeOH–MeCN. Black solid, m.p. 237–238 °C; 1H NMR (300 MHz, DMSO): δ 8.54 (d, J = 6.8 


Hz, 1H), 8.41(s, 1H), 7.99–7.71 (m, 3H), 7.16 (s, 1H), 7.08–6.91 (m, 5H), 4.14 (s, 3H), 3.30–


3.10 (m, 8H), 2.96–2.81 (m, 4H), 2.81–2.71 (m, 4H), 2.04–1.80 (m, 8H); 13C NMR (75 MHz, 


DMSO): δ 154.1 (Cq), 153.9 (Cq), 150.9 (Cq), 150.6 (Cq), 150.3 (Cq), 150.0 (Cq), 144.5 (CH), 


142.9 (Cq), 142.7 (Cq), 128.6 (CH), 126.7 (CH), 119.8 (Cq), 119.6 (CH + Cq), 119.4 (CH), 118.9 


(CH), 118.7 (CH), 118.6 (CH), 117.1 (Cq), 117.0 (Cq), 114.3 (CH), 113.3 (CH), 112.3 (CH), 


102.1 (Cq), 102.0 (Cq), 49.5 (CH2), 49.2 (CH2), 44.2 (CH3), 27.7 (CH2), 21.5 (CH2), 21.4 (CH2), 


20.3 (CH2); MS (ESI+): m/z = 568.5 [M]+, 284.5 [M + H]2+; anal. calcd. for C38H38IN3O2 × 0.5 


H2O (704.7): C 64.77, H 5.58, N 5.96; found: C 64.68, H 5.48, N 5.72. 


 
2,4-Bis((E)-2-(6-methoxynaphthalen-2-yl)vinyl)-1-(4-(triethylammonio)butyl)pyridinium 


dibromide (2i): Prepared in 37% yield from I2 [2] and 6-methoxy-2-naphthaldehyde, followed 


by recrystallization from EtOH. Dark yellow solid, m.p. 227–228 °C; 1H NMR (300 MHz, 


DMSO): δ 8.92 (d, J = 6.7 Hz, 1H), 8.76 (s, 1H), 8.35 (s, 1H), 8.30 (d, J = 16.4 Hz, 1H), 8.25–


8.07 (m, 4H), 8.06–7.83 (m, 5H), 7.72 (d, J = 15.8 Hz, 1H), 7.62 (d, J = 16.3 Hz, 1H), 7.43 (dd, 


J = 5.8, 2.3 Hz, 2H), 7.32–7.20 (m, 2H), 4.91–4.76 (m, 2H), 3.93 (s, 3H), 3.92 (s, 3H), 3.30–


3.19 (m, 8H), 1.99–1.75 (m, 4H), 1.18 (t, J = 6.9 Hz, 9H); 13C NMR (75 MHz, DMSO): δ 158.7 


(Cq), 158.6 (Cq), 152.3 (Cq), 151.6 (Cq), 145.0 (CH), 143.2 (CH), 140.7 (CH), 135.6 (Cq), 135.4 


(Cq), 130.8 (Cq), 130.5 (Cq), 130.3 (CH), 130.2 (CH), 130.1 (CH), 129.6 (CH), 128.3 (Cq), 128.2 


(Cq), 127.8 (CH), 127.6 (CH), 125.0 (CH), 124.1 (CH), 122.7 (CH), 121.5 (CH), 121.2 (CH), 


119.5 (2 CH), 116.5 (CH), 106.4 (CH), 55.9 (CH2), 55.4 (2 CH3), 52.2 (CH2), 26.7 (CH2), 18.2 


(CH2), 7.3 (CH3); MS (ESI+): m/z = 713.7 [M + CF3COO−]+, 300.4 [M]2+; anal. calcd. for 


C41H48Br2N2O2 × 0.5 H2O (769.7): C 63.98, H 6.42, N 3.64; found: C 63.74, H 6.54, N 3.92. 
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2,4-Bis((E)-2-(6-(dimethylamino)naphthalen-2-yl)vinyl)-1-(4-


(triethylammonio)butyl)pyridinium dibromide (2n): Prepared in a 54% yield from I2 and 6-


dimethylamino-2-naphthaldehyde, followed by recrystallization from EtOH. Cherry-red solid, 


m.p. 251–252 °C; 1H NMR (300 MHz, DMSO): δ 8.80 (d, J = 6.7 Hz, 1H), 8.66 (s, 1H), 8.21 


(d, J = 16.2 Hz, 1H), 8.18–8.08 (m, 2H), 8.07–7.96 (m, 3H), 7.88–7.71 (m, 5H), 7.57 (d, J = 


15.8 Hz, 1H), 7.49 (d, J = 16.3 Hz, 1H), 7.33–7.22 (m, 2H), 7.03–6.96 (m, 2H), 4.77 (t, J = 6.3 


Hz, 2H), 3.30–3.17 (m, 8H), 3.08 (s, 6H), 3.07 (s, 6H), 1.97–1.70 (m, 4H), 1.18 (t, J = 6.9 Hz, 


9H); 13C NMR (75 MHz, DMSO): δ 152.2 (Cq), 151.5 (Cq), 149.6 (Cq), 149.5 (Cq), 144.6 (CH), 


143.5 (CH), 141.0 (CH), 136.0 (Cq), 135.9 (Cq), 130.6 (CH), 130.1 (CH), 129.7 (CH), 129.6 


(CH), 128.6 (Cq), 128.4 (Cq), 126.9 (CH), 126.6 (CH), 125.5 (Cq), 125.4 (Cq), 124.7 (CH), 123.8 


(CH), 121.0 (CH), 120.8 (CH), 120.2 (CH), 116.5 (CH), 114.5 (CH), 105.5 (CH), 105.4 (CH), 


55.6 (CH2), 55.5 (CH2), 52.2 (CH2), 40.0 (CH3), 26.7 (CH2), 18.2 (CH2), 7.3 (CH3); MS (ESI+): 


m/z = 713.7 [M + CF3COO−]+, 300.4 [M]2+; anal. calcd. for C43H54Br2N4 × 0.5 H2O (795.7): C 


64.90, H 6.97, N 7.04; found: C 64.61, H 7.18, N 7.28. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)-1-(3-(trimethylammonio)propyl)pyridinium dibro-


mide (3a): Prepared in 51% yield from I3 and 4-(dimethylamino)benzaldehyde, followed by 


recrystallization from EtOH. Black solid, m.p. 241–242 °C; 1H NMR (300 MHz, DMSO): δ 8.63 


(d, J = 6.9 Hz, 1H), 8.44 (s, 1H), 7.99 (d, J = 16.1 Hz, 1H), 7.98 (d, J = 15.5 Hz, 1H), 7.86 (d, 


J = 6.8 Hz, 1H), 7.79 (d, J = 8.9 Hz, 2H), 7.61 (d, J = 8.9 Hz, 2H), 7.22 (d, J = 15.5 Hz, 1H), 


7.16 (d, J = 16.1 Hz, 1H), 6.80 (d, J = 8.9 Hz, 2H), 6.79 (d, J = 8.9 Hz, 2H), 4.66 (t, J = 7.1 Hz, 


2H), 3.63–3.47 (m, 2H), 3.10 (s, 9H), 3.04 (s, 6H), 3.02 (s, 6H), 2.38–2.19 (m, 2H); 13C NMR 


(75 MHz, DMSO): δ 152.3 (Cq), 152.0 (Cq), 151.8 (Cq), 151.7 (Cq), 143.8 (CH), 143.7 (CH), 


141.1 (CH), 130.7 (CH), 129.9 (CH), 122.8 (Cq), 122.5 (Cq), 119.5 (CH), 118.6 (CH), 117.6 


(CH), 112.0 (CH), 111.8 (CH), 110.5 (CH), 61.9 (CH2), 52.5 (CH2 + CH3), 39.7 (CH3), 23.3 


(CH2); MS (ESI+): m/z = 583.6 [M + CF3COO−]+, 235.4 [M]2+; anal. calcd. for C31H42Br2N4 × 2 


H2O (666.5): C 55.86, H 6.96, N 8.41; found: C 55.59, H 6.98, N 8.22. 
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2,4-Bis((E)-4-(dimethylamino)styryl)-1-(3-(4-aza-1-


azoniabicyclo[2.2.2]octyl)propyl)pyridinium dibromide (4a): Prepared in 62% yield from 


I4 and 4-(dimethylamino)benzaldehyde, followed by recrystallization from MeOH. Black solid, 


m.p. 247–248 °C; 1H NMR (300 MHz, DMSO): δ 8.63 (d, J = 6.9 Hz, 1H), 8.44 (s, 1H), 7.98 


(d, J = 16.2 Hz, 2H), 7.86 (d, J = 6.8 Hz, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 


7.28–7.10 (m, 2H), 6.80 (d, J = 8.8 Hz, 4H), 4.66 (t, J = 6.5 Hz, 2H), 3.50–3.38 (m, 2H), 3.30–


