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ARTICLE

Changes in rainfall distribution promote woody
foliage production in the Sahel
Martin Brandt 1, Pierre Hiernaux2, Kjeld Rasmussen1, Compton J. Tucker3, Jean-Pierre Wigneron 4,

Abdoul Aziz Diouf5, Stefanie M. Herrmann6, Wenmin Zhang1, Laurent Kergoat7, Cheikh Mbow8,

Christin Abel 1, Yves Auda7 & Rasmus Fensholt 1

Dryland ecosystems comprise a balance between woody and herbaceous vegetation. Climate

change impacts rainfall timing, which may alter the respective contributions of woody and

herbaceous plants on the total vegetation production. Here, we apply 30 years of field-

measured woody foliage and herbaceous mass from Senegal and document a faster increase

in woody foliage mass (+17 kg ha−1 yr−1) as compared to herbaceous mass (+3 kg ha−1 yr−1).

Annual rainfall trends were partitioned into core wet-season rains (+0.7 mm yr-1), supporting

a weak but periodic (5-year cycles) increase in herbaceous mass, and early/late rains (+2.1

mm yr−1), explaining the strongly increased woody foliage mass. Satellite observations

confirm these findings for the majority of the Sahel, with total herbaceous/woody foliage

mass increases by 6%/20%. We conclude that the rainfall recovery in the Sahel does not

benefit herbaceous vegetation to the same extent as woody vegetation, presumably favoured

by increased early/late rains.
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Recent Earth observation studies find a greening of the Earth
and in particular in global drylands, which is commonly
interpreted as a global increase in net primary production

and has been attributed to climate change1,2. Although changes in
rainfall, fire regimes, elevated temperatures, atmospheric CO2 and
nitrogen depositions are suggested explanations1,3–6, only few
studies provide quantitative evidence on both the biophysical
processes (changes in vegetation cover, structure and composi-
tion) and controlling factors of long-term dryland vegetation
trends7. While Earth observation data have been used extensively
to document the spatial and temporal dynamics of vegetation
production since the early 1980s2,8, satellite observed vegetation
dynamics in drylands have rarely been separated into their her-
baceous and woody components and validated against field
observations9,10.

The Sahel dryland was one of the first areas where greening
trends were observed11,12. Annual rainfall was identified as the
major control increasing annual primary production after pro-
longed droughts in the 1970s and 1980s13. However, recent stu-
dies show an increased frequency of heavy rainfall events14 and a
changed seasonal distribution of rainfall15 in the Sahel, which
may benefit differently the woody and herbaceous components of
the vegetation cover. Several experimental field studies in dry-
lands found that woody vegetation benefits from extreme rainfall
events16,17, and also rainfall falling outside the core of the wet
season (early and late rains) is hypothesised to benefit primarily
perennial vegetation, which includes woody plants. Herbaceous
vegetation in the Sahel are predominantly annual plants wilting
towards the end of the rainy season independent of late rains. Yet,
the limited availability of continuous long-term field observations
of vegetation growth and the failure of satellite systems to readily
distinguish between woody and herbaceous vegetation compo-
nents impedes analysing the link between the dynamics in
woody/herbaceous plants and the temporal changes in seasonal
rainfall distributions.

The general concept of the so-called ‘greening Sahel’ was
based on Earth observation data12, yet a few long-term field
assessments on vegetation production confirm the general
dynamics and trends, including the Gourma region in Mali11,18,
Fakara in Niger19 and the rangelands of Senegal20,21. In parti-
cular, the arid and semi-arid Ferlo region in northern Senegal
has been a testing ground for the use of time series of satellite
images since the late 1970s: Field measurements on herbaceous
mass were used to evaluate vegetation proxies from NOAA
AVHRR satellite data, constituting a pioneer work and creating
the backbone of modern research on dryland vegetation mon-
itoring12–23. In 1987, the Centre de Suivi Ecologique imple-
mented a routine collection of ecological field data in Senegal,
which nowadays represents one of the rare systematic ground
surveys using a consistent methodology over more than three
decades and measuring both woody and herbaceous vegetation
properties. The length of the transects (1 km) forming the
surveys was designed for comparisons with Earth observation
data and provides robust estimates at a comparable resolution
to the dense time series of low-to-medium resolution satellite
sensors23.

