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HITCHIN HAMILTONIANS IN GENUS 2

VIKTORIA HEU AND FRANK LORAY

Abstract. We give an explicit expression of the Hitchin Hamiltonian system for rank
two vector bundles with trivial determinant bundle over a curve of genus two.

1. Introduction

We are interested in rank two vector bundles E → X with trivial determinant bun-

dle det(E) = OX over a Riemann surface X of genus 2. The moduli space MNR of

semistable such vector bundles up to S-equivalence has been constructed by Narasimhan

and Ramanan in [16]. If E ∈ MNR is stable (and is therefore the unique vector bundle

S-equivalent to E), the cotangent space of MNR at E is canonically isomorphic to the

moduli space of trace free holomorphic Higgs fields θ : E → E ⊗ Ω1
X on E:

T∨
EMNR ≃ Higgs(X)|E.

Since MNR ≃ P3 and the locus of semistable but non stable bundles (up to S-equivalence)

there is given by a singular quartic hypersurface, we have

T∨MNR ≃ Higgs(X)

in restriction to a Zariski open subset of MNR, where Higgs(X) denotes the moduli space

of tracefree holomorphic Higgs bundles (E, θ).

In [13], Hitchin considered the map

(1.1) Hitch :

{
Higgs(X) → H0(X,Ω1

X ⊗ Ω1
X)

(E, θ) 7→ det(θ)

}

and established that it defines an algebraically completely integrable Hamiltonian system:

the Liouville form on MNR induces a symplectic structure on Higgs(X) and any set of

(three) generators of H0(X,Ω1
X⊗Ω1

X) commutes for the induced Poisson structure. More-

over, fibers of the Hitchin map are open sets of abelian varieties whose compactification

is given by the Jacobian of the spectral curve. A broad field of applications has been

deduced from the various algebraic and geometric properties of the Hitchin system and

its generalizations since then.
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2 V.HEU AND F.LORAY

Of course the Hitchin system in [13] is defined in a more general setting, but in the

present paper, we focus on the special case as above (rank 2 vector bundles with trivial

determinant over curves of genus 2) and announce results of a forthcoming paper [12]:

• We describe the moduli space Bun(X) of (not necessarily semistable) vector bun-

dles E equivariant under the hyperelliptic involution ι on X . On the categorical

quotient we have a birational morphism

Bun(X)
∼
99K MNR.

• It is well-known that there is no universal bundles on a Zariski-open subset of

MNR. Yet from the dictionary between equivariant bundles and parabolic bundles

on the quotient established in [3] (see also [2]) we obtain a rational two-cover

Bun(X/ι)
2:1
99K Bun(X)

and we construct a universal bundle over affine charts of Bun(X/ι) which can be

identified with the universal bundle in [4] obtained from different methods.

• We deduce a universal family of Higgs bundles on affine charts of Higgs(X/ι) :=

T∨ Bun(X/ι). Note that in restriction to the stable locus, Higgs(X/ι) → Bun(X/ι)

is a principal C3-bundle.

• These explicit universal families allow us to calculate the determinant map on

Higgs(X/ι) explicitly, which by construction factors through the Hitchin map. We

deduce an explicit expression of the Hitchin map (1.1) completing partial results

in [7].

2. The Narasimhan-Ramanan moduli space MNR

Let us first briefly recall the classical Narasimhan-Ramanan construction. Let E → X

be a semistable rank 2 vector bundle with trivial determinant bundle over a Riemann

surface X of genus 2. The subset

CE := {L ∈ Pic1(X) | dimH0(X,E ⊗ L) > 0}

of Pic1(X) defines a divisor DE on Pic1(X) which is linearly equivalent to the divisor

2Θ on Pic1(X), where Θ denotes the theta-divisor defined by the canonical embedding

of X in Pic1(X). In that way, we associate to the vector bundle E an element DE of the

Narasimhan-Ramanan moduli space

MNR := PH0(Pic1(X),OPic1(X)(2Θ)) ≃ P
3.

For each smooth (analytic or algebraic) family E → X × T of semistable rank 2 vector

bundle with trivial determinant bundle on X , the Narasimhan-Ramanan classifying map

T → MNR; t → DE|X×{t}

is an (analytic or algebraic) morphism. Moreover, if DE = DE′, then the vector bundles

E and E ′ are S-equivalent:

• either E is stable and then E ′ = E
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• or E is strictly semistable (i.e. semistable but not stable) and then there are line

subbundles L and L′ of degree 0 of E and E respectively, such that L = L′ or

L = L′⊗−1

The strictly semistable locus inMNR, which we shall denote by Kum(X) is thus defined

by an embedding
{

Pic0(X)/ι →֒ MNR

L mod ι 7→ DL⊕L⊗−1 = L ·Θ+ ι∗L ·Θ

}
.

Note that if ι denotes the hyperelliptic involution on X , then ι∗L = L⊗−1 by a classical

argument that will be recalled in Section 2.1.

2.1. Straightforward coordinates on MNR. Any compact connected Riemann surface

X of genus 2 can be embedded into P1 × P1 and is given, in a convenient affine chart, by

an equation of the form

(2.1) X : y2 = F (x) with F (x) = x(x− 1)(x− r)(x− s)(x− t).