3.22 (m, 6H), 3.04 (s, 6H), 3.02 (s, 6H), 3.09–2.95 (m, 6H), 2.36–2.20 (m, 2H); 13C NMR (75 


MHz, DMSO): δ 152.3 (Cq), 152.0 (Cq), 151.8 (Cq), 151.7 (Cq), 143.8 (CH), 143.7 (CH), 141.1 


(CH), 130.8 (CH), 129.9 (CH), 122.7 (Cq), 122.5 (Cq), 119.4 (CH), 118.6 (CH), 117.6 (CH), 


112.0 (CH), 111.8 (CH), 110.5 (CH), 59.8 (CH2), 52.6 (CH2), 51.8 (CH2), 44.7 (CH2), 39.8 


(CH3), 22.3 (CH2); MS (ESI+): m/z = 636.6 [M + CF3COO−]+, 261.9 [M]2+; anal. calcd. for 


C31H45Br2N5 × 2.5 H2O (728.6): C 56.05, H 6.92, N 9.61; found: C 56.18, H 6.88, N 9.52. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)-1-(3-(4-ethyl-1,4-diazoniabicyclo[2.2.2]octyl)-


propyl)pyridinium tribromide (5a): Prepared in 13% yield from I5 and 4-


(dimethylamino)benzaldehyde, followed by recrystallization from CHCl3–EtOH. Black solid, 


m.p. 248–249 °C; 1H NMR (300 MHz, DMSO): δ 8.67 (d, J = 6.9 Hz, 1H), 8.46 (s, 1H), 8.00 


(d, J = 16.3 Hz, 2H), 7.87 (d, J = 7.1 Hz, 1H), 7.83 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 


7.29–7.02 (m, 2H), 6.85–6.73 (m, 4H), 4.71 (t, J = 6.7 Hz, 2H), 4.05–3.76 (m, 14H), 3.62 (q, J 


= 7.1 Hz, 2H), 3.04 (s, 6H), 3.02 (s, 6H), 2.43–2.29 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H); 13C NMR 


(75 MHz, DMSO): δ 152.3 (Cq), 152.0 (Cq), 151.9 (Cq), 151.8 (Cq), 143.8 (CH), 143.7 (CH), 


141.1 (CH), 130.9 (CH), 129.9 (CH), 122.7 (Cq), 122.5 (Cq), 119.4 (CH), 118.5 (CH), 117.6 


(CH), 112.0 (CH), 111.7 (CH), 110.4 (CH), 60.1 (CH2), 59.2 (CH2), 52.2 (CH2), 50.7 (CH2), 


49.9 (CH2), 39.7 (2 CH3), 22.7 (CH2), 7.5 (CH3); MS (ESI+): m/z = 778.6 [M + 2 CF3COO−]+, 
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332.9 [M + CF3COO−]2+, 275.9 [M − H]2+, 261.8 [M − Et]2+; anal. calcd. for C36H50Br3N5 × H2O 


(810.6): C 53.35, H 6.47, N 8.64; found: C 53.45, H 6.61, N 8.64. 


 
1-Benzyl-2,4-bis((E)-4-(dimethylamino)styryl)pyridinium bromide (6a): A mixture of 2,4-


bis((E)-4-dimethylaminostyryl)pyridine [13] (280 mg, 758 mmol) and benzyl bromide (0.18 mL, 


260 mg, 1.52 mmol) in MeCN (7 mL) was heated at reflux for 16 h. After cooling, the 


precipitated solid was collected, washed with MeCN and recrystallized from CHCl3–EtOH, to 


give 6a (230 mg, 56%) as dark-red crystals, m.p. 243–244 °C; 1H NMR (300 MHz, DMSO): δ 


8.76 (d, J = 6.7 Hz, 1H), 8.39 (s, 1H), 7.96 (d, J = 16.1 Hz, 1H), 7.88 (d, J = 6.6 Hz, 1H), 7.81 


(d, J = 15.6 Hz, 1H), 7.68–7.47 (m, 4H), 7.46–7.25 (m, 5H), 7.18 (d, J = 15.7 Hz, 1H), 7.16 (d, 


J = 16.0 Hz, 1H), 6.89–6.68 (m, 4H), 5.90 (s, 2H), 3.02 (s, 12H); 13C NMR (75 MHz, DMSO): 


δ 152.5 (Cq), 152.0 (Cq), 151.9 (Cq), 151.8 (Cq), 144.4 (CH), 142.8 (CH), 141.2 (CH), 135.1 


(Cq), 130.3 (CH), 129.9 (CH), 129.1 (CH), 128.4 (CH), 127.1 (CH), 122.8 (Cq), 122.4 (Cq), 


119.5 (CH), 118.6 (CH), 117.7 (CH), 112.1 (CH), 111.9 (CH), 111.3 (CH), 58.5 (CH2), 39.8 


(CH3), 39.7 (CH3); MS (ESI+): m/z = 460.5 [M]+; anal. calcd. for C32H34BrN3 × 0.5 H2O (549.5): 


C 69.94, H 6.42, N 7.65; found: C 69.70, H 6.34, N 7.60. 


 
2,6-Bis((E)-2-(julolidin-9-yl)vinyl]-1-methylpyridinium bromide (7b): Prepared in 77% 


yield from I7 and julolidine-9-carbaldehyde, followed by ion exchange to prepare the bromide 


salt and recrystallization from MeOH. Crimson-red solid, m.p. > 310 °C; 1H NMR (300 MHz, 


DMSO): δ 8.11 (t, J = 7.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.54 (d, J = 15.6 Hz, 2H), 7.24 (s, 


4H), 7.15 (d, J = 15.7 Hz, 2H), 4.12 (s, 3H), 3.29–3.16 (m, 8H), 2.71 (br s, 8H), 1.88 (br s, 8H); 


13C NMR (75 MHz, DMSO): δ 153.6 (Cq), 144.9 (Cq), 143.0 (CH), 140.8 (CH), 127.9 (CH), 


121.5 (Cq), 120.6 (Cq), 120.2 (CH), 111.4 (CH), 49.3 (CH2), 40.7 (CH3), 27.1 (CH2), 21.0 (CH2); 


MS (ESI+): m/z = 488.6 [M]+, 244.4 [M + H]2+; anal. calcd. for C34H38BrN3 × H2O (586.6): C 


69.61, H 6.87, N 7.16; found: C 69.69, H 6.20, N 6.91. 
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2,6-Bis((E)-4-(dibutylamino)styryl)-1-methylpyridinium chloride (7ð): Prepared in 51% 


yield from I7 and 4-(dibutylamino)benzaldehyde, followed by ion exchange to prepare the 


chloride salt and recrystallization from MeCN. Cherry red solid, m.p. 184–185 °C; 1H NMR 


(300 MHz, DMSO): δ 8.17 (t, J = 7.9 Hz, 1H), 8.05 (d, J = 7.9 Hz, 2H), 7.78–7.55 (m, 6H), 7.25 


(d, J = 15.7 Hz, 2H), 6.71 (d, J = 8.8 Hz, 4H), 4.16 (s, 3H), 3.46–3.30 (m, 8H), 1.61–1.43 (m, 


8H), 1.34 (dq, J = 14.3, 7.2 Hz, 8H), 0.93 (t, J = 7.2 Hz, 12H); 13C NMR (75 MHz, DMSO): δ 


153.6 (Cq), 149.7 (Cq), 142.7 (CH), 141.2 (CH), 130.6 (CH), 121.8 (Cq), 120.8 (CH), 112.2 


(CH), 111.3 (CH), 49.8 (CH2), 40.9 (CH3), 29.0 (CH2), 19.6 (CH2), 13.9 (CH3); MS (ESI+): m/z 


= 552.7 [M]+; anal. calcd. for C38H54ClN3 × 1.5 H2O (615.3): C 74.17, H 9.34, N 6.83; found: C 


74.22, H 9.42, N 6.81. 


 
2,6-Bis((E)-4-(bis(2-hydroxyethyl)amino)styryl)-1-methylpyridinium iodide (7e): 


Prepared in 55% yield from I7 and 4-[bis(2-hydroxyethyl)amino]benzaldehyde, followed by 


recrystallization from MeOH. Dark-red crystals, m.p. 138–140 °C; 1H NMR (300 MHz, DMSO): 


δ 8.18 (t, J = 7.9 Hz, 1H), 8.06 (d, J = 7.9 Hz, 2H), 7.75–7.58 (m, 6H), 7.27 (d, J = 15.7 Hz, 


2H), 6.79 (d, J = 8.5 Hz, 4H), 4.80 (br s, 4H, OH), 4.18 (s, 3H), 3.65 – 3.43 (m, 16H); 13C NMR 


(75 MHz, DMSO): δ 153.7 (Cq), 150.2 (Cq), 142.7 (CH), 141.4 (CH), 130.5 (CH), 122.2 (Cq), 


121.0 (CH), 112.5 (CH), 111.5 (CH), 58.2 (CH2), 53.2 (CH2), 41.0 (CH3); MS (ESI+): m/z = 


504.5 [M]+, 252.8 [M + H]2+, 243.8 [M – H2O + H]2+; anal. calcd. for C30H38IN3O4 × H2O (649.6): 


C 55.47, H 6.21, N 6.47; found: C 55.51, H 6.10, N 6.33. 


