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ABSTRACT
Effective Fault Classification and Prediction (FCP) for aircraft maintenance helps
improve the efficiency of maintenance. The traditional ways of the FCP mainly
rely on the analysis of mechanical characteristics of components and the reliability-
related data. Obtaining the fault-related data is usually prior to performing the
analysis of fault diagnoses. However, acquiring the data especially the sensitive data
in terms of security and confidentiality is extremely difficult. Therefore, in this pa-
per, we propose an approach of combining Agent-Based Simulation System (ABSS)
with the Fuzzy-Rough Nearest Neighbour (FRNN) approach, in order to implement
the FCP for aircraft maintenance without the sufficient data. To do so, firstly, a
framework for integrating the FRNN approach into ABSS is proposed. The concept
and architecture models of FRNN-ABSS are used to describe FRNN-ABSS system.
In the following, random and sequence strategies are designed for the FCP of the
engine and an algorithm is developed to accomplish the integration of the FRNN
approach and ABSS, aiming at automatically performing fault diagnoses. Finally,
the experiments analysing the impact of different strategies on maintenance costs
and service level have been conducted. The results show that the approach proposed
achieved success for random and sequence strategies: 9.3% and 2.5% of maintenance
costs have been saved; 4.17% and 12.5% of delayed flights have been changed into
on-time flights.

KEYWORDS
Fault classification and prediction; Fuzzy-rough nearest neighbour; Agent-based
system and simulation; Aircraft maintenance.

1. Introduction

The advanced technology and the complex system design have been broadly used in
modern aircraft systems. Fault diagnoses become increasingly difficult because of the
intractable faults and the complex connections between systems. Making use of an
automatic classification scheme helps remove the need for the detailed analysis of the
complex fault information (Mechefske and Mathew 1992). Early fault prediction is a
proven technique in achieving high system reliability (Khoshgoftaar and Seliya 2003).
Thus, effective FCP can significantly improve the efficiency of fault diagnoses, which
finally helps achieve a highly efficient maintenance for aircraft. The function demands
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of the FCP for aircraft maintenance include, but not limited to,

• building knowledge models on faults to store the fault information;
• automating the process of the FCP for providing a fast-response mechanism on

aircraft maintenance under the big data environment;
• supporting the analysis of the FCP on the aircraft of new types, in order to

prevent them from stopping working as far as possible.

The traditional rules of the FCP for aircraft maintenance are principally from air-
worthy standards. These rules are refined from thousands of real cases of accidents
about aircraft and the design theory(ASD 2019). Many new techniques have been at-
tempted to improve the efficiency about the FCP for aircraft maintenance (Sahin et al.
2007; Jiao et al. 2017; Wang et al. 2018), whereas few of researchers have considered
the case that the historic data for fault diagnoses is either not sufficient to be anal-
ysed or only valid for specific circumstances. This may raise big issues. For example, if
the aircraft of a new type comes out, aircraft manufacturers simply have some limited
data generated before delivering them to clients. They may suffer a lack of appropriate
ways of fault diagnoses. Indeed, most of the rules still work, but how to investigate the
functionalities and interactions of the new components remains unsolved. Besides, ac-
quiring sensitive data like data for aircraft maintenance is exceptionally difficult. The
lack of data is impeding researchers to study further the operational support of aircraft
maintenance. Therefore, our study focuses on how to improve the efficiency of
the fault diagnosis for aircraft maintenance without sufficient data.

The maintenance businesses of aircraft involve flight scheduling, maintenance strate-
gies and planning, repairs, part supply and a number of stakeholders including OEM
(Original Equipment Manufacturing), suppliers, airline, MRO (Maintenance, Repair
and Overhaul), and airworthiness authority, etc. Stakeholders cooperate with each
other in a distributed, synchronised and ephemeral way. For example, suppliers pur-
chase parts independently while they are out of stock. At the same time, if necessary
parts and auxiliary equipment for repairing some faulty components are ready, MRO
workers will be scheduled. Maintenance managers will define strategies as soon as one
maintenance is requested. Moreover, the maintenance of aircraft is mandated and mon-
itored by regulatory authorities like FAA1 (Federal Aviation Administration), CAA2

(Civil Aeronautics Authority), etc. Thus, the complexity of aircraft maintenance basi-
cally lies in the individuality of stakeholders, strict maintenance regulations, interac-
tions between stakeholders and the complexity of aircraft structures, etc. The system
on the operational support of aircraft maintenance can be recognised as one kind of
complex systems.