The hyperelliptic involution on X then writes ι : (x, y) 7→ (x,−y) and the induced

projection on the Riemann sphere P
1 is given by π : (x, y) 7→ x. Denote by

W := {w0, w1, wr, ws, wt, w∞}

the six Weierstrass points on X invariant under the hyperelliptic involution, given by

wi = (i, 0) for i 6= ∞ and w∞ = (∞,∞). We will write W for π(W ).

Recall that the rational map
{

X2
99K Pic2(X)

{P,Q} 7→ [P ] + [Q]

}

is surjective. More precisely, it is a blow-up of the canonical divisor

KX ∼ [P ] + [ι(P )] for all P ∈ X.

Moreover, Pic2(X) ≃ Pic1(X); D 7→ D − [w∞] is an isomorphism. Global sections

of OPic1(2Θ) thus correspond bijectively to symmetric meromorphic functions on X ×

X with polar divisor at most 2∆ + 2∞1 + 2∞2, where ∆ := {(P, ι(P )) | P ∈ X}

and ∞i := {(P1, P2) | Pi = w∞}. Any set of (four) generators of the vector space

H0(Pic1(X),OPic1(2Θ)) can be expressed as such meromorphic functions, the simplest

one being certainly the set {1, Sum,Prod,Diag} of functions in (P1, P2) ∈ X ×X given,

for Pi = (xi, yi), by

(2.2)

1 : (P1, P2) 7→ 1

Sum : (P1, P2) 7→ x1 + x2

Prod : (P1, P2) 7→ x1x2,

Diag : (P1, P2) 7→
(

y2−y1
x2−x1

)2

− (x1 + x2)
3 + (1 + r + s+ t)(x1 + x2)

2 +

+x1x2(x1 + x2)− (r + s + t+ rs+ st+ tr)(x1 + x2)



4 V.HEU AND F.LORAY

We obtain coordinates on MNR = PH0(Pic1(X),OPic1(2Θ)) ≃ P3, where we identify a

point (v0 : v1 : v2 : v3) with the push-forward DE on Pic1(X) of the zero-divisor of the

meromorphic function

(2.3) v0 · 1 + v1 · Sum + v2 · Prod + v3Diag

on X(2).

For example if E = L⊕ L−1, where

L = OX([Q1] + [Q2]− 2[w∞]) = OX([Q1]− [ι(Q2)])

and Q1, Q2 ∈ X , we can calculate the (unique up to scalar) meromorphic function as in

(2.3) whose 0-divisor corresponds to DE = L ·Θ+ ι∗L ·Θ and we obtain

(2.4) (v0 : v1 : v2 : v3) = (−Diag(Q1, Q2) : Prod(Q1, Q2) : −Sum(Q1, Q2) : 1).

The strictly semistable locus Kum(X) in MNR is parametrized by {Q1, Q2} ∈ X(2)

according to formula (2.4). We deduce an equation for Kum(X) in our coordinates (v0 :

v1 : v2 : v3) of MNR :

(2.5)

Kum (X) :
0 = (v0v2 − v21)

2 · 1

−2 [[(σ1 + σ2)v1 + (σ2 + σ3)v2](v0v2 − v21)
+ 2(v0 + σ1v1)(v0 + v1)v1 + 2(σ2v1 + σ3v2)(v1 + v2)v1] · v3

−2σ3(v0v2 − v21) + [[(σ1 + σ2)
2v1 + (σ2 + σ3)

2v2] (v1 + v2)
−(σ1 + σ3)

2v1v2 + 4[(σ2 + σ3)v0 − σ3v2]v1] · v23

−2σ3 [(σ1 + σ2)v1 − (σ2 + σ3)v2] · v33

+σ2
3 · v43.

Since the strictly semistable locus Kum(X) is a quartic with sixteen conic singularities it

is usually referred to as the Kummer surface in the context of MNR.

Let OX(τ) be a 2-torsion line bundle on X , i.e. OX(2τ) ≃ OX . Then

(2.6) τ ∼ [wi]− [wj] with wi, wj ∈ W

and the group of 2-torsion line bundles on X with respect to the tensor product is iso-

morphic to (Z/2Z)4. If E is a rank two vector bundle with trivial determinant bundle

over X , then its twist E ⊗OX(τ) also has the trivial determinant line bundle. Moreover,

by construction of the Narasimhan-Ramanan moduli space, the action of the group of

2-torsion line bundles by twist is linear and free on MNR and preserves Kum(X). By

formula (2.4) we can explicitly calculate the coordinates (v0 : v1 : v2 : v3) of the trivial

bundle E0 = OX ⊕OX and its twists

Eτ := E0 ⊗OX(τ).

The trivial bundle for example is given by E0 : (1 : 0 : 0 : 0). Note that these sixteen

bundles Eτ correspond to the sixteen singularities of the Kummer surface Kum(X).
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The fact that we know the action (by permutation) of the 2-torsion group on the

set of bundles Eτ and we also know the coordinates of these bundles in the Narasimhan-

Ramanan moduli space is sufficient to calculate explicitly the linear action of the 2-torsion

group on MNR : for any τ as in (2.6), there is a matrix Mτ ∈ SL4C such that if the image

of E under the Narasimhan-Ramanan classifying map is given by (v0 : v1 : v2 : v3), then

E ′ = E ⊗OX(τ) is given by (v′0 : v
′
1 : v

′
2 : v

′
3) with




v′0
v′1
v′2
v′3


 = Mτ ·




v0
v1
v2
v3


 .