 
2,6-Bis((E)-4-((2-hydroxyethyl)(methyl)amino)styryl)-1-methylpyridinium iodide (7f): 


Prepared in 39% yield from I7 and N-methyl-N-(2-hydroxyethyl)-4-aminobenzaldehyde, 


followed by recrystallization from MeCN–MeOH. Black solid, m.p. 244–245 °C; 1H NMR (300 


MHz, DMSO): δ 8.18 (t, J = 8.1 Hz, 1H), 8.06 (d, J = 8.1 Hz, 2H), 7.73–7.60 (m, 6H), 7.28 (d, 
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J = 15.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 4H), 4.75 (t, J = 5.1 Hz, 2H, OH), 4.18 (s, 3H), 3.63–3.54 


(m, 4H), 3.54–3.45 (m, 4H), 3.03 (s, 6H); 13C NMR (75 MHz, DMSO): δ 13C NMR (75 MHz, 


DMSO) δ 153.6 (Cq), 151.0 (Cq), 142.8 (CH), 141.3 (CH), 130.4 (CH), 122.3 (Cq), 121.0 (CH), 


112.5 (CH), 111.5 (CH), 58.2 (CH2), 53.9 (CH2), 41.0 (CH3), 38.8 (CH3); MS (ESI+): m/z = 


444.4 [M]+, 222.8 [M + H]2+, 213.8 [M – H2O + H]2+; anal. calcd. for C28H34IN3O2 (571.5): C 


58.85, H 6.00, N 7.35; found: C 58.68, H 5.95, N 7.34. 


 
2,6-Bis((E)-2-(6-methoxynaphthalen-2-yl)vinyl)-1-methylpyridinium iodide (7i): Prepared 


in 35% yield from I7 and 6-methoxy-2-naphthaldehyde, followed by recrystallization from 


MeNO2. Orange crystalline solid, m.p. 250 °C (decomp.); 1H NMR (300 MHz, DMSO): δ 8.44 


(t, J = 8.0 Hz, 1H), 8.30 (d, J = 8.0 Hz, 2H), 8.23 (s, 2H), 8.09 (d, J = 8.7 Hz, 2H), 7.96–7.85 


(m, 6H), 7.73 (d, J = 15.9 Hz, 2H), 7.41 (d, J = 2.3 Hz, 2H), 7.24 (dd, J = 9.0, 2.5 Hz, 2H), 4.33 


(s, 3H), 3.90 (s, 6H); 13C NMR (75 MHz, DMSO): δ 158.6 (Cq), 153.3 (Cq), 142.8 (CH), 142.6 


(CH), 135.4 (Cq), 130.5 (Cq), 130.2 (CH), 129.9 (CH), 128.2 (Cq), 127.5 (CH), 124.8 (CH), 


123.5 (CH), 119.4 (CH), 118.2 (CH), 106.4 (CH), 55.4 (CH3), 41.7 (CH3); MS (ESI+): m/z = 


458.4 [M]+; anal. calcd. for C32H28INO2 (585.5): C 65.65, H 4.82, N 2.39; found: C 65.42, H 


5.04, N 2.23. 


 
2,6-Bis((E)-2-(6-(dimethylamino)naphthalen-2-yl)vinyl)-1-methylpyridinium bromide 


(7n): Prepared in 54% yield from I7 and 6-dimethylamino-2-naphthaldehyde, followed by ion 


exchange to prepare the bromide salt and recrystallization from MeOH. Dark-green crystals, 


m.p. 278–279 °C; 1H NMR (300 MHz, DMSO): δ 8.35 (t, J = 8.0 Hz, 1H), 8.22 (d, J = 8.0 Hz, 


2H), 8.07 (s, 2H), 7.95 (dd, J = 8.8, 1.2 Hz, 2H), 7.90–7.78 (m, 4H), 7.74 (d, J = 8.8 Hz, 2H), 


7.59 (d, J = 15.8 Hz, 2H), 7.26 (dd, J = 9.2, 2.4 Hz, 2H), 6.97 (d, J = 2.2 Hz, 2H), 4.27 (s, 3H), 


3.06 (s, 12H); 13C NMR (75 MHz, DMSO): δ 153.4 (Cq), 149.5 (Cq), 142.9 (CH), 142.2 (CH), 


135.9 (Cq), 130.3 (CH), 129.6 (CH), 128.4 (Cq), 126.6 (CH), 125.4 (Cq), 124.4 (CH), 122.6 


(CH), 116.5 (CH), 116.4 (CH), 105.4 (CH), 41.4 (CH3), 40.03 (CH3); MS (ESI+): m/z = 484.5 


[M]+, 242.8 [M + H]2+; anal. calcd. for C34H34BrN3 × 0.5 H2O (573.6): C 71.20, H 6.15, N 7.33; 


found: C 71.18, H 6.21, N 7.08. 
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1-Methyl-2,6-bis((E)-2-(1-methylpyrrol-2-yl)vinyl)pyridinium iodide (7x): Prepared in 53% 


yield from I7 and pyrrole-2-carboxaldehyde, followed by recrystallization from MeOH. Red 


needles, m.p. 252 °C (decomp.); 1H NMR (300 MHz, DMSO): δ 8.28–8.11 (m, 3H), 7.68 (d, J 


= 15.5 Hz, 2H), 7.20 (d, J = 15.5 Hz, 2H), 7.12–7.00 (m, 4H), 6.21 (dd, J = 3.7, 2.7 Hz, 2H), 


4.15 (s, 3H), 3.80 (s, 6H); 13C NMR (75 MHz, DMSO): δ 153.3 (Cq), 141.2 (CH), 130.4 (CH), 


130.3 (Cq), 128.3 (CH), 121.2 (CH), 112.8 (CH), 112.5 (CH), 109.6 (CH), 40.9 (CH3), 34.0 


(CH3); MS (ESI+): m/z = 304.3 [M]+; anal. calcd. for C20H22IN3 × 0.3 H2O (436.7): C 55.00, H 


5.22, N 9.62; found: C 55.00, H 5.17, N 9.82. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)-1-methyl-6-phenylpyridinium chloride (8a): 


Prepared in 31% yield from I8 and 4-(dimethylamino)benzaldehyde, followed by ion exchange 


to prepare the chloride salt and recrystallization from EtOH. Dark-green solid, m.p. 192–193 


°C; 1H NMR (300 MHz, DMSO): δ 8.40 (d, J = 1.1 Hz, 1H), 8.02 (d, J = 16.2 Hz, 1H), 7.91 (d, 


J = 15.7 Hz, 1H), 7.76 (d, J = 1.2 Hz, 1H), 7.73 (d, J = 8.8 Hz, 2H), 7.67 (s, 5H), 7.57 (d, J = 


8.8 Hz, 2H), 7.27 (d, J = 15.7 Hz, 1H), 7.16 (d, J = 16.1 Hz, 1H), 6.86–6.71 (m, 4H), 3.87 (s, 


3H), 3.03 (s, 6H), 3.01 (s, 6H); 13C NMR (75 MHz, DMSO): δ 153.8 (Cq), 153.6 (Cq), 151.9 


(Cq), 151.7 (Cq), 151.3 (Cq), 143.1 (CH), 141.0 (CH), 133.8 (Cq), 130.5 (CH), 130.4 (CH), 129.8 


(CH), 129.1 (CH), 129.0 (CH), 122.8 (Cq), 122.6 (Cq), 120.7 (CH), 118.5 (CH), 117.5 (CH), 


112.6 (CH), 112.0 (CH), 111.8 (CH), 42.0 (CH3), 39.7 (CH3); MS (ESI+): m/z = 460.5 [M]+; anal. 


calcd. for C32H34ClN3 × H2O (514.1): C 74.76, H 7.06, N 8.17; found: C 74.46, H 6.91, N 8.10. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)-1-methylquinolinium chloride (9a): Prepared in 43% 


yield from I9 and 4-(dimethylamino)benzaldehyde, followed by ion exchange to prepare the 


chloride salt and recrystallization from AcOEt–MeOH. Shiny dark-green solid, m.p. 223–234 


°C; 1H NMR (300 MHz, DMSO): δ 8.80 (d, J = 8.1 Hz, 1H), 8.54 (s, 1H), 8.33 (d, J = 8.9 Hz, 


1H), 8.24 (d, J = 15.8 Hz, 1H), 8.18 (d, J = 16.2 Hz, 1H), 8.05 (t, J = 7.7 Hz, 1H), 7.92–7.76 


(m, 6H), 7.48 (d, J = 15.6 Hz, 1H), 6.80 (d, J = 8.9 Hz, 4H), 4.33 (s, 3H), 3.05 (s, 6H), 3.04 (s, 
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6H); 13C NMR (75 MHz, DMSO): δ 154.1 (Cq), 152.2 (Cq), 151.7 (Cq), 149.0 (Cq), 146.4 (CH), 


142.4 (CH), 139.6 (Cq), 133.7 (CH), 131.2 (CH), 130.6 (CH), 127.2 (CH), 125.9 (CH), 124.5 


(Cq), 123.5 (Cq), 122.7 (Cq), 118.9 (CH), 113.7 (CH), 112.9 (CH), 112.8 (CH), 111.8 (CH), 


111.7 (CH), 39.7 (CH3), 39.6 (CH3), 38.6 (CH3); MS (ESI+): m/z = 434.5 [M]+; anal. calcd. for 


C30H32ClN3 × 0.5 H2O (479.1): C 75.22, H 6.94, N 8.77; found: C 75.00, H 6.89, N 8.75. 