A combination of Earth observation and field data are used
here to analyse the contributions of herbaceous and woody plants
on long-time vegetation trends, and the impact of specific tem-
poral rainfall distributions on herbaceous and woody plant
trends. The convergence of evidence obtained from the combi-
nation of field and remotely sensed data highlights the validity of
both datasets, as well as the spatio-temporal patterns emerging
from them. Furthermore, strong relationships between field and
satellite data justify extrapolation of findings from the field plots
to larger areas.

Results show that different satellite datasets reliably reflect
field-measured dynamics and long-term trends in vegetation
production. Whereas optical datasets have difficulties in separ-
ating woody and herbaceous vegetation components, vegetation
optical depth from passive microwaves is able to assess woody
and herbaceous dynamics separately. We find Sahel-wide
increases in both herbaceous mass and woody foliage over 30
years, however, woody foliage increases faster than herbaceous
mass. This is related to a shift in the timing of rainfall, which
benefits primarily woody vegetation. Finally, we find a periodic
pattern in the herbaceous production, following a 5-year cycle.

Results
Relationship between 30 years of field and satellite data. We
first compared a variety of different Earth observation datasets
against field observations on green vegetation mass, consisting
of annually collected (1987–2016) above-ground herbaceous
mass (AGH) and woody plant foliage mass (WPF) from nine
field sites (Fig. 1, Supplementary Fig. 1). The concept of separ-
ating herbaceous and woody components using satellite data
is based on the contrasting phenology of woody and herbaceous
vegetation, with annual herbaceous plants wilting towards the
end of the wet season while woody plants keep their green
foliage during a fraction of the dry season24–27. To reflect the
growing season when the annual vegetation mass accumulation
is close to its peak (Supplementary Fig. 2), we used the 90th
percentile (p90) of intra-annual satellite data time series
(averages of all pixels overlaying the nine field sites shown in
Supplementary Fig. 1). To avoid bias by specific satellite sensors,
we applied a range of different satellite systems having different
characteristics as well as spatial and temporal resolutions
(Supplementary Table 1). All satellite p90 datasets were able
to reproduce total vegetation mass (AGH+WPF; mean
1987–2016= 1284 kg ha−1), as well as AGH trends and dynam-
ics, remarkably well (r= 0.69–0.87) with root mean square errors
(for WPF+AGH) ranging from 160 kg ha−1 (MODIS), 178
(GEOV2), to 215 kg ha−1 (GIMMS3g) for optical sensors, and
182 and 170 for high- and low-frequency vegetation optical
depth (VOD and L-VOD), respectively.

The 30th percentile (p30) of the intra-annual time series was
used to represent dry season values estimating WPF (Fig. 1a;
Supplementary Fig. 2). Here, performance differences between
passive microwave (VOD r= 0.85; L-VOD r= 0.87) and optical
datasets (MODIS r= 0.5; GEOV2 r= 0.45) were substantial, and
the widely used GIMMS3g (r= 0.04) was shown to be unsuited to
reflect WPF dynamics and is thus not further used in the
following sections.

Herbaceous and woody plant vegetation trends. On average, the
portion of field-measured herbaceous mass (AGH) to the total
vegetation mass at the field sites was 71% (±13 SD over the nine
sites for 1987–2016) (Fig. 1c, f). However, this portion was
decreasing over time (–0.7 ± 0.5% yr−1) (Fig. 1e), which may
reflect the progressive increase in woody populations recovering
from the drought years (1983/1984) while the herbaceous mass
of a given year is more controlled by rainfall conditions of the
current year with less legacy effects from previous years. Indeed,
over the period 1987–2016, trends of the field data showed that
woody foliage mass (WPF) increases by + 17 ± 13 kg ha−1 yr−1,
which is considerably more than AGH (+3 ± 8 kg ha−1 yr−1).
However, large inter-annual variations make a linear trend esti-
mate on herbaceous mass largely dependent on the selection of
the start and end years of the time series, which is not the case for
woody foliage (Supplementary Fig. 3; Fig. 1b, c). Satellite data
confirm the patterns observed in the field data (Fig. 1b, d, f).
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Although the general pattern seen in Fig. 1 is clear, spatial
discrepancies inevitably exist, and WPF can vary locally between
the years. Further insights were provided by independent
qualitative datasets: very high resolution imageries illustrate a
recent burst of growth in both tree canopy size and density
over 6–11 years (Fig. 2a, Supplementary Fig. 4). However, a
visual comparison of aerial photos from 1980 covering most of
the study area with imagery from 2008 showed that the increase
in WPF was not obviously associated with a widespread
encroachment of individual woody plant density (Fig. 2b,
Supplementary Figs 4–6). This shows, first, increases in WPF
are not necessarily coupled with an increased plant density,
second, increases in woody cover are not always homogeneous
but site dependent, and third, the increases in WPF are likely
linked with the recovery from the drought in 1984 which had
caused a mass dying of woody plants, which today are back at
pre-drought level (as shown in 1980).