Agent-Based Modelling and Simulation (ABMS) is an essentially decentralised,
individual-centric approach to modelling complex systems composed of interacting,
autonomous agents (Helbing 2012). Agents use simple rules and connections to express
their behaviours. The behaviours are not explicitly programmed into the models, but
arise from agent interactions (Macal and North 2010). The characteristics, involving
uncertainty, system dynamics and realism, can be captured by ABMS. Additionally,
ABMS supports the modelling the population of objects. Therefore, ABMS is a good
choice for modelling the operation of aircraft maintenance, which helps build the re-
lationship between equipment failures and reliability data. In this paper, the ABSS
of aircraft maintenance is adapted from the simulation system proposed in Liu et al.

1https://www.faa.gov/ (accessed in August 2019)
2https://www.caa.co.uk/home/ (accessed in August 2019)
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(2019).
Fuzzy-Rough Nearest Neighbour (FRNN) is a promising approach for classifying

test objects and predicting their decision values. FRNN is principally based on fuzzy
set theory, rough set theory and K Nearest Neighbour (KNN) algorithm. Fuzzy set
theory (Zadeh 1965) expressed vague information by utilising a class of objects with
a continuum of grades of membership, which was used for linguistic representation of
patterns, leading to a fuzzy granulation of the feature space. Rough set theory (Pawlak
1982) provided approximations of concepts for the incomplete information, obtaining
dependency rules which model informative regions in the granulated feature space.
KNN is a well-known technique for the data classification and is one of the simplest
approaches for data analysis (Peterson 2009). In ABSS, reliability and fault location
information can be considered as condition and decision attributes respectively. The
information represents vagueness and incompleteness due to the random process of
generating fault location information. Hence, FRNN is a better fit to predict the
relationship between reliability and fault location information.

The simulation model is built of practices, rules and data in the real world, which
can bring out the interactions between involved objects. Comprehensive knowledge
can be learned from simulation data. The knowledge learned from simulation data is
capable of defining rules of fault diagnoses. The rules state the way how we are able
to find the probably faulty part. The knowledge means the decision table obtained
from simulation data. The table gives the relationship between the reliability-related
information and the fault location information. The former is obtained by analysing
the simulation data. The latter is gained from the stochastic mechanism provided
by simulators. In ABSS, each fault happening on one part is always accompanied by
its relevant reliability-related information. Hence, the reliability-related information
is a quite useful clue in finding the probably faulty part. The FRNN approach can
be dedicated to learning the knowledge with the intention of providing rules of fault
diagnoses. Therefore, the knowledge of faults enables us to define the rules.

Therefore, in this paper, the major idea of the approach proposed is firstly illus-
trated in a framework, aiming at integrating the FRNN approach into ABSS for the
FCP. Two models are then proposed from different abstract levels, which lay the foun-
dation for implementing the approach. The next step is to technologically accomplish
the integration. Finally, simulation experiments are performed to demonstrate the
feasibility of the approach proposed.

To the best of our knowledge, it is the first attempt to combine ABSS with the
fuzzy-rough sets theory. The approach proposed provides an alternative to improve
the fault diagnosis for the aircraft of new types and to accomplish the automatic
self-improvement for aircraft maintenance.

The remainder of this paper is organised as follows. Section 2 provides a com-
prehensive literature review on the FCP for aircraft maintenance and introduces the
concepts of fuzzy-rough theory and agent-based simulation. Section 3 proposes a con-
ceptual model and simulation model for combining these two approaches. In Section
4, an approach is designed to implement the FRNN approach in ABSS. The exper-
iments are conducted to analyse the impacts of different strategies on maintenance
costs and service level in Section 5. Finally, Section 6 concludes the paper with future
perspectives.
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2. Literature Review

2.1. Fault diagnosis for aircraft maintenance

This subsection provides a comprehensive literature review on fault diagnoses for air-
craft maintenance. The scope of researches is limited to the domain of aircraft main-
tenance. A synthesis analysis of reviewed papers is summarised in table 1. Several
aspects are proposed to review the papers, which include proposes simulation mod-
els, provides an automated analysis approach, model purposes, and relevance to our
research. Moreover, the relevance is evaluated with different levels: low, medium and
high.