 
2,8-Bis((E)-4-(dimethylamino)styryl)quinolizinium chloride (10a): Prepared in 38% yield 


through the reaction of I10 with 4-(dimethylamino)benzaldehyde in MeCN, followed by ion 


exchange to prepare the chloride salt and recrystallization from AcOEt–MeOH. Dark green 


solid, m.p. > 310 °C; 1H NMR (300 MHz, DMSO): δ 8.94 (d, J = 7.1 Hz, 2H), 8.18–7.97 (m, 


4H), 7.73 (d, J = 16.1 Hz, 2H), 7.55 (d, J = 8.7 Hz, 4H), 7.16 (d, J = 16.1 Hz, 2H), 6.75 (d, J = 


8.8 Hz, 4H), 3.00 (s, 12H); 13C NMR (75 MHz, DMSO): δ 151.4 (Cq), 145.6(Cq), 142.9(Cq), 


138.8 (CH), 135.5 (CH), 129.5 (CH), 122.9 (Cq), 120.7 (CH), 118.2 (CH), 117.9 (CH), 112.0 


(CH), 39.7 (CH3); MS (ESI+): m/z = 420.4 [M]+; anal. calcd. for C29H30ClN3 × H2O (474.4): C 


73.48, H 6.80, N 8.86; found: C 73.38, H 7.13, N 8.63. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)quinolizinium chloride (11a): Prepared in 18% yield 


through the reaction of I11 with 4-(dimethylamino)benzaldehyde in MeCN, followed by ion 


exchange to prepare the chloride salt and recrystallization from EtOH. Black solid, m.p. 208–


209 °C; 1H NMR (300 MHz, DMSO): δ 9.40 (d, J = 7.0 Hz, 1H), 8.49 (s, 1H), 8.31 (s, 2H), 


8.24–8.07 (t, 1H), 7.94 (d, J = 16.1 Hz, 1H), 7.85–7.50 (m, 7H), 7.21 (d, J = 16.2 Hz, 1H), 


6.93–6.66 (m, 4H), 3.02 (s, 6H), 3.01 (s, 6H); 13C NMR (75 MHz, DMSO): δ 151.4 (2 Cq), 145.5 


(Cq), 145.1 (Cq), 143.2 (Cq), 141.4 (CH), 139.2 (CH), 135.0 (CH), 132.4 (CH), 129.9 (CH), 


129.4 (CH), 127.4 (CH), 123.0 (Cq), 121.4 (CH), 119.3 (CH), 118.2 (CH), 118.1 (CH), 112.0 


(CH), 111.8 (CH), 39.8 (CH3); MS (ESI+): m/z = 420.4 [M]+; anal. calcd. for C29H30ClN3 × 1.3 


H2O (479.4): C 72.65, H 6.85, N 8.76; found: C 72.69, H 6.86, N 8.81. 
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2,4-Bis((E)-4-(dimethylamino)styryl)-1-azaquinolizinium chloride (12a): Prepared in 14% 


yield through the reaction of I12 with 4-(dimethylamino)benzaldehyde in acetic anhydride, 


followed by ion exchange to prepare the chloride salt and recrystallization from AcOEt–MeOH. 


Black solid, m.p. 261–262 °C; 1H NMR (300 MHz, DMSO): δ 9.47 (d, J = 6.9 Hz, 1H), 8.47 (s, 


1H), 8.39–8.29 (m, 1H), 8.26 (d, J = 15.8 Hz, 1H), 8.18–8.00 (m, 2H), 7.90–7.56 (m, 6H), 7.19 


(d, J = 15.8 Hz, 1H), 6.90–6.71 (m, 4H), 3.05 (s, 6H), 3.04 (s, 6H); 13C NMR (75 MHz, DMSO): 


δ 162.1 (Cq), 152.2 (Cq), 152.1 (Cq), 150.5 (Cq), 149.4 (Cq), 144.9 (CH), 144.1 (CH), 139.9 


(CH), 132.3 (CH), 131.0 (CH), 130.7 (CH), 127.1 (CH), 122.7 (Cq), 122.4 (Cq), 120.3 (CH), 


118.7 (CH), 112.0 (CH), 111.8 (CH), 111.3 (CH), 109.1 (CH), 39.7 (CH3); MS (ESI+): m/z = 


421.5 [M]+; anal. calcd. for C28H29ClN4 × 0.5 H2O (466.0): C 72.17, H 6.49, N 12.02; found: C 


71.76, H 6.57, N 11.83. 


 
2,4-Bis((E)-4-(dimethylamino)styryl)-1-methyl-1,8-naphthyridinium tosylate (13a): 


Prepared in 39% yield from the reaction of I13 and 4-(dimethylamino)benzaldehyde in acetic 


anhydride, followed by recrystallization from EtOH. Shiny black crystals, m.p. 166–168 °C; 1H 


NMR (300 MHz, DMSO): δ 9.24 (d, J = 8.0 Hz, 1H), 9.08 (d, J = 3.5 Hz, 1H), 8.56 (s, 1H), 8.31 


(d, J = 15.4 Hz, 1H), 8.15 (d, J = 15.6 Hz, 1H), 7.88–7.72 (m, 6H), 7.55–7.38 (m, 3H), 7.10 (d, 


J = 7.9 Hz, 2H), 6.78 (d, J = 8.4 Hz, 4H), 4.41 (s, 3H), 3.07 (s, 6H), 3.05 (s, 6H), 2.27 (s, 3H); 


13C NMR (75 MHz, DMSO): δ 155.4 (Cq), 153.8 (CH), 152.6 (Cq), 151.9 (Cq), 148.9 (Cq), 147.7 


(Cq), 147.6 (CH), 145.9 (Cq), 142.7 (CH), 137.5 (Cq), 135.6 (CH), 131.7 (CH), 130.8 (CH), 


128.0 (CH), 125.5 (CH), 123.2 (Cq), 122.9 (CH), 122.6 (Cq), 119.7 (Cq), 113.1 (CH), 112.3 


(CH), 112.2 (CH), 111.8 (2 CH), 111.7 (CH), 39.7 (CH3), 34.9 (2 CH3), 20.8 (CH3); MS (ESI+): 


m/z = 435.5 [M]+; anal. calcd. for C36H38N4O3S × 0.5 H2O (615.8): C 70.22, H 6.38, N 9.10; 


found: C 70.18, H 6.40, N 9.10. 


 
4,6-Bis((E)-4-(dimethylamino)styryl)-1-methylpyrimidinium chloride, hydrochloride 


(14a): Prepared in 33% yield through the reaction of I14 with 4-(dimethylamino)benzaldehyde, 
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followed by ion exchange to prepare the chloride salt and recrystallization from MeCN–MeOH. 


Dark navy blue solid, m.p. 258–259 °C; 1H NMR (300 MHz, DMSO): δ 9.08 (s, 1H), 8.30 (s, 


1H), 8.21 (d, J = 15.5 Hz, 1H), 8.11 (d, J = 15.6 Hz, 1H), 7.79 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 


8.8 Hz, 2H), 7.10 (d, J = 15.6 Hz, 2H), 6.84 (d, J = 8.1 Hz, 4H), 4.04 (s, 3H), 3.08 (s, 6H), 3.04 


(s, 6H); 13C NMR (75 MHz, DMSO) δ 163.6 (Cq), 156.5 (Cq), 153.2 (CH), 152.8 (Cq), 152.0 


(Cq), 147.2 (CH), 143.2 (CH), 131.9 (CH), 130.7 (CH), 122.7 (Cq), 122.3 (Cq), 118.1 (CH), 


112.4 (CH), 112.1 (CH), 112.0 (CH), 108.7 (CH), 40.6 (CH3), 39.9 (CH3); MS (ESI+): m/z = 


385.5 [M]+; anal. calcd. for C25H29ClN4 × 2.4 H2O (464.2): C 64.68, H 7.34, N 12.07; found: C 


64.32, H 6.87, N 12.29. 


 
4,6-Bis((E)-2-(5-methoxy-1H-indol-3-yl)vinyl)-1-methylpyrimidinium chloride (14p): 


Prepared in 48% yield through the reaction of I14 with 5-methoxyindole-3-carbaldehyde, 


followed by ion exchange to prepare the chloride salt and recrystallization from MeCN–MeOH. 