Herbaceous and woody vegetation respond to rainfall patterns.
Since annual herbaceous plant growth is primarily sensitive to
rainfall during the core wet season24, we decomposed the annual
rainfall (from 1st May to 31st October excluding the core dry
season) into rainfallC that is uninterrupted core wet season
rainfall, and rainfallEL, which is early and late rains falling before
and after the rainfallC period (Fig. 3a, b). The decomposition is
based on a ruleset adapted from Hiernaux and Le Houérou28

(details provided in Methods section). On average across the nine
field sites and 30 years, the core wet season lasts from day of year
204 to 244. Over the 30-year study period, rainfall during the
average core wet season remained rather stable, while rainfall
both before and after this period increased (Fig. 3a, b). Annual
rainfall was highly related to field-measured AGH+WPF
(r= 0.7; P < 0.0001), confirming the annual rainfall amount as the
major driver of annual vegetation production but also leaving
room for other explanatory variables (e.g. soil, herbivores,
runoff, etc.) (Fig. 3c). AGH was significantly related to annual
rainfall (r= 0.54; P= 0.002), which was not the case for WPF
(r= 0.36; P= 0.06). Annually decomposed rainfallC showed a
stronger relationship with AGH as compared with annual rainfall
(r= 0.61; P= 0.0004) (Fig. 3c, d) but was not significantly related
to WPF (r= 0.08; P= 0.68). Indeed, the only rainfall variable
showing a significant correlation with WPF was the annually
decomposed rainfallEL (r= 0.57; P= 0.0006), which was unre-
lated to AGH (r= 0.13; P= 0.45).

The positive trend seen in annual rainfall (+3 mm yr−1;
1987–2016) was less pronounced in rainfallC (+0.7 mm yr−1),
whereas rainfallEL increased by +2.1 mm yr−1 (Fig. 4a, b),
suggesting that the general increase found in annual rainfall is
caused by an increase in early and late rains (Fig. 4a). This implies
that the ratio between rainfallC and rainfallEL changed to the
detriment of rainfallC over the 1987–2016 period (–0.4% yr−1).
The standardized trend seen in rainfallC is comparable to the
standardized trend in AGH (Fig. 4b) whereas the magnitude of
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the standardized trend of rainfallEL approaches the standardized
trend seen in WPF (Fig. 4b). These results support the
assumption that woody vegetation, unlike herbaceous vegetation,
prospers from early and late rains that fall outside of the core of
the wet season during which the main growth of herbaceous
plants occurs.

Although the general long-term changes in AGH and WPF
follow a linear trend, the overall significance of AGH trends is low
and the deviations from a linear increase appear to follow a
dominating periodicity (Fig. 1b and Fig. 4c, d, Supplementary
Fig. 7). To test for recurrent patterns, we fitted a sinusoidal term
(1st harmonic) on AGH and the annual VOD p90 time series for
the Ferlo (Fig. 4c, d). We found a clear and significant periodicity
in both AGH (P= 0.009) and in VOD (P= 0.003), with a ~5-year
cycle length following the 1st sinusoidal term. This periodic
pattern was less clear in annual rainfall (P= 0.08) but was found
to be significant for rainfallC (P= 0.03) and not signifcant for
rainfallEL (P= 0.09). The periodic 5-year cycle was also not
present in the field-measured WPF (P= 0.7).