The equivalence classes in PGL4C of these matrices (with respect to a set of generators

of the 2-torsion group) then are given by the following:

M[w0]−[w∞] ∼




0 rs+ st+ rt+ rst rst 0
0 0 0 rst
1 0 0 −(rs+ st+ rt+ rst)
0 1 0 0




M[w1]−[w∞] ∼




1 r + s+ t + rst rs+ st + rt 0
−1 −1 0 rs+ st+ rt
1 0 −1 −(r + s+ t+ rst)
0 1 1 1




M[wr]−[w∞] ∼




r2 r2(1 + s+ t) + st r2(s+ t+ st) 0
−r −r2 0 r2(s+ t+ st)
1 0 −r2 −r2(1 + s+ t)− st
0 1 r r2




M[ws]−[w∞] ∼




s2 s2(1 + r + t) + rt s2(r + t+ rt) 0
−s −s2 0 s2(r + t + rt)
1 0 −s2 −s2(1 + r + t)− rt
0 1 s s2




2.2. Nice coordinates on MNR. A quick calculation shows that the character of the

representation

ρ :

{
(Z/2Z)4 → SL4C

OX(τ) 7→ Mτ

}

introduced above is the regular one : it vanishes on all elements of the group exept OX .

Hence ρ is conjugated for example to the regular representation ρ̃ : OX(τ) 7→ M̃τ given
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by

M̃[w0]−[w∞] =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , M̃[w1]−[w∞] =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




M̃[wr]−[w∞] =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , M̃[ws]−[w∞] =




0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0




Any conjugation matrix M ∈ SL4C such that ρ̃ = MρM−1 is given, up to a scalar, as

follows: Choose square-roots ω0, ω1, ωr, ωs such that

ω2
0 = F ′(0), ω2

1 = −F ′(1), ω2
r = F ′(r), ω2

s = F ′(s),

where F (x) is given in (2.1) and F ′(x) is its derivative with respect to x. Then

(2.7) M =




a b c d
−b a d −c
c d a b
d −c −b a


 ·




1 1 0 −ω0

0 ω1 0 0
0 ω0 ω0 ω0

0 0 0 ω0ω1


 ,

where a = rst(r − s)ω1 + tωrωs − rt(r − 1)ωs − stω1ωr

b = −st(s− 1)ωr + rtω1ωs

c = t(r − s)ω0ω1 − t(r − 1)ω0ωs

d = −t(r − 1)(s− 1)(r − s)ω0 + t(s− 1)ω0ωr.
After the coordinate-change (v0 : v1 : v2 : v3) 7→ (u0 : u1 : u2 : u3) on MNR defined by




u0

u1

u2

u3


 = M ·




v0
v1
v2
v3


,

the action of the 2-torsion group is then normalized to ρ̃. In particular, the equation of

the Kummer surface with respect to the coordinates (u0 : u1 : u2 : u3) is invariant under

double-transpositions and double-changes of signs. Calculation shows

(2.8)

Kum (X) :
0 = (u4

0 + u4
1 + u4

2 + u4
3)− 8 rs−rt+r−s

t(s−1)
u0u1u2u3 − 2 st+t−2s

t(s−1)
(u2

0u
2
3 + u2

1u
2
2)

−22r−t
t
(u2

1u
2
3 + u2

0u
2
2) + 22r−s−1

s−1
(u2

2u
2
3 + u2

0u
2
1).

In summary, the straightforward coordinates (v0 : v1 : v2 : v3) of MNR introduced in

the previous section have the advantage that

• a given divisor DE on Pic1(X) linearly equivalent to 2Θ can rather easily be

expressed in terms of (v0 : v1 : v2 : v3),
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• and we are going to use this property when we describe the universal family on a

2-cover of MNR,

whereas the new coordinates (u0 : u1 : u2 : u3) of MNR defined above have the advantages

that

• the action of the 2-torsion group is simply expressed by double-transpositions and

double-changes of signs of (u0 : u1 : u2 : u3) and

• the equation of the Kummer surface is rather symmetric. As pointed out in [7], the

classical line geometry for Kummer surfaces in P3 is related to certain symmetries

of the Hitchin Hamiltonians. For this geometrical reason, the explicit Hitchin

Hamiltonians we are going to establish have a much simpler expression with respect

to (dual) coordinates (u0 : u1 : u2 : u3) when compared to (v0 : v1 : v2 : v3).

• Moreover, the five ui-polynomials in (2.8) invariant under the action of the 2-

torsion group define a natural map MNR → P4. The image is a quartic hyper

surface [5, Proposition 10.2.7] and can be seen as the coarse moduli space of

semistable P1-bundles over X .