Dark-green microcrystalline solid, m.p. 295–296 °C; 1H NMR (300 MHz, DMSO): δ 12.33 (s, 


1H), 12.04 (s, 1H), 9.05 (s, 1H), 8.58 (d, J = 15.5 Hz, 1H), 8.51–8.39 (m, 2H), 8.30 (d, J = 2.6 


Hz, 1H), 8.08 (d, J = 2.6 Hz, 1H), 7.61 (dd, J = 7.7, 1.4 Hz, 2H), 7.53–7.35 (m, 2H), 7.22 (d, J 


= 15.6 Hz, 1H), 7.06 (d, J = 15.6 Hz, 1H), 6.94 (d, J = 7.5 Hz, 2H), 4.07 (s, 3H), 3.90 (s, 3H), 


3.89 (s, 3H); 13C NMR (75 MHz, DMSO): δ 163.9 (Cq), 156.5 (Cq), 155.5 (Cq), 155.3 (Cq), 152.9 


(CH), 140.7 (CH), 137.7 (CH), 134.4 (CH), 134.0 (CH), 132.7 (Cq), 132.3 (Cq), 126.2 (Cq), 


125.6 (Cq), 116.8 (CH), 114.0 (Cq), 113.6 (CH), 113.5 (Cq), 113.4 (CH), 112.6 (CH), 112.1 


(CH), 111.2 (CH), 107.7 (CH), 103.5 (CH), 102.8 (CH), 55.9 (CH3), 55.6 (CH3), 40.2 (CH3); 


MS (ESI+): m/z = 437.4 [M]+; anal. calcd. for C27H25ClN4O2 × 0.5 H2O (482.0): C 67.28, H 5.44, 


N 11.62; found: C 67.50, H 5.29, N 11.72. 


 
1,1′-(1,3-Propanediyl)-bis(2,4-bis((E)-4-(dimethylamino)styryl)pyridinium) dichloride 


(15a): Prepared in 35% yield through the reaction of I15 with 4-(dimethylamino)benzaldehyde 


(6 molar equiv.), followed by ion exchange to prepare the chloride salt and recrystallization 


from EtOAc–MeOH. Dark-green solid, m.p. 295–296 °C; 1H NMR (300 MHz, DMSO): δ 8.73 
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(d, J = 6.9 Hz, 2H), 8.37 (s, 2H), 7.93 (d, J = 16.1 Hz, 2H), 7.86 (d, J = 15.6 Hz, 2H), 7.80 (d, 


J = 6.7 Hz, 2H), 7.72 (d, J = 8.8 Hz, 4H), 7.56 (d, J = 8.8 Hz, 4H), 7.22 (d, J = 15.6 Hz, 2H), 


7.12 (d, J = 16.1 Hz, 2H), 6.76 (d, J = 8.9 Hz, 4H), 6.68 (d, J = 8.9 Hz, 4H), 4.89 (t, J = 6.5 Hz, 


4H), 3.00 (s, 12H), 2.97 (s, 12H), 2.44–2.34 (m, 2H); 13C NMR (75 MHz, DMSO): δ 152.1 (Cq), 


151.8 (Cq), 151.7 (2 Cq), 143.7 (CH), 143.5 (CH), 140.9 (CH), 130.7 (CH), 129.8 (CH), 122.7 


(Cq), 122.5 (Cq), 119.4 (CH), 118.6 (CH), 117.7 (CH), 112.0, (CH) 111.7 (CH), 110.4 (CH), 


52.7 (CH2), 39.7 (CH3), 39.6 (CH3), 30.0 (CH2); MS (ESI+): m/z = 894.0 [M + CF3COO−]+, 390.5 


[M]2+; anal. calcd. for C53H60Cl2N6 × 1.5 H2O (879.0): C 72.42, H 7.22, N 9.56; found: C 72.43, 


H 7.26, N 9.51. 


 
1,1′-(1,4-Butanediyl)-bis(2,4-bis((E)-4-(dimethylamino)styryl)pyridinium) dichloride 


(16a): Prepared in 28% yield through the reaction of I16 with 4-(dimethylamino)benzaldehyde 


(6 molar equiv.), followed by ion exchange to prepare the chloride salt and recrystallization 


from EtOAc–MeOH. Brick-red solid, m.p. > 280 °C; 1H NMR (300 MHz, DMSO): δ 8.55 (d, J = 


6.8 Hz, 2H), 8.29 (s, 2H), 7.83 (d, J = 16.2 Hz, 2H), 7.82 (d, J = 15.4 Hz, 2H), 7.70 (d, J = 7.3 


Hz, 2H), 7.66 (d, J = 8.8 Hz, 4H), 7.55 (d, J = 8.8 Hz, 4H), 7.15 (d, J = 15.6 Hz, 2H), 7.03 (d, 


J = 16.0 Hz, 2H), 6.80 (d, J = 8.8 Hz, 4H), 6.71 (d, J = 8.8 Hz, 4H), 4.67 (br s, 4H), 3.03 (s, 


12H), 2.97 (s, 12H), 1.87 (br s, 4H); 13C NMR (75 MHz, DMSO): δ 152.1 (Cq), 151.8 (Cq), 151.7 


(Cq), 151.5 (Cq), 143.8 (CH), 143.0 (CH), 140.7 (CH), 130.4 (CH), 129.8 (CH), 122.7 (Cq), 


122.4 (Cq), 119.4 (CH), 118.3 (CH), 117.5 (CH), 112.0 (CH), 111.7 (CH), 110.8 (CH), 55.0 


(CH2), 39.7 (CH3), 39.6 (CH3), 25.6 (CH2); MS (ESI+): m/z = 908.0 [M + CF3COO−]+, 397.6 


[M]2+; anal. calcd. for C54H62Cl2N6 × 2 H2O (902.1): C 71.90, H 7.38, N 9.32; found: C 72.30, 


H 7.39, N 9.20. 


 


General procedure for the synthesis of mono-styryl dyes by Knoevenagel 


condensation2: A mixture of the heterocyclic salt I17–I18 (1 mmol), aldehyde (1.5 mmol), and 


                                                
2 Except for the dye 19a whose preparation is detailed below. 
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piperidine (0.10 mL, 1 mmol) in MeOH (5 mL) was heated under reflux for 2 h. After cooling to 


room temperature, the precipitated solid was collected by filtration, washed with MeOH (2 × 5 


mL), Et2O (2 × 5 mL), dried and recrystallized from a suitable solvent (as indicated below), to 


give the analytically pure dye as an iodide salt. 


 
4-((E)-2-(6-(dimethylamino)naphthalen-2-yl)vinyl)-1-methylpyridinium iodide (17n): 


Prepared in 24% yield through the reaction of I17 with 6-dimethylamino-2-naphthaldehyde, 


followed by recrystallization from MeOH. Violet needles, m.p. 275–276 °C; 1H NMR (300 MHz, 


DMSO): δ 8.79 (d, J = 6.4 Hz, 2H), 8.18 (d, J = 6.5 Hz, 2H), 8.09 (d, J = 16.2 Hz, 1H), 8.00 (s, 


1H), 7.88–7.66 (m, 3H), 7.47 (d, J = 16.2 Hz, 1H), 7.26 (dd, J = 9.1, 2.1 Hz, 1H), 6.97 (d, J = 


1.0 Hz, 1H), 4.23 (s, 3H), 3.06 (s, 6H); 13C NMR (75 MHz, DMSO): δ 152.9 (Cq), 149.6 (Cq), 


144.8 (CH), 141.5 (CH), 135.9 (Cq), 130.2 (CH), 129.7 (CH), 128.4 (Cq), 126.8 (CH), 125.5 


(Cq), 123.9 (CH), 122.9 (CH), 120.7 (CH), 116.5 (CH), 105.4 (CH), 46.7 (CH3), 40.1 (CH3); 


MS (ESI+): m/z = 289.4 [M]+; anal. calcd. for C20H21IN2 (416.3): C 57.70, H 5.08, N 6.73; found: 


C 58.02, H 5.13, N 6.43. 


 
4-((E)-2-(5-methoxy-1H-indol-3-yl)vinyl)-1-methylpyridinium iodide (17p): Prepared in 


58% yield through the reaction of I17 with 5-methoxyindole-3-carbaldehyde, followed by 


recrystallization from MeCN–EtOH. Strawberry-colored solid, m.p. 220–222 °C; 1H NMR (300 


MHz, DMSO): δ 11.81 (br s, 1H), 8.67 (d, J = 6.8 Hz, 2H), 8.25 (d, J = 16.2 Hz, 1H), 8.11 (d, 


J = 6.9 Hz, 2H), 7.96 (d, J = 2.7 Hz, 1H), 7.59 (d, J = 2.2 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 


7.20 (d, J = 16.2 Hz, 1H), 6.90 (dd, J = 8.8, 2.3 Hz, 1H), 4.17 (s, 3H), 3.87 (s, 3H); 13C NMR 


(75 MHz, DMSO): δ 155.0 (Cq), 154.2 (Cq), 144.0 (CH), 136.2 (CH), 132.3 (Cq), 132.1 (CH), 


125.8 (Cq), 121.5 (CH), 116.2 (CH), 113.4 (Cq), 113.2 (CH), 112.3 (CH), 102.9 (CH), 55.7 


(CH3), 46.2 (CH3); MS (ESI+): m/z = 265.3 [M]+; anal. calcd. for C17H17IN2O × 0.3 H2O (397.6): 


C 51.35, H 4.46, N 7.04; found: C 51.30, H 4.58, N 7.06. 