Scaling field-site observations to the Sahel. Based on the strong
linear correlation between VOD metrics and both AGH and WPF
field data from the Ferlo, we used VOD to test whether the three
major patterns observed at the field site level apply also for the
western and central Sahel (150–600 mm rainfall per year, derived
from mean CHIRPS 1981–2016): first, the stronger increase in
WPF as compared with AGH, second, stronger increase in early/
late rain as compared with core wet-season rain, and third, the
periodic cycles in AGH superimposing the long-term positive
trend.

Firstly, we analysed long-term herbaceous and woody vegeta-
tion dynamics (Fig. 5a, b, Fig. 6a). According to fitted trends
derived from VOD metrics from 1992 to 2012, AGH increased by
+ 5 ± 7 kg ha−1 yr−1 and WPF increased by +9 ± 8 kg ha−1 yr−1.
For the entire western and central Sahel area, the summed AGH
increased by 0.0025 Pg yr−1 over the 21-year period, and WPF by
0.004 Pg yr−1. Total AGH (WPF) was 0.28 Pg (0.16 Pg) in 1992
and 0.31 Pg (0.24 Pg) in 2012, which is a relative increase of 6%
for AGH and 20% for WPF. The share of VOD estimated WPF
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(as related to the total vegetation mass) increased from 35% in
1992 to 43% in 2012, which is comparable to the percentage
numbers observed from the Ferlo field samples. Areas with a
significant (P < 0.05) increase in AGH cover a smaller region
(289,375 km²; ~7%) than areas with a significant increase in WPF
(2,711,875 km²; ~64%) with decreases in vegetation production
being mostly not significant (Fig. 5a, b). Significant (P < 0.05)
increases in AGH were mostly located in the Ferlo (Senegal) and
the northern Sahel of Mali, which is in line with field observations
shown in ref. 11. Areas with a significant increase in WPF are
observed across the entire Sahel; notably in Senegal, Chad, eastern

Niger and large parts of Mali. Inter-annual variations were lower
for WPF (SD 60 kg ha−1) than for AGH (SD 137 kg ha−1).
Decreases in both AGH and WPF were observed in western Niger
and around Lake Chad, with no obvious relationship with rainfall,
pointing towards other, rainfall independent causes (for example
land management).

Secondly, when averaged over the western and central Sahel for
1992–2012, rainfallC increases by +0.9 mm yr−1 and rainfallEL by
+1.4 mm yr−1 (Fig. 5c, e, f, Fig. 6b). In 60% (68% for 1987–2016)
of the western Sahel, rainfallEL increases more than rainfallC, here
the slopes were +0.7 mm yr−1 for rainfallC and +1.8 mm yr−1 for
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rainfallEL. Only in Chad the opposite was the case (Fig. 5c),
suggesting other reasons than rainfall distribution as driver of the
observed WPF increase.

Thirdly, the correlation between annual VOD p90 and the per-
pixel fitted sinusoidal term was predominantly high over most
areas, except for wetlands and some sparsely vegetated areas
(Fig. 5d). Higher correlation values are found in the western part
of the study area, in proximity to the Atlantic Ocean.

Discussion
Our study confirms the greening Sahel as an increase in vegeta-
tion production, and the convergence of independent field and
satellite datasets leaves little room for data uncertainties (cali-
bration procedures, atmospheric correction, orbital drift, and so
on) impacting on the trend11.

Using field and satellite data, we were further able to disen-
tangle the trend and dynamics in herbaceous and woody plant
foliage mass components. Here, passive microwave systems
confirmed the convincing results from earlier studies using VOD
to estimate woody cover dynamics3. An advantage of VOD data
over optical satellite systems is the ability to overcome the
shortcoming related to the weak signal of woody plants in areas
with a woody cover below 10%, where optical satellite images are
prone to noise and soil reflectances impacted by straw and lit-
ter26. L-VOD data, on the other hand, showed an excellent
agreement with field-measured WPF, even though data from the
low-frequency sensor were only available for an 8-year period.
Our results show the importance of L-VOD data for monitoring
vegetation biomass in a semi-arid monsoonal ecosystem, as it is
operational at an almost daily basis and insensitive to con-
tamination by clouds and atmospheric perturbations, enabling a
regional scale assessment of available vegetation mass already
during the cloud-prone rainy season. Moreover, whereas the
assessment of herbaceous mass by satellite data has long been
established at a high quality29, the possibility to directly assess
woody foliage mass is a milestone in dryland research.