According to this table, researches seldom simultaneously consider simulation mod-
els and fault diagnosis approaches. Fortunately, papers 1 and 3 (Sobie, Freitas, and
Nicolai 2018; Wang et al. 2018) get these two approaches together. However, they do
not provide an automated analysis method. On the other hand, papers 4 and 8 (Naderi
and Khorasani 2018; Bateman, Noura, and Ouladsine 2011) are involved with simu-
lation models, but the models are employed to evaluate the feasibility of approaches.
Obviously, no one provides an automated analysis approach on fault diagnoses for
aircraft maintenance. Researchers tend to analyse all kinds of fault reports before
performing the analysis of fault diagnoses, which causes their approaches partially au-
tomated. This is because the reports of natural languages or information redundancy
make it hard to easily extract useful information. A wide variety of approaches have
been used for fault diagnoses. This also shows that this area is becoming more and
more attracting. As for model purposes, most of researches focus on the fault diagnosis
for aircraft engines. This is not only because the engine is the most complex compo-
nent for aircraft but it generates lots of information. The last aspect is associated with
the relevance to our research. Few resources from the literature can be reused as no
one combines ABSS with the FRNN approach. This is the reason why no paper is
given a relevance of high level. Even so, the relevance analysis is still required because
others aspects like scopes, advantages, disadvantages etc., can be analysed.

To summarise, the existing works are prone to separating the fault diagnosis from
the operating of aircraft, which can cause the analysis of fault diagnoses with insuffi-
cient historic data or the data only valid for specific circumstances delayed or impeded.
Another difference is that few researchers are devoted to automating the process of
the FCP so that fast responses are possible to be made with the aim of dealing with
real-time issues on the operational support of aircraft maintenance. Therefore, we
are motivated to build a simulation system with the FRNN approach enabling us to
automatically support the fault diagnosis for aircraft maintenance without sufficient
historic data.

2.2. Fuzzy-rough theory

2.2.1. Fuzzy set theory

Fuzzy set theory uses given degrees to define the relationship between objects and their
memberships. The definitions of fuzzy sets are manifold. In this paper, we introduce the
definition of Richard Jensen’s (Jensen and Cornelis 2011), which is shown as follows:

A fuzzy set in X is an X → [0,1] mapping, while a fuzzy relation in X is a fuzzy
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set in X ×X. For all y in X, R-forest of y is fuzzy set Ry defined by

Ry(x) = R(x, y) (1)

for all x in X. If R is a reflexive and symmetric fuzzy relation, that is,

Ry(x, x) = 1 (2)

R(x, y) = R(y, x) (3)

holds for all x and y in X, then R is called a fuzzy tolerance relation.
If X is finite, the cardinality of A is calculated by

|A| =
∑
x∈X

A(x) (4)

2.2.2. Rough set theory

Rough set theory (RST) is a powerful tool for the rule induction from the incomplete
data sets and for concisely extracting the information from a domain. Rough set-
based data analysis approaches have been widely, successfully employed in fields like
medicine, web and text mining, signal and image processing, software engineering, etc.
(Pawlak, Polkowski, and Skowron 2008). As RST has been extended and generalised
in different ways, in this paper, we use the definition of RST from Jensen and Cornelis
(2011) as well, which is explained in the following.

Let(X,Ω) be an information system, where X is a non-empty set of finite objects
(the universe) and Ω is a non-empty finite set of attributes such that a: X → Va for
every a ∈ Ω. Va is the set of values that attribute a may take. With any B ⊆ Ω there
is an associated equivalence relation RB:

RB = {(x, y) ∈ X2|∀a ∈ B, a(x) = a(y)} (5)

If (x, y) ∈ RB, then x and y are indiscernible by attributes from B. The equivalence
classes of the B-indiscernibility relation are denoted as [x]B. Let A ⊆ X. A can be
approximated using the information contained within B by constructing the B−lower
and B − upper approximations of A:

RB ↓ A = {x ∈ X|[x]B ⊆ A} (6)

RB ↑ A = {x ∈ X|[x]B ∩A 6= ∅} (7)

Tuple 〈RB ↓ A,RB ↑ A〉 is called a rough set.

2.2.3. Fuzzy-rough set theory

Fuzzy-rough set theory benefits from the advantages of fuzzy and rough set theories,
where both the membership of different degrees, and the lower and upper approxima-
tions are considered. A general definition (Radzikowska and Kerre 2002) is illustrated

6



in the following:

(R ↓ A)(x) = inf
y∈X

L(R(x, y), A(y)) (8)

(R ↑ A)(x) = sup
y∈X

T (R(x, y), A(y)) (9)

where, L and T are an implicator and a t-norm respectively. In this paper, TM is
defined by TM (x, y) = min(x, y), where x, y ∈ [0, 1]. LM is defined by LM (x, y) =
max(1− x, y), where x, y ∈ [0, 1].

Given fuzzy tolerance relation R and fuzzy set A, tuple 〈R ↓ A(x), R ↑ A(x)〉 is
called a fuzzy-rough set.