 
4-((E)-2-(5-dimethylamino-1H-indol-3-yl)vinyl)-1-methylpyridinium iodide (17s): 


Prepared in 29% yield through the reaction of I17 with 5-(dimethylamino)indole-3-


carbaldehyde [11], followed by recrystallization from MeCN–EtOH. Black solid, m.p. 268–
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269 °C; 1H NMR (300 MHz, DMSO): δ 11.70 (s, 1H), 8.63 (d, J = 6.7 Hz, 2H), 8.24 (d, J = 16.1 


Hz, 1H), 8.09 (d, J = 6.8 Hz, 2H), 7.88 (s, 1H), 7.34 (t, J = 8.9 Hz, 1H), 7.31 (d, J = 1.8 Hz, 


1H), 7.11 (d, J = 16.2 Hz, 1H), 6.87 (dd, J = 8.9, 2.1 Hz, 1H), 4.16 (s, 3H), 2.96 (s, 6H); 13C 


NMR (75 MHz, DMSO): δ 154.2 (Cq), 147.0 (Cq), 143.9 (CH), 136.7 (CH), 131.6 (CH), 130.8 


(Cq), 126.2 (Cq), 121.3 (CH), 115.5 (CH), 113.1 (Cq), 112.8 (CH), 111.9 (CH), 103.1 (CH), 46.1 


(CH3), 41.8 (CH3); MS (ESI+): m/z = 278.3 [M]+, 132.2 [M – Me + H+]2+; anal. calcd. for C18H20IN3 


(405.3): C 53.34, H 4.97, N 10.37; found: C 53.29, H 5.09, N 10.34. 


 
4-((E)-2-(1-methylpyrrol-2-yl)vinyl)-1-methylpyridinium iodide (17x): Prepared in 63% 


yield through the reaction of I17 with 1-methylpyrrole-2-carboxaldehyde, followed by 


recrystallization from MeOH. Violet prisms, m.p. 252–254 °C; 1H NMR (300 MHz, DMSO): δ 


8.69 (d, J = 6.7 Hz, 2H), 8.10 (d, J = 6.7 Hz, 2H), 7.91 (d, J = 15.9 Hz, 1H), 7.08 (d, J = 2.2 


Hz, 1H), 7.07 (d, J = 15.8 Hz, 1H), 6.88 (d, J = 2.6 Hz, 1H), 6.20 (dd, J = 3.8, 2.6 Hz, 1H), 4.17 


(s, 3H), 3.80 (s, 3H); 13C NMR (75 MHz, DMSO): δ 153.2 (Cq), 144.2 (CH), 130.4 (Cq), 129.4 


(CH), 128.6 (CH), 122.1 (CH), 117.4 (CH), 112.3 (CH), 109.8 (CH), 46.3 (CH3), 34.1 (CH3); 


MS (ESI+): m/z = 199.3 [M]+; anal. calcd. for C13H15IN2 (326.2): C 47.87, H 4.64, N 8.59; found: 


C 47.90, H 4.63, N 8.59. 


 
4-((E)-2-(7-diethylamino-3-coumarinyl)vinyl)-1-methylpyridinium iodide (17y): Prepared 


in a 52% yield through the reaction of I17 with 7-diethylamino-3-formylcoumarin, followed by 


recrystallization from MeOH. Red solid, m.p. > 280 °C; 1H NMR (300 MHz, DMSO): δ 8.78 (d, 


J = 6.4 Hz, 2H), 8.23 (s, 1H), 8.15 (d, J = 6.5 Hz, 2H), 7.82 (d, J = 16.1 Hz, 1H), 7.67 (d, J = 


16.0 Hz, 1H), 7.55 (d, J = 8.9 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 6.60 (s, 1H), 4.22 (s, 3H), 3.49 


(q, J = 6.4 Hz, 4H), 1.15 (t, J = 6.8 Hz, 6H); 13C NMR (75 MHz, DMSO): δ 159.6 (Cq), 156.3 


(Cq), 152.9 (Cq), 151.9 (Cq), 145.3 (CH), 144.8 (CH), 136.7 (CH), 130.7 (CH), 123.0 (CH), 


122.6 (CH), 113.6 (Cq), 110.0 (CH), 108.3 (Cq), 96.2 (CH), 46.7 (CH3), 44.4 (CH2), 12.4 (CH3); 


MS (ESI+): m/z = 335.4 [M]+; anal. calcd. for C21H23IN2O2 (462.3): C 54.56, H 5.01, N 6.06; 


found: C 54.53, H 5.01, N 6.05. 


 
2-((E)-2-(6-(dimethylamino)naphthalen-2-yl)vinyl)-1-methylpyridinium iodide (18n): 


Prepared in 38% yield through the reaction of I18 with 6-dimethylamino-2-naphthaldehyde, 
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followed by recrystallization from MeOH. Red crystals, m.p. 233–234 °C; 1H NMR (300 MHz, 


DMSO): δ 8.88 (d, J = 6.1 Hz, 1H), 8.54 (d, J = 7.5 Hz, 1H), 8.45 (t, J = 7.8 Hz, 1H), 8.11 (s, 


1H), 8.06 (d, J = 15.9 Hz, 1H), 7.95 (dd, J = 8.7, 1.3 Hz, 1H), 7.89 – 7.79 (m, 2H), 7.76 (d, J = 


8.7 Hz, 1H), 7.55 (d, J = 15.9 Hz, 1H), 7.29 (dd, J = 9.1, 2.3 Hz, 1H), 7.04 (s, 1H), 4.38 (s, 


3H), 3.08 (s, 6H); 13C NMR (75 MHz, DMSO): δ 152.7 (Cq), 149.3 (Cq), 145.8 (CH), 143.8 


(CH), 143.7 (CH), 136.0 (Cq), 130.7 (CH), 129.8 (CH), 128.4 (Cq), 126.7 (CH), 125.6 (Cq), 


124.4 (CH), 124.3 (CH), 124.2 (CH), 116.6 (CH), 114.7 (CH), 105.9 (CH), 45.9 (CH3), 40.2 


(CH3); MS (ESI+): m/z = 289.4 [M]+; anal. calcd. for C20H21IN2 × H2O (434.3): C 55.31, H 5.34, 


N 6.45; found: C 54.92, H 5.04, N 6.26. 


 
Synthesis of 4-((E)-4-(dimethylamino)styryl)-1,2-dimethylpyridinium iodide (19a) 


4-((E)-4-(dimethylamino)styryl)-2-methylpyridine: A stirred solution of 4-(dimethylamino)-


benzaldehyde (1.49 g, 10.0 mmol) and t-BuOK (1.23 g, 11.0 mmol) in anhydrous DMF (20 


mL) was degassed by repeated vacuum–argon cycles and neat 2,4-lutidine (1.73 mL, 1.61 g, 


15.0 mmol) was added via a syringe under argon atmosphere at room temperature. The 


mixture was stirred at room temperature for 24 h, and a second portion of t-BuOK (1.12 g, 10 


mmol) was added under argon. After stirring for additional 24 h, the mixture was poured into 


water (200 mL) and the product was extracted with toluene (3 × 50 mL). The combined organic 


fractions were washed with water and brine and dried over Na2SO4. The solvent was removed 


under vacuum. Excess 2,4-lutidine was removed by co-evaporation with mesitylene (4 × 10 


mL) in vacuo. The crude residue was purified by flash chromatography (SiO2, eluent: 


cyclohexane–MTBE, 60:40 to 30:70), to give 4-((E)-4-dimethylaminostyryl)-2-methylpyridine 


(0.82 g, 34%) as a dark-yellow solid, m.p. 156–158 °C; 1H NMR (300 MHz, CDCl3): δ 8.40 (d, 


J = 5.2 Hz, 1H), 7.43 (d, J = 8.8 Hz, 2H), 7.23 (d, J = 16.5 Hz, 1H), 7.19 (s, 1H), 7.15 (d, J = 


5.3 Hz, 1H), 6.78 (d, J = 16.3 Hz, 1H), 6.71 (d, J = 8.9 Hz, 2H), 3.00 (s, 6H), 2.55 (s, 3H); 13C 


NMR (75 MHz, CDCl3) δ 158.6 (Cq), 150.9 (Cq), 149.4 (CH), 146.0 (Cq), 133.1 (CH), 128.4 


(CH), 124.6 (Cq), 121.6 (CH), 120.1 (CH), 117.7 (CH), 112.3 (CH), 40.4 (CH3), 24.6 (CH3); MS 


(ESI+): m/z = 239.2 [M + H]+. 