We found increases in both herbaceous and woody foliage
mass during the period of analysis; however, woody foliage mass
increased faster than herbaceous mass. These trends were found
to be closely related to changes in the seasonal distribution of
rainfall as derived from daily satellite-based rainfall estimates.
The increase in Sahelian annual rainfall was more driven by early
and late rains that are less utilised by annual herbaceous plants,
explaining the moderate increase in herbaceous mass. Annual
herbaceous vegetation needs a period of concentrated rainfall
(core wet season) to germinate, tiller, head, flower and set seeds,
and they wilt towards the end of the wet season, independent of
late rains (photoperiodicity)24,27. Moreover, annual herbaceous
plants are vulnerable to dry spells, given their shallow rooting
depth30. Contrastingly, woody plants are able to make use of early
and late rains17, mostly explaining the rapid increase in woody
foliage mass under the tendency of Sahelian rainfall increa-
ses shifting to the early and late season. These findings are critical
and would imply that the traditionally strong linkage between
annual rainfall and growing season net primary production could
be weakened10,31,32. Moreover, recent findings showing an
intensification of Sahelian rainfall13, including an increased
frequency of large rainfall events33, likely contribute to the
observed phenomenon. Indeed, large rainfall events are only
partially used by annual plant due to rainfall runoff/on, and
thus woody vegetation, which is often spatially concentrated in
depressions16,18, will prosper from more water redistribution
after large rainfall events.

The observed trends in herbaceous mass was, however, not
linear, and follow a periodic pattern rather than a linear trend,

with a recurrent cycle of ~5 years. This pattern is also found in
the satellite data and follows a sinusoidal term, which was less
pronounced in the total annual rainfall, but significant (P < 0.05)
for core wet-season rainfall. The potential mechanisms behind
this recurrent cycle of years with high and low herbaceous
vegetation production and core wet-season rainfall were not
further explored in this study. However, it indicates a relation to
the forcing from sea surface temperature (SST) anomalies on
vegetation growth in the Sahel via the SST impact on rainfall34.
The reasons for the large inter-annual and decadal fluctuations in
rainfall are still not entirely understood, but a study by Sheen
et al. 35 predicted wet season rainfall variability at both multi-year
and inter-annual time-scale driven by the interplay between north
Atlantic and Mediterranean SSTs (associated with multi-year
(<5 year) cycles) and the El Nino-Southern Oscillation (ENSO)
(primarily associated with inter-annual rainfall variability). These
driving mechanisms help explaining the periodicity we observed
in herbaceous vegetation growth, which is largely controlled
by rainfall31.

The CMIP5 modelling experiment, reported in IPCC AR5,
represents the main source of information on expected future
climate trends for the Sahel. However, differences between rainfall
projections of the models included are large, while an increase in
atmospheric greenhouse gases and temperature is certain. There
are indications that westernmost Sahel may experience a reduc-
tion in rainfall, while trends are insignificant (P > 0.05)—or
slightly positive—further eastward. If an increase in occurrence of
heavy rainfall as well as early and late rainfall events continue in
the Sahel, a likely consequence will be that woody vegetation will
benefit, involving an increase in woody cover in low-lying run-on
areas, as already observed in parts of northern Burkina Faso36.
Finally, our study did not explore drivers other than rainfall, and
it is possible that elevated atmospheric CO2

37–39 and a declining
fire frequency6,8 play a role in the increased woody foliage pro-
duction. Another possible driver is grazing pressure8,38, however,
for the Sahel, there is no clear relationship between grazing
pressure and woody vegetation cover40.

The observed increase in vegetation mass has implications for
pastoralists and agro-pastoralists, as increasing amounts of fodder
mass are becoming available than in the 1980s and 1990s.
However, a considerable portion of the observed increase in
vegetation production consists of woody foliage mass, the fodder
value of which is generally lower than that of herbaceous plants
and would benefit primarily browsers (goats) over grazers (sheep
and cattle).