3. How to construct a bundle from a point in MNR

Given a stable rank 2 vector bundle E with trivial determinant bundle on X , the

Narasimhan-Ramanan divisor DE ∈ |2Θ| can be seen as space of line subbundles L of E

of degree −1. Whilst we know that for any D ∈ |2Θ| there is a semistable vector bundle

E with DE = D, it is not obvious how to construct it. We provide such a construction by

considering the moduli space of rank 2 vector bundles E with trivial determinant bundle

on X equivariant under the hyperelliptic involution. For the present exposition however,

we restrict our attention to the space Bun(X) of rank 2 vector bundles E with trivial

determinant bundle on X such that

• E is stable but off the odd Gunning planes, which means that no line subbundle

L ⊂ E is isomorphic to OX(−[wi]) for some wi ∈ W , or

• E is strictly semistable but undecomposable, or

• E = L⊕ ι∗L where L = OX([P ]− [Q]) satisfies P,Q 6∈ W , or

• E is an odd Gunning bundle, i.e given by the unique non-trivial extension

0 −→ OX([wi]) −→ E −→ OX(−[wi]) −→ 0

for a Weierstrass point wi ∈ W .

We construct Bun(X) as an algebraic stack whose categorical quotient is birational to the

Narasimhan-Ramanan moduli space

Bun(X)
1:1
99K MNR.

For convenience of notation let us for now denote by Bun(X) the set of vector bundles

E as in the above list, before we put an algebraic structure on Bun(X). We use the fact

that any bundle E ∈ Bun(X) is equivariant under the hyperelliptic involution:
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Proposition 3.1. Let E be a vector bundle in Bun(X). Then there is a bundle isomor-

phism h such that the following diagram commutes

E
∼

h
//

idE

==ι∗E
∼

ι∗h
// E.

and such that for each Weierstrass point wi ∈ W , the induced automorphism of the

Weierstrass fibre

h|Ewi
: Ewi

→ ι∗Ewi
≃ Ewi

possesses two opposite eigenvalues +1 and −1.

Now, hyperelliptic descent [3]

π∗E = (E+,p+)⊕ (E−,p−)

produces two rank 2 vector bundles E± with determinant bundle det(E±) = OP1(−3)

over the Riemann sphere, each endowed with a natural quasi-parabolic structure p± with

support W = π(W ). Moreover,

Proposition 3.2. Consider (E, h) as in Proposition 3.1. Denote by p
+ and p

− the quasi-

parabolic structure with support W on E induced by the +1 and −1 eigendirections of h

respectively. Then

(E,p±) = elm+
W (π∗(E±,p±)),

where elm+
W denotes the composition of six positive elementary transformations, one over

each Weierstrass point, given by the corresponding quasi-parabolic direction of π∗(E±,p±).

In convenient local coordinates (ζ, Y ) ∈ U × C2 of E → X near a Weierstrass point

wi : {ζ = 0}, the map elm+
W ◦π∗ can be understood as follows:

p|wi
: {Y ∈ VectC( 1

0 )} (ζ, Y )
h // (−ζ, ( 1 0

0 −1 )Y )

p̂|wi
: {Ŷ ∈ VectC( 0

1 )}
(
ζ, Ŷ

)
=

(
ζ,
(

1 0
0 1

ζ

)
Y
)

h //

elm+

p̂

OO

(
−ζ, Ŷ

)
elm+

p̂

OO

p|π(wi) : {Y ∈ VectC( 0
1 )}

(
ζ, Y

)
=

(
ζ2, Ŷ

)
id //

π∗

OO

(
ζ, Y

)
π∗

OO

Let µ be a real number in [0, 1]. Denote by Bunµ(X/ι) the moduli space of pairs (E,p),

where E is a rank 2 vector bundle of degree −3 over P1 and p is a quasi-parabolic structure

with support W such that (E,p) is a stable parabolic bundle if to each quasi-parabolic

direction p|wi
we associate the parabolic weight µ. For each choice of µ, this moduli space

is either empty or birational to P3 [15]. Moreover, for any µ ∈ [0, 1], the map

OP1(−3)⊗ elm+
W
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is a canonical birational isomorphism between Bunµ(X/ι) and Bun1−µ(X/ι).

Note further that for µ = 1
5
, the space Bunµ(X/ι) is precisely the moduli space of

those quasi-parabolic bundles (E,p), where E is a vector bundle on P1 and p is a quasi

parabolic structure with support W on E such that

• E = OP1(−1)⊕OP1(−2),

• the quasi-parabolic directions p
wi

are all disjoint from the total space of the desta-

bilizing subbundle OP1(−1) ⊂ E and

• the quasi-parabolic directions p
wi

are not all contained in the total space of a same

subbundle OP1(−2) →֒ E

Consider the following affine chart (R, S, T ) ∈ C3 of Bun 1

5

(X/ι), which we shall call the

canonical chart : Recall that E = OP1(−1)⊕OP1(−2). Let σ1 be a meromorphic section

of some line subbundle OP1(−2) →֒ E with only one (double) pole over x = ∞. Let σ−1

be a meromorphic section of the unique line subbundle OP1(−1) ⊂ E with only one pole

over x = ∞. In the total space of E restricted to P1 \ {∞}, we consider coordinates

(x, ( z1
z2 )) given by (x, z1σ−1 + z2σ1). To (R, S, T ) ∈ C3 we then associate the following

normalized quasi-parabolic structure on E:

(3.1)
x = 0 x = 1 x = r x = s x = t x = ∞(
0
1

) (
1
1

) (
R
1

) (
S
1

) (
T
1

)
OP1(−1)

.