4-((E)-4-(dimethylamino)styryl)-1,2-dimethylpyridinium iodide (19a): A solution of 4-((E)-


4-dimethylaminostyryl)-2-methylpyridine (0.650 g, 2.73 mmol) and iodomethane (0.26 mL, 


0.58 g, 4.1 mmol) in anhydrous acetone (27 mL) was stirred at room temperature for 48 h. 


The precipitate was collected, washed with acetone and dried, to give 19a (0.816 g, 79%) as 


a red solid, m.p. 149–150 °C; 1H NMR (300 MHz, DMSO): δ 8.68 (d, J = 6.7 Hz, 1H), 8.01 (d, 
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J = 1.6 Hz, 1H), 7.92–7.82 (m, 2H), 7.58 (d, J = 8.9 Hz, 2H), 7.10 (d, J = 16.1 Hz, 1H), 6.78 


(d, J = 8.9 Hz, 2H), 4.08 (s, 3H), 3.01 (s, 6H), 2.69 (s, 3H); 13C NMR (75 MHz, DMSO): δ 154.1 


(Cq), 153.3 (Cq), 151.8 (Cq), 145.0 (CH), 141.4 (CH), 130.0 (CH), 123.4 (CH), 122.5 (Cq), 120.1 


(CH), 117.0 (CH), 112.0 (CH), 44.0 (CH3), 39.7 (CH3), 19.81 (CH3); MS (ESI+): m/z = 253.4 


[M]+; anal. calcd. for C17H21IN2 × 0.33 H2O (386.2): C 52.87, H 5.65, N 7.25; found: C 52.93, 


H 5.63, N 7.28. 


 


Photophysical studies 


Buffer and dyes stock solutions. Experiments with nucleic acids were performed in ‘K-100’ 


buffer, containing 0.1 M KCl and 0.01 M lithium cacodylate (LiAsO2Me2) in MilliQ water at pH 


7.2 (adjusted with HCl). Absorption studies were performed either in the same buffer or in 


spectroscopic-grade solvents (methanol and DMSO). Dyes were dissolved in DMSO to obtain 


4 mM stock solutions, except for the dyes 1d, 1ð and 16a, which were dissolved at a 


concentration of 1 mM, and 1m, which was dissolved at a concentration of 0.5 mM, due to 


their lower solubility. Stock solutions of dyes were stored at −20 °C. Dye solutions were kept 


in the dark at all times, to avoid photoinduced degradation. 


DNA and RNA stock solutions. Oligonucleotides were purchased from Eurogentec (RP‐ HPLC 


purification grade) and used without further purification. Stock solutions were prepared at 100 


μM (except for 46AG: 50 μM) in K-100 buffer and stored at 4 °C. Working solutions (c = 5.6 


μM, except for 46AG: c = 2.8 μM) were prepared by dilution of stock solutions in the same 


buffer. Heteroduplexes (ds 3+4, ds 5+8, and ds 6+7, Table S2) were prepared by mixing equal 


volumes of the corresponding single strands. The final concentration of heteroduplexes was 


2.8 μM, to account for the doubled number of nucleotides. The working solutions were 


subsequently annealed (5 min at 95 °C) and then allowed to cool down to room temperature 


overnight. Annealed solutions were stored at 4 °C. Calf thymus DNA (ct DNA, Invitrogen, 10 


mg mL−1) and RNA from calf liver (cl RNA, Sigma-Aldrich, Type IV) were diluted with K‐ 100 


buffer to c ≈ 3 mM in base pairs, as calculated by the absorption measurement at 260 nm (ct 


DNA: εnucleotide = 6650 M−1 cm−1, cl RNA: εnucleotide = 8500 M−1 cm−1), and then further diluted so 


as to obtain working solutions with a nucleotide concentration comparable to the 


oligonucleotide samples (i.e., 110 μM, considering 22 as the average length of 


oligonucleotides).  


Absorption studies. Absorption spectra of the dyes in K-100 buffer, MeOH and (for some dyes) 


DMSO were recorded at 20 °C and dye concentration of 10 µM in quartz cells with a path 


length of 1 cm, using a double-beam spectrophotometer (Hitachi U2900) operating at a 
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spectral bandpass of 1.5 nm. All samples were checked for the absence of visible precipitates 


at the moment of the measurements. 


Fixed-wavelength fluorescence measurements. All fluorescence analyses were performed 


with a microplate reader (BMG FluoStar Omega), using a 96-well quartz plate with a 


transparent bottom (Hellma). Samples were prepared by mixing working solutions of DNA 


samples (5.6 μM or equivalent in K-100 buffer, 90 µL) or the buffer alone with working solutions 


of dyes in K-100 buffer (25 μM in K-100 buffer containing 2.5% v/v DMSO, 10 µL). The final 


concentrations were 2.5 μM for the dye and 5 μM (or equivalent) for DNA in a total volume of 


100 μL per well. The plates were stirred for 3 min at 300 rpm and then left to equilibrate for 1 


h at room temperature in the dark. Fluorescence emission was recorded by using a microplate 


reader, exciting each dye at the appropriate wavelength with the aid of appropriate filters 


(Table S1). The instrument gain was set for each channel and kept constant throughout all the 


analyses. 


Multivariate analysis. The light-up data matrix reported in Table S1 was normalized to a scale 


of 0 to 1; normalization was always performed for each nucleic acid sequence separately. 


Multivariate analysis (PCA) was performed with Origin Pro 2018b (OriginLab, Northampton, 


MA). The PCA data are presented as score plots of PC1 versus PC2. 


Fluorescence quantum yield and brightness measurements. Dyes 1p, 1u, 17a and 18a were 


diluted in K-100 buffer at varying concentration (1.2–3 μM) alone or in the presence of G4 


structures (c-myc or 22AG, 6 µM). Absorption and emission spectra (λex = 500 nm, slits width 


5 nm, PMT voltage 550 V) of the resulting solutions were measured on a UV Cary-300 


spectrophotometer and on a Cary Eclipse fluorimeter, respectively, using a transparent and 


asymmetric quartz cuvette (1 × 0.4 cm pathlength). Fluorescence emission spectra were 


integrated between 510 and 800 nm and the obtained values were plotted as a function of the 


absorbance at 500 nm for each dye. The slope of the resulting plots was used for the quantum 


yield (Φ) calculations, using the data recorded for Rhodamine 6G at identical settings as a 


reference (Φ = 0.95 in EtOH [14]): 


𝛷𝑠𝑎𝑚𝑝𝑙𝑒 =  𝛷𝑟𝑒𝑓 ×
𝑆𝑠𝑎𝑚𝑝𝑙𝑒


𝑆𝑟𝑒𝑓
×


𝑛𝑠𝑎𝑚𝑝𝑙𝑒
2


𝑛𝑟𝑒𝑓
2 , 


where Φ is fluorescence quantum yield, S is the slope obtained from the Area vs absorbance 


plots and n is the refractive index of the solvents; subscripts ref and sample denote rhodamine 


6G and dye or dye-G4 complex, respectively. 


Molar absorptivity coefficients for the complexes at the absorption maximum were calculated 


from the absorbance and concentration data obtained for each dye–G4 complex. Brightness 
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(B) of each complex and of the dyes alone was subsequently calculated through the following 


formula: 


𝐵𝑠𝑎𝑚𝑝𝑙𝑒 =  𝜀𝑚𝑎𝑥 𝑠𝑎𝑚𝑝𝑙𝑒 × 𝛷𝑠𝑎𝑚𝑝𝑙𝑒 


where Φ is fluorescence quantum yield and εmax is the molar absorptivity coefficient in the 


absorption maximum. As above, the subscript sample denotes the dye or dye-G4 complex. 
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Table S1: Excitation / emission wavelengths of optical filters (passband: 10 nm) and relative emission intensity 


enhancement (I/I0) of styryl dyes and Thioflavin T (ThT) (c = 2.5 µM in K-100 buffer) in the presence of 2 molar 


equiv. of G4-DNA (except for 46AG: 1 molar equiv.), G4-RNA, or ct DNA and cl RNA used at equivalent nucleotide 


concentration.  