Yet, it remains a challenge to directly relate the increase in
woody foliage mass production with woody plant density and the
percentage coverage. Actual changes in percentage of woody
cover (number of woody plants and canopy size) are generally
subtle in the Sahel26, in contrast to observations from Southern
Africa37–39, where a massive encroachment of thorny woody
plants represents a problem for exploitation of ecosystem services
for livestock farmers38. Indeed, an increase in production does
not necessarily coincide with an expansion in plant density, and
does also not exclude the replacement of trees by shrubs41,42.
Although very high spatial resolution imagery gave evidence on
an increased density of trees at some places in recent years, and
also field data starting in 2000 showed a considerable increase
in woody cover (Supplementary Fig. 8), this cannot be generalised
to the Sahelian scale for the period of study, as an increased
production can also be caused by increased leaf density or crown
area, with no considerable change in plant density. To relate the
increased woody production with tree and shrub density, species,
canopy sizes and leaf density, more studies at the level of indi-
vidual trees are needed, which at large spatial scales is only viable
from the use of large quantities of very high spatial resolution
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satellite data, currently being cost-prohibited. Finally, our analysis
starts approximately a decade after the great droughts and it
is possible that the woody cover prior to the droughts in the
1970s and beginning 1980s was generally higher than what we
observe nowadays42. Nevertheless, the strong relationship
between increasing early and late rains (rainfallEL) and increasing
leaf production of woody plants (WPF) implies that the recovery
of rainfall after the Sahel droughts only partly benefits herbaceous
plants being the prime fodder resource of the Sahel. It has yet to
be tested how these findings relate to greening trends and altered
rainfall conditions in global drylands.

Methods
Concept. This study aimed at deriving simple and reproducible metrics of vege-
tation composition (herbaceous and woody) and rainfall from satellite data to use
these to establish relationships with field-measured vegetation production, sepa-
rated in woody plant foliage mass (WPF) and above-ground herbaceous mass
(AGH), and to study inter-annual dynamics in woody and herbaceous production
and rainfall over three decades. Field data were obtained for the Ferlo in northern
Senegal (Supplementary Fig. 1), and results are evaluated over the Sahel (150–600
mm annual rainfall). We applied state-of-the art optical and passive microwave
satellite data, as well as very high spatial resolution imagery from commercial
satellites. For each year and time series data set, we applied the 90th percentile
(p90) of the observations as proxy for the growing season values. The 30th per-
centile (p30) was used to assess dry season values. We tested different variables
representing the wet and dry season (for example seasonal maximum and mini-
mum) with comparable results but lower correlations with the field data; the sta-
bility of the metrics is illustrated in Supplementary Fig. 2. Daily satellite-based
rainfall estimates were used to decompose the annual rainfall in core wet-season
rainfall (rainfallC) on the one hand, and early and late rains (rainfallEL) on the other
hand. These rainfall metrics were analysed together with vegetation production
measurements.

Field data and study area. Field data was obtained from the Centre de Suivi
Ecologique database and included annual measurements of nine field sites from the
sandy Ferlo in northern Senegal, each covering a 1 km transect and located in
rangelands selected to be distant from livestock concentration spots. At each site,
two components were measured annually from 1987 to 2016: AGH (kg ha−1) and
WPF (kg ha−1). The methods are described in detail in refs. 23,29. The nine field
sites are representative for the sandy Ferlo, a pastoral region with sandy soils in
northern Senegal with a mean annual rainfall of 328 mm (from 1982 to 2016).
Woody vegetation is generally scattered and the crown cover fraction is below 10%
(with a mean WPF of 362 kg ha−1), but trees can be concentrated and woody cover
reaches 40% in more loamy inter-dune depressions43. Herbaceous vegetation
consists of annual plants (mean AGH= 939 kg ha−1) which wilt towards the end
of the rainy season turning into straw and litter27. The mass of straws and litter
decreases progressively during the dry season due to livestock grazing and tram-
pling, insect herbivory and organic decomposition. The sum of AGH and WPF
reflects the total green vegetation mass. The homogeneous landscapes of the Ferlo
(homogeneous here referred to as a landscape characterized by similar spatial
texture at scales ranging from 100’s to 1000’s of metres) make it well-suited for
establishing relationships with medium to coarse resolution satellite data44.