2.3. Agent-based modelling and simulation

ABSS model is generalised as follows (Macal and North 2010) :

• a set of agents including attributes and behaviours;
• a set of agent connections and ways of interactions;
• an environment where agents live.

ABSS is generally applied when the complexity of the system being modelled is
beyond what static models or other techniques can fully present (Helbing 2012). The
complexity in real systems is shown as follows (Kellner, Madachy, and Raffo 1999):

• system uncertainty and stochasticity;
• system dynamics;
• feedback mechanisms.

The complexity of the autonomous system of aircraft maintenance mainly due to
system uncertainty and dynamics. Uncertainty is reflected not only by random mech-
anisms but by unknown behaviours arisen from agents’ interactions. For example, the
occurrence of faults on components of aircraft is conformed to a certain probability.
The bounds on these uncertainty issues and the implications of potential outcomes
should be understood and evaluated. ABSS provides a flexible and useful mechanism
to capture these uncertainties (Heppenstall et al. 2011; Moyaux, Chaib-Draa, and
D’Amours 2006). According to Oliveira, Lima, and Montevechi (2016); Layeb et al.
(2018), this approach enables us to model the simulation environment incorporating
uncertainties, and the real stochastic nature of the environment.

In terms of system dynamics, maintenance tasks change over time, including the
maintenance sequences regarding faulty aircraft and the scheduling of maintenance re-
sources. Different scenarios will lead to different system behaviours. A dynamic model
can actually manage these changes, however, analytic techniques such as dynamic pro-
gramming can be intractable because of the high level of complexity. Moyaux, Chaib-
Draa, and D’Amours (2006) explained that the system complexity made it difficult
to know every possible interaction in the system, because the system only had partial
control and observability over its environment, and thus, this environment was highly
unpredictable. The agent-based decentralisation took this into account by letting each
agent continuously coordinate its actions with other agents, instead of making this
agent apply a behaviour prescribed at the design time.

Besides, ABMS also allows us to model real-world systems of interests in ways that
beyond the capabilities of traditional modelling techniques, such as discrete event
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system or system dynamics (Siebers et al. 2010; Liu et al. 2018). As a result, ABMS
is chosen to design the autonomous system of aircraft maintenance.

2.4. Fault Classification and Prediction Analysis Framework

The framework for analysing the FCP on aircraft maintenance is proposed in this
subsection. Fig. 1 provides a global view about how to combine FRNN and the ABSS,
in order to improve maintenance efficiency and decrease maintenance costs. It consists
of the ability to:

• specify the motivation about combining the FRNN approach and the simulation;
• specify the approach of introducing the approach into ABSS;
• specify FRNN-ABSS model with components and connections.

Maintenance 
Requ.

FRNN

Simulation 
model

Simulation+FRNN 
model

Data analysis

Reliability 
handbook

Fault, cost, 
service, etc.

Result

Figure 1. The framework for fault classification and prediction

The FRNN approach is a novel technique to further improve maintenance efficiency
from the data point of view, especially when the data shows vagueness and incomplete-
ness. ABSS is able to simulate the whole process for aircraft maintenance, which can
produce large amounts of data as well. The data produced by the simulation model
can be learned to support decision-makings. Aiming at combing the FRNN approach
and ABSS, the reliability handbook (Bombardier. 2004) is used as a basis to propose
key indicators. These indicators are a media to connect FRNN and the ABSS model.
FRNN-ABSS model is then proposed to realise the improvement of maintenance ef-
ficiency from the perspective of data. Since this model is capable of automatically
gaining knowledge from the simulation data, the issues of the self-improvement for
aircraft maintenance can be performed. Therefore, it is possible for engineers to bet-
ter define rules of fault diagnoses with the help of the knowledge learned from the
simulation data.
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Figure 2. FRNN-ABSS conceptual model

3. Fuzzy-Rough Nearest Neighbour Simulation Model

In order to better describe FRNN-ABSS model, key concepts and their relationships
are introduced. Fig. 2 shows FRNN-ABSS conceptual model. Illustrated by this figure,
a number of concepts are concerned, including Flight, Aircraft, Equipment, Require-
ment, Service Strategy, Service Task, Supply Chain, Quality and FRNN. The concepts
of Flight, Aircraft and Equipment are the basic elements to describe the maintenance
process for aircraft. Concept Requirement presents the needs for different maintenance
types like scheduled maintenance, unscheduled maintenance, etc., which triggers the
maintenance process. The concepts of Service Strategy, Service Task, Supply Chain and
Quality are associated with maintenance processes. FRNN is part of Quality. Since
the manufacturing of aircraft has been improved significantly, most of the equipment
are intelligent enough to alarm themselves. Fault location is much easier than before.
However, we are not able to know exactly the functionality of the equipment for the
aircraft of new types. We even lack the knowledge on the performance of the combi-
nation of equipment. The FRNN approach concentrates on classifying and predicting
objects, which enables us to build the relationship between the reliability-related in-
formation and equipment failures. Finally, the results from FRNN will be synthesised
and used as recommendations sent to Service Strategy and Service Task.