 


  


c-kit2 25CEB c-kit87 c-myc c-src1 c-myb 22AG 46AG HRAS TBA TERRA NRAS ct DNA cl RNA


1a 544 / 620 30 22 34 40 10 6 82 99 36 4 170 15 3 4
1b 620 / 670 13 14 8 38 5 6 11 28 18 3 111 11 3 2
1c 485 / 544 27 26 27 26 12 4 34 97 63 7 59 12 7 6
1d 544 / 620 39 24 50 46 7 6 68 346 35 5 120 21 2 3
1ð 620 /670 3 3 4 4 2 3 2 2 2 2 46 2 2 2
1e 544 / 620 49 41 45 59 15 13 62 112 41 10 114 20 14 7
1f 590 / 670 85 72 109 112 32 14 104 113 118 22 147 60 11 7
1g 485 / 544 39 19 57 42 8 8 19 73 23 3 45 32 3 3
1h 485 / 544 46 17 47 28 18 12 20 59 22 5 144 33 4 7
1i 485 / 544 7 6 19 10 3 4 13 30 5 2 39 14 6 1
1j 544 / 620 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1k 584 / 670 3 4 4 3 2 2 4 7 4 2 5 3 1 1
1l 544 / 620 2 2 2 1 1 1 2 2 2 1 3 2 1 2


1m 520 / 620 3 4 4 4 3 3 4 4 3 3 5 3 2 3
1o 544 / 584 85 49 81 76 51 18 52 115 119 21 353 69 7 16
1p 544 / 584 185 141 269 163 75 33 553 352 367 45 268 176 4 7
1q 544 / 590 93 29 67 67 13 10 39 52 28 3 355 61 1 11
1r 485 / 544 88 27 35 204 8 8 39 98 177 28 320 55 2 13
1s 485 / 544 31 54 23 238 8 11 17 50 46 5 16 26 48 9
1t 485 / 520 8 18 25 11 6 5 54 80 25 5 40 5 5 2
1u 544 / 584 193 27 34 252 11 8 45 41 205 99 383 128 1 33
1v 485 / 520 215 168 149 344 49 82 202 209 232 97 497 153 9 35
1w 485 /544 6 3 9 4 2 2 3 6 2 2 7 6 3 2
1x 544 / 620 346 115 393 282 111 56 148 485 341 26 689 200 36 63
1y 544 / 620 13 26 13 38 6 5 23 35 27 2 50 15 2 1
1z 544 / 620 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1þ 544 / 620 1 1 1 1 1 1 1 1 1 1 5 1 1 1
2a 544 / 620 22 20 24 39 9 9 61 76 69 4 122 16 6 3
2i 485 / 544 17 13 21 19 9 7 20 49 11 7 19 21 12 6
2n 584 / 670 3 3 3 3 2 1 7 7 7 1 21 5 1 1
3a 544 / 620 16 13 16 27 7 5 38 41 27 3 103 11 4 3
4a 584 / 670 45 39 44 52 19 7 124 112 147 9 267 39 10 8
5a 590 / 670 102 110 118 148 57 20 326 215 190 39 311 102 25 11
6a 544 / 620 8 9 9 12 3 3 32 30 8 2 20 4 2 2
7a 544 / 620 19 12 22 20 9 9 14 28 19 3 168 9 12 4
7b 584 / 670 5 4 4 4 2 1 3 5 3 2 22 2 2 2
7e 544 / 620 62 76 74 105 20 11 51 118 68 10 69 45 35 3
7f 544 / 620 30 35 39 46 18 8 25 55 62 4 52 28 22 2
7i 485 / 544 3 4 3 5 4 1 3 5 4 2 34 2 2 2
7n 584 / 670 2 2 2 3 2 3 2 3 3 2 4 3 2 2
7x 544 / 590 216 86 186 204 33 28 90 181 100 6 195 113 3 9
7ð 485 /544 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8a 584 / 670 29 25 35 28 7 6 50 66 51 4 97 12 7 3
9a 544 / 620 5 4 5 2 2 11 11 20 12 2 6 3 3 2


10a 544 / 620 5 4 7 5 3 2 9 12 2 0 8 1 2 0
11a 544 / 620 10 23 32 48 15 7 51 96 45 5 154 18 5 6
12a 620 / 670 6 9 5 12 5 3 15 43 17 2 56 6 2 3
13a 620 / 720 7 10 4 2 7 2 4 19 14 2 20 5 2 2
14a 620 /670 12 11 18 17 4 4 89 62 21 3 54 6 2 2
14p 520 / 620 80 57 83 111 23 22 132 121 139 32 178 43 3 12
15a 584 / 670 11 13 20 10 6 5 19 55 3 4 24 8 2 2
16a 584 /670 25 28 41 16 12 60 42 68 32 6 117 33 6 5
17a 544 / 620 161 83 244 338 44 15 84 184 83 5 169 92 5 8
17n 520 / 670 19 13 22 14 5 4 24 38 16 2 16 8 3 2
17p 485 / 544 101 34 81 94 14 14 51 166 78 10 78 100 12 16
17s 485 /544 21 8 11 21 3 4 7 17 8 2 21 32 3 7
17x 485 / 544 6 2 7 9 2 2 2 6 2 1 6 11 1 1
17y 544 / 584 7 5 7 13 2 3 7 11 9 3 10 6 6 2
18a 544 / 620 215 61 265 302 70 1 60 166 59 3 10 13 2 11
18n 544 / 620 11 15 35 29 8 8 31 102 35 2 62 20 5 3
19a 544 / 620 167 118 239 185 50 18 90 172 53 4 144 61 2 8
ThT 460 / 544 76 38 102 111 21 16 168 176 102 9 94 203 2 10


Dye
G4 DNA G4 RNA non-G4ex / em filters 


(nm)
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Table S2: DNA sequences used in the double-dye analysis.   


Acronym Sequence (5′ → 3′) Conformation PDB c (µM)a 


22AG AGGGTTAGGGTTAGGGTTAGGG Hybrid G4 - 5 


UpsB-Q3  
CAGGGTTAAGGGTATACATTTAGGGGT


TAGGGTT 


Hybrid G4 
- 


5 


26TTA TTAGGGTTAGGGTTAGGGTTAGGGTT Hybrid G4 2JPZ 5 


25TAG TAGGGTTAGGGTTAGGGTTAGGGTT Hybrid G4 2JSL 5 


23TAG TAGGGTTAGGGTTAGGGTTAGGG Hybrid G4 2JSK 5 


24TTA TTAGGGTTAGGGTTAGGGTTAGGG Hybrid G4 2JSL 5 


46AG A(GGGTTA)7GGG Hybrid G4 - 2.5 


Bcl2Mid GGGCGCGGGAGGAATTGGGCGGG Hybrid G4 2F8U 5 


26CEB AAGGGTGGGTGTAAGTGTGGGTGGGT Parallel G4 2LPW 5 


c-kit2-


T12T21 
CGGGCGGGCGCTAGGGAGGGT 


Parallel G4 
2KYP 


5 


KRAS-22RT AGGGCGGTGTGGGAATAGGGAA Parallel G4 5I2V 5 


c-myc TGAGGGTGGGTAGGGTGGGTAA Parallel G4 1XAV 5 


VEGF CGGGGCGGGCCTTGGGCGGGGT Parallel G4 2M27 5 


T95-2T TTGGGTGGGTGGGTGGGT Parallel G4 2LK7 5 


TBA GGTTGGTGTGGTTGG Anti-parallel G4 148D 5 


HIV-PRO-1 TGGCCTGGGCGGGACTGGG Anti-parallel G4 - 5 


Bm-U16 TAGGTTAGGTTAGGTUAGG Anti-parallel G4 - 5 


Bom17 GGTTAGGTTAGGTTAGG Anti-parallel G4 - 5 


G4CT GGGGCTGGGGCTGGGGCTGGGG Anti-parallel G4 - 5 


ct DNA Calf thymus DNA, highly polymerized Duplex - 110b 


ds26 CAATCGGATCGAATTCGATCCGATTG 
Duplex (self-


complementary)  
- 


5 


ds-lac GAATTGTGAGCGCTCACAATTC 
Duplex (self-


complementary)  
- 


5 


ds 5 + 8 


GGAGAGAGAGTGTGTGTGTGGG + 


CCCACACACACACTCTCTCTCC 


Heteroduplex - 


2.5c 
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ds 3 + 4 


GTCGCCGGGCCAGTCGTCCATAC + 


GTATGGACGACTGGCCCGGCGAC 


Heteroduplex - 


2.5c 


ds 6 + 7 


GACGTGTCGAAAGAGCTCCGATTA + 


TAATCGGAGCTCTTTCGACACGTC 


Heteroduplex - 


2.5c 


ss1 CACTAAACCTAACACTAACCAT Single strand  - 5 


ss2 ATGCCCTACGCGTCTTCTACTT Single strand  - 5 


ss3 GTCGCCGGGCCAGTCGTCCATAC Single strand - 5 


ss4 GTATGGACGACTGGCCCGGCGAC Single strand - 5 


ss5 CCCACACACACACTCTCTCTCC Single strand - 5 


ss6 GACGTGTCGAAAGAGCTCCGATTA Single strand - 5 


ss7 TAATCGGAGCTCTTTCGACACGTC Single strand - 5 


dT26 TTTTTTTTTTTTTTTTTTTTTTTTTT Single strand - 5 


a Final concentration used in the double dye assay, expressed in oligonucleotide strands unless stated otherwise. 


b Nucleotide concentration. c Concentration of duplexes. 
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