Satellite data. Satellite time-series data covering several decades are becoming
increasingly available and new generations of data processing technologies have
considerably improved vegetation monitoring by offering independent and com-
plementary information. Satellite data applied in this study can be grouped into
optical indices derived from AVHRR sensors (GIMMS3g v1 NDVI; 1982–2016),
SPOT VGT and PROBA-V (GEOV2 v2.02 FCover; 1999–2016) and MODIS
(MOD13C2 collection 6 NDVI; 2000–2016) and VOD indices derived from passive
microwave satellite systems. One VOD index used here is based on recordings in
the high wavelength frequency domain (termed VOD hereafter; 1992–2012) and
another is based on SMOS observations; the first passive microwave radiometer
operating at a low frequency (L-band, hence termed L-VOD; 2010–2016). Two
of the time series can be considered as long-term (GIMMS3g and VOD), whereas
the remaining datasets only start in 1999 or later. Apart from SMOS L-VOD, we
selected satellite datasets that were already pre-processed, including the selection of
the best-quality observations, cloud filtering, gap filling and temporal smoothing.
Also, adjustments to the use of varying sensors had already been performed and we
refer to the respective product guides for further information45–48. For L-VOD, we
used the SMOS-IC version and filtered out low-quality observations following49

and aggregated daily images to 10-day medians which were further filtered with a
local weighted regression (2nd order polynomial fit). The temporal resolution
of the datasets ranged from 10 days (GEOV2, SMOS-IC), 15 days (GIMMS3g) to
1 month (MODIS, VOD).

Very high spatial resolution imagery from Worldview-2, Quickbird-2 and
GeoEye-1 commercial satellites were included only for visual illustration

purposes43. The very high spatial resolution images were all pansharpened to a
50 cm resolution.

Rainfall. We used daily CHIRPS v2.0 gridded rainfall estimates which blend station
and satellite-based rainfall data at 5.6 km spatial resolution50. To study the impact
of rainfall distribution on herbaceous and woody vegetation growth, we separated
the cumulative annual rainfall into two parts: the rainfall during the core of the wet
season (rainfallC) which is the annual amount of rainfall that can be utilised by
annual herbaceous plants, including rainfed crops. It corresponds to a temporal
window during the wet season which is not interrupted by dry spells. RainfallEL
(early and late rains), which is the annual amount of rainfall falling between 1st
May and 31st October and before or after the core wet-season rains (Fig. 4a). The
core dry season (November, December, January, February, March, April) was
excluded due to data uncertainties in the rainfall data15 and the possibility of
herbaceous vegetation flushes caused by out-of-season rains. The calculation of
rainfallC and rainfallEL is based on the following steps and definitions28:

To simulate potential evapotranspiration, two daily time series of cumulative
rainfall (CR) are established: CR-5 accumulates daily rainfall subtracting 5 mm each
day (when available), CR-3 accumulates daily rainfall subtracting 3 mm each day
(when available). CR-5 and CR-3 cannot be negative (negative values are set to 0).

Four dates are to be established to separate core wet-season rains (rainfallC)
from early and late rains (rainfallEL):

Onset first rain: Either the first day with at least 12 mm daily rainfall or first day
of five consecutive days with a sum of >20 mm. Onset core wet season: Either
10 days after the onset of the first rain with CR-5 being positive if no dry spells
occur (these days are necessary for the germination), or first day with CR-5 positive
after the last dry spell, but before 15th August. End of core wet season: After 15th
August, and before possible dry spells, i.e. if a dry spell occurs between 15th August
and the last rain, the core wet season ends. Last rain: After 15th August, the last
day with rainfall above 12 mm or five consecutive days with a sum of >20 mm.

Dry spells are identified if any of the following conditions are true:
Six consecutive days where CR-3 is zero. Twelve consecutive days with summed

CR-3 balance below 6mm. Eighteen consecutive days with summed CR3 balance
below 9mm. Twenty-four consecutive days with summed CR3 balance below
12 mm. Thirty consecutive days with summed CR3 balance below 15mm.

If two or more of the conditions apply, the longest dry spell prevails. The dates
were identified for the CHIRPS pixels overlaying the nine field sites and the start
and ending date of the core wet season were derived for each year and site
(1987–2016). The rainfall summed over this period was termed rainfallC, and
subtracted from the annual rainfall (that is from 1st May to 31st October) to derive
rainfallEL. The average starting date of rainfallC was day of year 204 and the average
ending date was day of year 244. These two dates were used to establish the core
wet season for the analysis at Sahel scale, without considering the latitudinal
rainfall gradient. Using these two approaches of various complexities (one which
takes each year’s rainfall distribution into account when assessing start and end
dates and a simpler approach using fixed dates) also gives evidence on the
robustness and replicability of the results.