FRNN-ABSS architecture model is shown in Fig. 3. This model is capable of dealing
with four kinds of maintenance scenarios: scheduled/unscheduled maintenance and
with/without uncertain events. The unscheduled maintenance with uncertain events is
determined by fault events and uncertain events. Agents are derived from this model
including: Flight, Plane, Equipment Agent, Customer Requirement Agent (CRA),
Service Strategy Agent (SSA), Service Task Agent (STA), Supply Chain Agent (SCA),
FRNN Agent (FRNNA) and Quality Agent (QA). QA is linked with SSA and STA,
in order to collect the reliability-related data. The analysis of FRNNA will aid the
decision-making process of the FCP.
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Figure 3. FRNN-ABSS model

4. Fault Classification and Prediction for Aircraft Maintenance

In order to accomplish the FCP of aircraft maintenance, three major issues are consid-
ered. The first issue is to understand the relationship between the FRNN approach and
ABSS. The FRNN process is the reliability analysis module in ABSS (mentioned in
Section 3). ABSS directly made a decision about maintenance issues when the FRNN
approach was not considered. Now, ABSS makes a decision after having investigated
the prediction results from the FRNN process. Thus, combining the FRNN approach
with ABSS should make sure that the latter is able to provide the effective input for
the former and the former can deliver the effective output for the latter. The input for
the FRNN approach is decision table information and real-time reliability information
for parts. The input for ABSS is the specific decision information (which part does
not work) regarding parts. The key to combine the FRNN approach with ABSS is
the decision table. The basic elements in this table are proposed in Section 4.1. The
strategies on the fault analysis of engines are the second issue (Section 4.2). The last
one is about how to technologically fulfil the function of the FCP, which is discussed
in Section 4.3.

4.1. Reliability-related indicators

The report of reliability on aircraft is a collection of historic information about fault
diagnoses, which is employed to analyse faults by associating these experiences with
the real-time condition of equipment states. It is issued by aircraft manufacturers and
airlines at regular time (Bombardier. 2004), which includes the number of faults on
parts, the number of removal parts (scheduled removing and unscheduled removing)
on equipment, the flying time and the dispatch times, etc. China Civil Aviation stated
that the performance of aircraft can be evaluated by the crew report, the delay of
flights, the rate of removing parts, the use time of parts, etc (CCA 2019). Considering
the limit of the simulation data collected, several indicators are chosen, including
DIR (Departure Interruption Rate), URR (Unscheduled Removal Rate) and MTBUR
(Mean Time Between Unscheduled Repair). DIR reflects the delay level of flights. URR
and MTBUR are the traditional statistical indicators for reliability analysis.
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The reliability office of Shanghai airline provided the definitions of DIR, URR and
MTBUR (SA 2019), which are illustrated as follows:

DIR implies the number of delayed flights and cancelled flights (because of technical
issues) is divided by the number of all departures during a specific period;

URR indicates the number of unscheduled repairs divided by the flying hours and
then multiplied by the number of parts;

MTBUR denotes the amount of use time of parts divided by the number of unsched-
uled repairs.

Thus, the indicators of DIR, URR and MTBUR will be served as the conditional
attributes of the decision table.

4.2. The strategies on the fault analysis for engines

The structure of aircraft is shown in Fig. 4, where the engine component is highlighted.
We assume that the warning of the faulty sub-components for the engine can be issued
by the controller system of the aircraft. So, the FRNN approach is utilised to predict
fault location in sub-components.

Aircraft

EngineC1 Cn

Sub-C1 Sub-SC2 Sub-C10

P1 P2 Pn

...

... ...

...C2

Figure 4. The structure of aircraft

Training sets are the input of the FRNN approach. Two strategies are given for
generating training sets, which are shown in Fig. 5. Random and Sequential strategies
are considered, which mean the inspecting process of parts will be executed in a random
or a sequential way. The training sets are generated with the help of Algorithm 1.