Here the first line indicates the Weierstrass point wi we are considering, whereas the

second line defines a generator of the corresponding quasi-parabolic direction. Note that

(3.1) already defines a universal quasi-parabolic bundle over the canonical chart. The

lifting map elm+
W ◦π∗ is well-defined and algebraic and provides a universal rank 2 vector

bundle with trivial determinant bundle over the canonical chart of Bun 1

5

(X/ι).

Proposition 3.3. The Narasimhan-Ramanan classifying map C
3
(R,S,T ) 99K MNR is ex-

plicitely given by (R, S, T ) 7→ (v0 : v1 : v2 : v3) where

v0 = s2t2(r2 − 1)(s− t)R − r2t2(s2 − 1)(r − t)S + s2r2(t2 − 1)(r − s)T+
+t2(t− 1)(r2 − s2)RS − s2(s− 1)(r2 − t2)RT + r2(r − 1)(s2 − t2)ST

v1 = rst [((r − 1)(s− t)R − (s− 1)(r − t)S + (t− 1)(r − s)T+
+(t− 1)(r − s)RS − (s− 1)(r − t)RT + (r − 1)(s− t)ST ]

v2 = −st(r2 − 1)(s− t)R + rt(s2 − 1)(r − t)S − rs(t2 − 1)(r − s)T−
−t(t− 1)(r2 − s2)RS + s(s− 1)(r2 − t2)RT − r(r − 1)(s2 − t2)ST

v3 = st(r − 1)(s− t)R− rt(s− 1)(r − t)S + sr(t− 1)(r − s)T+
+t(t− 1)(r − s)RS − s(s− 1)(r − t)RT + r(r − 1)(s− t)ST

The indeterminacy points

(R, S, T ) = (0, 0, 0), (1, 1, 1) and (r, s, t)

of this map correspond to the odd Gunning bundles E[w1], E[w0] and E[w∞] respectively.

Conversely, a generic point (v0 : v1 : v2 : v3) ∈ MNR has precisely two preimages in
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C3
(R,S,T ) given by

R = r(t−1)(v0+rv1−r(s+t+st)v3)T
t(r−1)(v0+tv1−t(r+s+rs)v3)−(r−t)(v0+v1−(rs+st+rt)v3)T

S = s(t−1)(v0+sv1−s(r+t+rt)v3)T
t(s−1)(v0+tv1−t(r+s+rs)v3)−(s−t)(v0+v1−(rs+st+rt)v3)T

,

where T is any solution of aT 2 + btT + ct2 = 0 with

a = (v1 + v2t + v3t
2)(v0 + v1 − (rs+ st+ rt)v3)

b = −(1 + t)(v0v2 + v21 + tv1v3)− 2(v0v1 + tv0v3 + tv1v2)
+(rs+ st+ rt)(tv1 + v2 + tv3)v3 + (r + s+ rs)(v1 + t2v2 + t2v3)v3

c = (v1 + v2 + v3)(v0 + tv1 − t(r + s+ rs)v3).

The discriminant of this polynomial leads again to the equation (2.5) of the Kummer

surface.

By construction, Bun 1

5

(X/ι) is covered by affine charts similar to the canonical chart,

where we just permute the role of the Weierstrass points in (3.1). The (birational) tran-

sition maps between affine charts are obvious. The Galois-involution OP1(−3)⊗ elm+
W is

given in the canonical chart by the birational map (R, S, T ) 7→ (R̃, S̃, T̃ ), where

R̃ = λ(R, S, T ) · (s−t)+(t−1)S−(s−1)T
−t(s−1)S+s(t−1)T+(s−t)ST

S̃ = λ(R, S, T ) · (r−t)+(t−1)R−(r−1)T
−t(r−1)R+r(t−1)T+(r−t)RT

T̃ = λ(R, S, T ) · (r−s)+(s−1)R−(r−1)S
−s(r−1)R+r(s−1)S+(r−s)RS

and λ(R, S, T ) = t(r−s)RS−s(r−t)RT+r(s−t)ST
(s−t)R−(r−t)S+(r−s)T .

For the Galois-involution to be everywhere well defined, we need to consider the smooth

(non separated) scheme Bun(X/ι) obtained by canonically gluing Bun 1

5

(X/ι) and Bun 4

5

(X/ι).

From an exhaustive case-by case study, one can show that Bun(X) corresponds precisely

to the isomorphism classes of the Galois-involution on Bun(X/ι). In terms of parabolic

bundles, the Galois involution is given by elm+
W ◦π∗. In other words,

Proposition 3.4. The map elm+
W ◦π∗ : Bun(X/ι)

2:1
−→ Bun(X) is an algebraic 2 cover.