From literature, perennial plants (including woody vegetation) are not limited
to a strict rainfall pattern27,51. Nevertheless, the establishment of a clear statistical
relationship between rainfall and plant growth is difficult, since runoff/run-on,
topography, herbivores, species composition and soil fertility are factors impacting
on the relationship but are not taken into account in this study.

Calibration of satellite data to vegetation production. To study inter-annual
dynamics in vegetation production with both satellite and field data, we used the
nine field sites and averaged p90 and p30 of each satellite data set for each year
overlaying the sites. It is expected that using an average over several sites reduces
noise introduced by the different spatial resolution of the datasets52, which varied
from 1 km (field data, GEOV2), 5.6 km (MODIS), 8 km (GIMMS3g) to 25 km
(VOD and L-VOD). Due to the varying spatial resolutions, it cannot be avoided
that different spatial areas are inter-correlated, but this does not affect the temporal
dynamics52. The application of p30 does not fit the characteristics of the SMOS
sensor (the low frequency is less sensitive to small vegetation components, i.e
herbaceous vegetation, leading to a very low seasonality53), so instead we applied
p10 in the case of SMOS to capture the low values of the dry season (p30 of SMOS
would be located in the wet season).

To estimate annual vegetation production with satellite data, the coefficients
of a linear regression between annual satellite metrics and field data (average of
9 sites) were applied to the annual satellite imagery. P90 (reflecting the growing
season) was used to estimate the total vegetation mass, and p30 (reflecting the dry
season) for the WPF. The availability of in situ observations that separate AGH and
WPF provide an opportunity to assess the validity of satellite-derived WPF
dynamics. Derivation of WPF from satellite data is based on the contrasting
phenology of woody and herbaceous vegetation, with annual herbaceous plants
wilting at the end of the wet season while woody plants keep their green foliage
during a fraction of the dry season. Dry season satellite imagery can thus be used to
capture the WPF component separately from the AGH component26.

AGHþWPFð Þ ¼ VODP90 � slopeþ offset ð1Þ
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WPF ¼ VODP30 � slopeþ offset ð2Þ

AGH ¼ AGHþWPFð Þ �WPF ð3Þ
Assuming that WPF is present at both dry and wet season whereas AGH is only

present during the wet season, AGH was estimated by subtracting WPF (estimated
by p30) from AGH+WPF (estimated by p90). Equations 1–3 exemplify the
calculations for the VOD data set (assuming that the correlation between VOD and
field data is strong). It should be noted that the relationship was established with a
spatial average at an annual scale, mainly addressing inter-annual variations but
not the spatial heterogeneity, which is addressed elsewhere23. The calibration
between satellite and field data was done over the Senegalese Ferlo, and the
coefficients were subsequently applied over the entire West African Sahel. This is
deemed appropriate as the entire Sahel zone shares similar conditions: a
monsoonal climate with rainfall only from June to October, predominant pastoral
use, scattered woody vegetation with an average coverage of 3% (150–300 mm
rainfall) and 9% (300–600 mm rainfall) dominated by evergreen species42, and
annual herbaceous vegetation. Since our analysis does not exceed 600 mm annual
rainfall, perennial herbaceous plants are not common.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
CHIRPS rainfall data is freely available at the Climate Hazard Group (http://chg.geog.
ucsb.edu/data/chirps/). SMOS and L-VOD data are available via CATDS (Centre Aval de
Traitement des Données SMOS) at https://www.catds.fr/. GEOV2 data are kindly
provided by the Copernicus Global Land Service (http://land.copernicus.eu/global/).
VOD data were provided by Yi Liu (available at http://www.wenfo.org/wald/global-
biomass/). The data used for this study are available in text format in the supplementary
part (Supplementary Data). The copyright for the field data remains at the CSE, Senegal.
Commercial very high-resolution satellite images were acquired within the NextView
license program. The copyright remains at DigitalGlobe and a redistribution is not
possible.
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