4.3. Fuzzy-rough nearest neighbour classification and prediction

The objective of the FCP of aircraft maintenance is to find the probably faulty part.
Five steps are involved to achieve this aim. First of all, the reliability-related informa-
tion (DIR, URR, MTBUR) about parts belonging to the faulty component should be
collected (Section 4.3.1). The information collected can be treated as the test data.
The second step is to calculate the fuzzy tolerance relation between the test data and
the training data (knowledge learned from simulation data) with respect to K nearest
neighbours (Section 4.3.2). Neighbours are sorted out by calculating the similarities
between the instance of the test data and all the instances of the training data. The
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Figure 5. Two strategies for generating training sets

next step is to calculate the lower and upper approximations of one instance of the test
data regarding K nearest neighbours (Section 4.3.3). In the following, the averages on
the lower and upper approximations of the instance in respect of K nearest neighbours
are calculated. The decision attribute corresponding to the biggest average will be as-
signed to the instance (Section 4.3.4). The last step is to apply the results predicted
by the FRNN approach into the process of the FCP for aircraft maintenance (Section
4.3.5). The detailed description of this approach is illustrated in the following.

4.3.1. Decision table generation

The decision table is the input of the FRNN approach, consisting of conditional at-
tributes and decision attributes. It is the media connecting ABSS and the FRNN
approach. The conditional attributes were discussed in Section 4.1. The decision at-
tribute is the result of the part inspection, which means it tells whether the inspected
part is broken or not.

In order to obtain the decision table, a general process is proposed in Algorithm
1. The major idea is to gather the data of use time, flying hours, departure times,
delayed flights and cancelled flights to calculate the values of DIR, URR and MTBUR
for relevant parts. This process will also be used to generate test data because it is
concerned with these indicators as well.

12



Algorithm 1: Decision table generation

input : table urr(key, useTime, flyingHours), table dir(key,
depatureTimes)

// The key implies the string of the aircraft type, aircraft no.,

sub module no. and fault part no.

output : decision table.

// Collecting raw data for building attributes.

// faultComponent.IsTarget() means the component in which the FRNN

approach will be used.

1 if faultComponent.IsTarget() then
2 for i = 0 to faultComponent.subComponents.size() do
3 String key = getKey();
4 String useTime = getCurrentUseTime(part(i));
5 String flyingHours = getFlyingHours(part(i));
6 writeToExcel(key, useTime, flyingHours);

7 end

8 end
9 if flight.IsDelayed()|| flight.IsCanceled() then

10 if faultComponent.IsTarge() then
11 String key = getKey();
12 String departureTimes = getTotalDepartureTimes(aircraft(i));
13 writeToExcel(key, departureTimes);

14 end

15 end
// Generating the decision table: calculating DIR, URR and MTBUR.

16 DIRpart(i) = count tableDir(key)/max departureT imes(key);

// compoentsNumber(key) indicates the number of components

corresponding to aircraft types

17 URRpart(i) =
count tableUrr(key)/max flyingHours(key) ∗ compoentsNumber(key);

18 MTBURpart(i) = max useT ime(key)/count tableUrr(key);

// DA means the value of decision attributes

19 writeToExcel(dir, urr, mtbur, DA);

13



4.3.2. Similarity calculation

The second step is to calculate the fuzzy tolerance relation R between training data
and test data. Jensen and Cornelis (2011) has concluded many options to construct
R. Finally, they have chosen the way of calculating R as follows:

R(x, y) = min
a∈Ω

Ra(x, y) (10)

Ra(x, y) = 1−
∣∣∣∣ a(x)− a(y)

amax − amin

∣∣∣∣ (11)

where, Ra(x, y) is the degree to which objects x and y are similar for attribute a; amax

and amin are the maximal and minimal occurring value of that attribute. Since they
have illustrated the feasibility of the FRNN approach for this option, we take this
option as well. In our case, Ω includes the conditional attributes of DIR, URR and
MTBUR.

4.3.3. Approximation Calculation

The definitions of the lower and upper approximations of a fuzzy set A have been
discussed in Section 2.2.3. Here, the definitions of approximations have been adapted
from the former ones, where the condition is that the K nearest neighbours have been
obtained. The definitions, shown as follows, are the major idea about how to calculate
the approximation in this paper.

(R ↓ c)(x) = inf
y∈X

max(1−R(x, y), A(y)) (12)

(R ↑ c)(x) = sup
y∈X

min(R(x, y), A(y)) (13)

where c is the decision class; x is the unclassified object (test data); A(y) is to get the
value of c corresponding to training data y.