Moreover, the lift of the Kummer surface in MNR defines a dual Weddle surface in

Bun 1

5

(X/ι) ≃ P
3 ⊂ Bun(X/ι) which is given with respect to the canonical chart by the

equation

Wed(X) :
0 = ((s− t)R + (t− r)S + (r − s)T )RST + t((r − 1)S − (s− 1)R)RS

+r((s− 1)T − (t− 1)S)ST + s((t− 1)R− (r − 1)T )RT
−t(r − s)RS − r(s− t)ST − s(t− r)RT.
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4. Application to Higgs bundles

Let E again be a rank 2 vector bundle over X . By definition, the moduli space of

tracefree Higgs fields on E is given by H0(X, sl(E)⊗Ω1
X), where sl(E) denotes the vector

bundle of trace-free endomorphisms of E. By Serre duality, we have

H0(X, sl(E)⊗ Ω1
X) ≃ H1(X, sl(E)∨ ⊗ Ω1

X)
∨.

If det(E) = OX , then sl(E)∨ = sl(E). If E is stable, then sl(E) possesses no non-trivial

global sections and then H1(X, sl(E)∨ ⊗ Ω1
X) canonically identifies with Higgs(X) :=

T∨MNR. We can calculate explicitly the Hitchin map

Hitch :

{
Higgs(X) → H0(X,Ω1

X ⊗ Ω1
X)

(E, θ) 7→ det(θ)

}

from the following idea : The complement in Bun(X) of the image of the Weddle surface

is embedded into M \ Kum(X) (we obtain all stable bundles except those on the odd

Gunning planes). Since we have a universal vector bundle in each affine chart of the

two-cover Bun(X/ι) of Bun(X), we can expect to find a universal family of Higgs bundles

there as well. Then we calculate a Hitchin map for Bun(X/ι) and push it down to MNR.

More precisely, we will calculate the Hitchin map in the following steps :

• Provided that H0(P1, sl(E,p)) = {0}, we have a canonical isomorphism

T(E,p)Bun(X/ι) = H1(P1, sl(E,p)),

where sl(E,p)) denotes trace free endomorphisms of E leaving p invariant. We

work out how the hyperelliptic descent φ : elm+ ◦ π∗ defines an algebraic 2-cover

Higgs(X/ι) := T∨ Bun(X/ι)
φ

−→ T∨ Bun(X)

• The Liouville form on Bun(X/ι) is given with respect to coordinates (R, S, T ) of

the canonical chart by dR+dS+dT. We work out Serre duality for the generators

∂

∂R
,
∂

∂S
,
∂

∂T
∈ TBun(X/ι)

and deduce an explicit universal Higgs bundle on an affine chart of Higgs(X/ι).

• We calculate the determinant map

Higgs(X/ι) −→ H0(P1,Ω1
P1 ⊗ Ω1

P1(W )) ≃ H0(X,Ω1
X ⊗ Ω1

X)

and show that it factors through the Hitchin map. Then we deduce the explicit

Hitchin map from the formulas in Proposition 3.3.

4.1. Hyperelliptic descent, again. One can show that if E is a stable rank 2 vector

bundle with trivial determinant on X and h is a lift of the hyperlliptic involution as

in Proposition 3.1, then any trace free Higgs field θ on E is h-equivariant, that is, the
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following diagram commutes :

E
θ //

h

��

E ⊗ Ω1
X

ι∗E
ι∗θ// ι∗E ⊗ Ω1

X .

ι∗h

OO

Hyperelliptic decent of the pair (E, θ) then produces two triples (E, θ, p), where

θ : E → E ⊗ Ω1
P1(W )

is a logarithmic Higgs field with at most apparent singularities over W : the residue at

any wi ∈ W is either zero or conjugated to

Reswi
(θ) ∼

(
0 0
1 0

)

such that the quasi-parabolic p
wi

corresponds precisely to the 0-eigendirection of the

residue. Conversely, consider a logarithmic Higgs field

θ̃ ∈ H0(P1, sl(E, p̃)⊗ Ω1
P1(W ))

that lies in the image of the canonical embedding

H0(P1, sl(E,p)⊗ Ω1
P1) →֒ H0(P1, sl(E,p)⊗ Ω1

P1(W )).

In other words, θ̃ has only trivial residues:

Reswi
(θ̃) ∼

(
0 0
0 0

)
.

Then the logarithmic Higgs field θ obtained from θ̃ by applying the meromorphic gauge

transformation

OP1(−3)⊗ elm+
W

has (at most) apparent singularities over each Weierstrass point, and the quasi-parabolic

structure p obtained from p̃ corresponds to 0-eigendirections of θ. Note that here we

have to choose a meromorphic section σ : P1 → OP1(−3). As long as we are not on the

Kummer, respectively Weddle surface, we obtain an isomorphism

T∨
(E,p̃)Bun(X/ι) = H1(P1, sl(E, p̃))∨ ∼

Serre //

∼

��

H0(P1, sl(E, p̃)⊗ Ω1
P1)

∼ O
P1

(−3)⊗elm+

W

��

H0(P1, sl(E ,p)⊗ Ω1
P1(W ))apparent

∼ elm+

W
◦π∗

��

T∨
E Bun(X) = H1(X, sl(E))∨ H0(X, sl(E)⊗ Ω1

X)
∼

Serre
oo

and deduce an algebraic 2-cover

Higgs(X/ι)
2:1
−→ Higgs(X).
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4.2. Universal Higgs bundles. Serre duality gives us a perfect pairing

〈·, ·〉 :

{
H1(P1, sl(E,p))× H0(P1, sl2(E ,p)⊗ Ω1

P1(W ))apparent → C

(φ, θ) 7→
∑

Res(trace(φ · θ))

}
.

Let (E,p) be an element of Bun(X/ι) given with respect to the canonical chart by

(R0, S0, T0) ∈ C3. The vector field ∂
∂R

∈ T(R0,S0,T0)Bun(X/ι) is given in H1(P1, sl(E,p))

by the cocycle

φ01 :=

(
0 1
0 0

)

with respect to trivialization charts U0 × C2 with U0 := P1 \ {r} and U1 × C2 with

U1 := Dε(r) of sl(E). Indeed, if we consider exp(ζφ) =
(
1 ζ
0 1

)
as applied from the left over

U0 ∩ U1 ⊂ U1 to U0 ∩ U1 ⊂ U0 for a quasi-parabolic vector bundle (E,p) with parabolic

structure normalized as in (3.1), we obtain the quasi parabolic structure corresponding

to (R+ ζ, S, T ). The dual basis in H0(P1, sl2(E ,p)⊗Ω1
P1(W ))apparent with respect to 〈·, ·〉

of the basis (
∂

∂R
,
∂

∂S
,
∂

∂T

)

of T(R0,S0,T0)Bun(X/ι) then is given by (θr, θs, θt) with

θr :=

(
0 0

1− R 0

)
dx
x
+

(
R −R
R −R

)
dx
x−1

+

(
−R R2

−1 R

)
dx
x−r

θs :=

(
0 0

1− S 0

)
dx
x
+

(
S −S
S −S

)
dx
x−1

+

(
−S S2

−1 S

)
dx
x−s

θt :=

(
0 0

1− T 0

)
dx
x
+

(
T −T
T −T

)
dx
x−1

+

(
−T T 2

−1 T

)
dx
x−t

.

We obtain the universal Higgs bundle θ̃ = OP1(−3)⊗ elm+
W (θ) defined by

(4.1) θ = crθr + csθs + ctθt

on the canonical chart (R, S, T, cr, cs, ct) ∈ C6 of T∨ Bun(X/ι). Recall that all other charts

are obtained up to Galois involution by permuting the role of the Weierstrass points.

Corollary 4.1. The Liouville form on Bun(X/ι), given with respect to the canonical chart

(R, S, T ) ∈ C3 by

dR + dS + dT

defines a holomorphic symplectic 2-form on Higgs(X/ι) given with respect to the canonical

chart (R, S, T, cr, cs, ct) ∈ C6 of T∨ Bun(X/ι) by

dR ∧ dcr + dS ∧ dcs + dT ∧ dct.
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4.3. The Hitchin fibration. The determinant map

(4.2)

{
C

6 → H0(P1,Ω1
P1 ⊗ Ω1

P1(−6))

(R, S, T, cr, cs, ct) 7→ det(θ) = (h2x
2 + h1x+ h0)

(dx)⊗2

x(x−1)(x−r)(x−s)(x−t)

}
,

where θ is the Higgs bundle in (4.1) is given by

h0 = (cr(R− 1) + cs(S − 1) + ct(T − 1)) (crst(R− r)R+ csrt(S − s)S + ctrs(T − t)T )

h1 = +cr (cr(s+ t)(r + 1) + css(t + 1) + ctt(s+ 1))R2 − cr
2 (t + s)R3

+cs (cs(r + t)(s+ 1) + crr(t+ 1) + ctt(r + 1))S2 − cs
2 (t + r)S3

+ct (ct(r + s)(t + 1) + crr(s+ 1) + css(r + 1))T 2 − ct
2 (r + s)T 3

−crcs(t(R− 1 + S − 1) + r(S − s) + s(R− r))RS
−crct(s(R− 1 + T − 1) + r(T − t) + t(R − r))RT
−csct(r(S − 1 + T − 1) + s(T − t) + t(S − s))ST
− (ct t(r + s) + crr(s + t) + css(r + t)) (crR + csS + ctT )

h2 = (cr(R− 1)R+ cs(S − 1)S + ct(T − 1)T ) (cr (R− r) + cs(S − s) + ct(T − t))

Table 1: Explicit Hitchin Hamiltonians for the canonical coordinates (R, S, T ) on
Bun(X/ι)

It is easy to check that the Hitchin Hamiltonians h0, h1, h2 do Poisson-commute as

expected : for any f, g ∈ {h0, h1, h2}, we have

∑

i=r,s,t

∂f

∂pi

∂g

∂qi
−

∂f

∂qi

∂g

∂pi
= 0

in Darboux notation (pr, ps, pt, qr, qs, qt) := (R, S, T, cr, cs, ct).

Since the determinant is invariant under meromorphic gauge transformations (and in

particular elementary transformations), we can immediately deduce the Hitchin map

Hitch :

{
T∨ Bun(X/ι) → H0(P1,Ω1

P1 ⊗ Ω1
P1)

(R, S, T, cr, cs, ct) 7→ det(θ̃) = (h2x
2 + h1x+ h0)

(dx)⊗2

σ2·x(x−1)(x−r)(x−s)(x−t)

}
,

where σ is our previously chosen meromorphic section σ : P1 → OP1(−3) and θ̃ is the

universal Higgs bundle in the canonical chart of T∨ Bun(X/ι).