4.3.4. Fuzzy-rough nearest neighbour prediction

The prediction of decision value of test data can be carried out, when the lower and
upper approximations have been calculated, The decision class of the maximum mean
value of the lower and upper approximations will be chosen as the predictive decision
class for test data.

c = max
c∈C

(R ↓ c)(x) + (R ↑ c)(x)

2
(14)

4.3.5. The fault prediction process for aircraft maintenance

The FRNN prediction process takes the real-time data for parts and generates testing
sets, which is illustrated in Fig. 6. Training and testing sets are the inputs of the FRNN
approach. The possible set of parts is delivered. The next step is to iterate this set. If
the fault part has not been correctly predicted, the rest of the parts will continue to
be checked until the right one is chosen.

It should be noted that the above five steps shown in Sections 4.3.1 - 4.3.5 have
been implemented as Java code, which allows us to perform the automatic analysis
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Figure 6. The FRNN prediction process

process on the FCP of aircraft maintenance.

5. Experimentation

5.1. Simulation scenario

The simulation starts from flight schedules. All the aircraft stay at corresponding
airports waiting for scheduling signals. The flight legs are collected from the website
of AirFrance3. Twelve airports are concerned, including Paris, Lyon, London, Berlin,
Madrid, Amsterdam, Boston, Marseille, Barcelona, Prague, Manchester and Munich.
There are 50 aircraft distributed in different airports. Therefore, the aircraft-related
stakeholders will be very busy, especially for the maintenance-related. The engine is
the critical component in the aircraft, which contains millions of parts. Even though
sensors are used to control the major part of the engine, some of components are still
not under control. The fault location of engines can waste some of the precious time.
Hence, we choose the engine as the target component where the repairing work will

3https://www.airfrance.fr/ (accessed in November 2018)
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involve the FRNN approach, in order to improve the efficiency of the fault location
of engines. In this simulation environment, the engine is made of 10 sub-modules
containing 73 parts (NASA 2019) (relatively high level of description). Furthermore,
this simulation system with the FRNN approach is implemented by Anylogic PLE
8.2.34. The screenshot of this simulation system is shown in Fig. 7. The configurations
of the running laptop are 8G memory and 4 processors (i7-6500U CPU).

Figure 7. Autonomous system of aircraft maintenance integrating the FRNN approach

5.2. Experiment results

Simulation experiments involve two steps. The first step is to explore the impact of K
neighbours on the maintenance cost for different strategies. Optimal Ks will then be
determined to start the second step which investigates the impact of different strategies
on maintenance costs and service level based on the optimal Ks.

The impact of the number of neighbours on maintenance efficiency is studied by a
set of experiments. The simulation starts from 7:20, 1th January 2017 and stops at
7:20, 1th December 2017, the first 9 months of which are used to generate training sets.
The FRNN analysis is performed in the last two months. Here, 15 experiments (K =
1, 2, ..., 15) are conducted for each strategy. The experiment of each K replicates 5
times to avoid chanciness. On top of that the experiments without using the FRNN
approach are carried out for comparing the performances of maintenance.

The warm-up period is set to five days to avoid initialisation bias since the simulation
system starts with a new environment. The results of the impact of K neighbours on
maintenance costs are shown in Fig. 8 and 9 where black broken and red lines mean
the experiments are conducted with/without the FRNN approach respectively. The
performance of the FRNN approach on Random strategy (Fig. 8) is much better than
that of Sequential strategy (Fig. 9). Fig. 8 implies that the FRNN approach saves
the maintenance cost most when the condition is K = 15. Fig. 9 shows the choice of
K is rather important because more than half of Ks lead to lower efficiency of the

4https://www.anylogic.com/ (accessed in November 2018)
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FRNN approach. The FRNN approach saves the maintenance cost most when K = 13.
Therefore, the following analysis on maintenance costs and service level is based on the
conditions of K = 15 (Random strategy) and K = 13 (Sequential strategy). It should
be noted that since our objective is to illustrate the efficiency of this approach and
simulation experiments take time (every single simulation experiment takes around 4
hours), we decide to set the maximum of K as 15 instead of continuously increasing
the value of K to find the stable performance of the approach.
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Figure 8. The impact of K nearest neighbours on maintenance costs about Random strategy
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Figure 9. The impact of K nearest neighbours on maintenance costs about Sequential strategy