More importantly, again since the determinant map does is invariant under meromor-

phic Gauge transformations, the map in (4.2) factors through the Hitchin map Higgs(X) ≃

T∨Bun(X) → H0(X,Ω1
X ⊗ Ω1

X) by construction. Consider the natural rational map

φ∗ : T∨MNR 99K T∨ Bun(X/ι) induced by the map φ : Bun(X/ι) 99K MNR stated

explicitly with respect to the canonical chart in Proposition 3.3. The general section

crdR+ csdS+ ctdT then lifts to a general section µ0d
(

v0
v3

)
+µ1d

(
v1
v3

)
+µ2d

(
v2
v3

)
. More-

over, from the explicit coordinate change (v0 : v1 : v2 : v3) ↔ (u0 : u1 : u2 : u3) to the nice
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coordinates, given in (2.7), we know how to identify general sections

η0d

(
u0

u3

)
+ η1d

(
u1

u3

)
+ η2d

(
u2

u3

)
= µ0d

(
v0
v3

)
+ µ1d

(
v1
v3

)
+ µ2d

(
v2
v3

)
.

The Hamiltonians h0, h1, h2 of the Hitchin map on MNR then can be explicitly deduced

from (4.2). We get

Hitch :

{
T∨MNR → H0(X,Ω1

X ⊗ Ω1
X)

((u0 : u1 : u2 : u3), η0, η1, η2) 7→ (h2x
2 + h1x+ h0)

(dx)⊗2

x(x−1)(x−r)(x−s)(x−t)

}
,

where

h0 = 1
4u4

3

·





rst· [η0(u
2
0 − u2

3) + η1(u0u1 + u2u3) + η2(u0u2 + u1u3)]
2

−st· [η0(u0u1 − u2u3) + η1(u
2
1 + u2

3) + η2(u0u3 + u1u2)]
2

+4rs· (η0u0 + η1u1)
2 u2

3

−rt· [η0(u
2
0 + u2

3) + η1(u0u1 + u2u3) + η2(u0u2 − u1u3)]
2

h1 = 1
4u4

3

·





t· (u2
0 + u2

1 + u2
2 + u2

3) [(η
2
0 + η21 + η22)u

2
3 + (η0u0 + η1u1 + η2u2)

2]

+st· (u2
0 − u2

1 + u2
2 − u2

3) [(η
2
0 − η21 + η22)u

2
3 − (η0u0 + η1u1 + η2u2)

2]

+4r· (u0u2 − u1u3)u3 [η0η2u3 + (η0u0 + η1u1 + η2u2)η1]

+4sr· (u0u2 + u1u3) u3 [η0η2u3 − (η0u0 + η1u1 + η2u2)η1]

+4s· (u0u3 + u1u2) u3 [η1η2u3 − (η0u0 + η1u1 + η2u2)η0]

+4rt· (u0u1 + u2u3) u3 [η0η1u3 − (η0u0 + η1u1 + η2u2)η2]

h2 = 1
4u4

3

·





s· [η0(u0u2 + u1u3) + η1(u0u3 + u1u2) + η2(u
2
2 − u2

3)]
2

−1· [η0(u0u2 − u1u3) + η1(u0u3 + u1u2) + η2(u
2
2 + u2

3)]
2

−t· [η0(u0u1 + u3u3)− η2(u0u3 − u1u2) + η1(u
2
2 + u2

3)]
2

+4r· (η1u1 + η2u2)
2 u2

3

Table 2: Explicit Hitchin Hamiltonians for the coordinates (u0 : u1 : u2 : u3) of MNR.

Note that in [7], B. van Geemen and E. Previato conjectured a projective version

of explicit Hitchin Hamiltonians, which has been confirmed in [6]. These Hamiltonians

H1, . . .H6 can be seen as evaluations, up to functions in the base, of the explicit Hitchin

map at the Weierstrass points. More precisely, if we denote

h(x) := h2x
2 + h1x+ h0,

where hi for i ∈ {0, 1, 2} then

H1 = 4h(0)
rst

H4 = 4h(s)
s(s−1)(s−r)(s−t)

H2 = − 4h(t)
t(t−1)(t−r)(t−s)

H5 = 4h(r)
r(r−1)(r−s)(r−t)

H3 = 4h(1)
(r−1)(s−1)(t−1)

H6 = 0.



16 V.HEU AND F.LORAY

References

[1] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957)
181-207.

[2] I. Biswas, V. Heu On the logarithmic connections over curves, J. of the Ramanujan Math. Soc.,
Volume 28A, Issue SPL, July - Special Issue (2013), 21-40.

[3] I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. J. 88 (1997), no. 2, 305?325.
[4] M. Bolognesi, A conic bundle degenerating on the Kummer surface, Math. Z. 261 (2009), no. 1,

149-168.
[5] I. Dolgachev, Classical Algebraic Geometry: a modern point of view, Cambridge University Press,

Cambridge, 2012.
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