The impact of different strategies (mentioned in Section 4.2) on maintenance costs is
illustrated in Fig. 10. The vertical line represents the maximum, average and minimum
of 5 replications’ data. “+” in the legend means the simulation experiment is executed
without using the FRNN approach. This is also applied to Figs. 11 - 13. Fig. 10
shows the averages of Random and Sequential are lower than those of Random+ and
Sequential+ respectively. More specifically, 9.3% and 2.5% of the maintenance costs
have been saved regarding Random and Sequential strategies respectively. Thus, the
efficiency of the FRNN approach can be observed. The FRNN approach achieves a
higher precision with Random strategy when comparing with the gaps of differences
between averages. The margins of maintenance costs for each strategy suggest that
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the experiments of Random strategy remain stabler.
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Figure 10. The impact of different strategies on maintenance costs
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Figure 11. The impact of different strategies on on-time flights
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Figure 12. The impact of different strategies on delayed flights
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From Figs. 11 - 13, the result of service level is very coherent with that of main-
tenance costs concerning Random strategy. Nevertheless, the result of Sequential
strategy represents variability. The FRNN approach performs well in terms of on-time
flights and delayed flights. As for cancelled flights, the average of Sequential is slightly
higher than that of Sequential+, which depicts the disadvantage of the approach. Even
though it is not capable of saving more cancelled flights, its efficiency on Sequential
strategy still can be observed due to its performance in saving maintenance costs. The
downtime costs of maintenance costs imply the difference between total repair times.
If the difference of conditions between simulation experiments can be ignored by using
averages, the lower maintenance cost means the shorter total repair time. On the other
hand, the impact of different strategies on service level in terms of averages is shown in
Fig. 14. The result shows that 4.17% and 12.5% of delayed flights have been changed
into on-time flights regarding random and sequence strategies respectively. Thus, the
FRNN approach also achieves success in predicting faults with respect to Sequential
strategy.

Service level is another way of examining the efficiency of the FRNN approach.
From the above discussion, the analysis of service level helps further investigate the
performance of the approach proposed. Therefore, a synthesis of experiment results is
necessary to obtain a fair conclusion.

2360

2506 2532 2532

2146,2

2419 2392,4 2371,2

2008

2301 2273
2183

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Random Random+ Sequential Sequential+

Th
e 

n
u

m
b

er
 o

f c
an

ce
le

d
 f

lig
h

ts

Figure 13. The impact of different strategies on cancelled flights

Above all, we can conclude that the combination of the simulation (ABSS) and the
data mining technique (FRNN) can effectively improve maintenance efficiency. The
proposed approach makes it possible to investigate the implying fault diagnosis rules
for aircraft of new types. To do this, the degrading curves on components of new
aircraft are needed to simulate the fault behaviours of components. The simulation
system can simulate the life-cycle of aircraft. Thus, a precious data set, including fly-
ing hours, inspecting time, repairing time, departure time, delayed flights, cancelled
flights, etc., can be collected. In the following, the FRNN approach can be applied
to predict the relationship between reliability information and fault location informa-
tion. Therefore, effective rules of the fault diagnosis can be generated with the virtual
experience.
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Figure 14. The impact of different strategies on service level in terms of averages

6. Conclusion

In this paper, we discussed the topic about how to accomplish the fault diagnosis for
aircraft maintenance without sufficient historic data. ABSS and the FRNN approach
were introduced. ABSS simulated the maintenance process for aircraft and produced
large amounts of reliability-related data. The FRNN approach performed the FCP
based on the data collected. The simulator Anylogic was utilised to build the sim-
ulation system permitting us to not only simulate the maintenance process but also
accomplish the function of the FCP because of the permission of programming in
Java into simulation models. That is the reason why we are able to technologically
achieve the aim on the automation of the whole maintenance process. The simulation
experiments of choosing K nearest neighbours and of analysing random and sequence
strategies were conducted to illustrate the feasibility of the approach proposed. Com-
pared with the existing approaches for aircraft maintenance, our approach is the very
novel one, which typically holds the following advantages:

• enabling us to perform the data analysis without sufficient real data;
• supporting the automatic self-improvement on the decision-making process for

aircraft maintenance;
• a new attempt for analysing the FCP by combing the information system and

the data mining.

The feasibility has been demonstrated by experiments, which is able to illustrate the
rationality of the maintenance process for aircraft maintenance to some extent. How-
ever, the formal verification of maintenance processes is still missing. For example,
the verification of issues like Computation Tree Logic (CTL), Linear Temporal Logic
(LTL) and deadlock, etc., should be carried out on the model, in order to ensure the
consistency and completeness of the model.

NuMSV5 is a symbolic model checker originated from the re-engineering, re-
implementation and extension of CMU SMV, which allows for the representation of
synchronous and asynchronous finite state systems, and for the analysis of specifica-

5http://nusmv.fbk.eu/ (accessed in August 2019)
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tions expressed in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).
Therefore, the study of the formal verification of model based on NuSMV will be our
future work.
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