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ABSTRACT
This paper presents a new technique for noise removal in
images. It benefits both from the recent advances in wavelet-
based and variational denoising. Whereas wavelet-based
analysis tends to strongly depend on the selected wavelet
basis, we propose to combine and fuse several mono-wavelet
analysis within a variational framework. The associated en-
ergy function involves M-estimator in order to guarantee
the robustness to outliers and to preserve image structures
(edges, ridges,...). An experimental evaluation for a Gaus-
sian additive noise validates the proposed approach and an
application to speckle removal in sonar sea-bed images high-
lights the interest of this approach for real images.

1. PROBLEM STATEMENT AND RELATED WORK

Noise removal in images is a common issue for a wide range
of applications: multimedia, teledetection, underwater imag-
ing, medical imaging,.... Two main categories of techniques
have been recently proposed to cope with image restoration.
On the one hand, wavelet-based approaches [1, 6, 9, 10]
cope with this issue through the shrinkage of wavelet coef-
ficients. Despite good performances, these approaches tend
to produce local artifacts for high level noise. On the other
hand, variational methods [7, 8] based on non-quadratic cri-
teria (e.g., the total variation) have been introduced to state
image denoising as a minimization issue. This energy-based
setting usually involves two terms: a regularity term defined
on the image gradient and a data-driven term measuring the
distance between the noisy image and the denoised one.

Therefore, it seems appealing to benefit from both cate-
gories of approaches. For instance, in [2], wavelet shrinkage
was stated in a variational setting through the minimization
of a total variation criterion. In this paper, we give the em-
phasis to a multi-wavelet approach while stating the image
restoration within a variational framework. Since wavelet-
based denoising performances are known to strongly de-
pend on the chosen wavelet basis, we aim at combining
several wavelet analysis. To this end, the proposed vari-
ational setting provides a well-formalized fusion criterion.
The subsequent is organized as follows. In Section 2, we

briefly review mono-wavelet image denoising. The pro-
posed variational multi-wavelet approach is described in Sec-
tion 3. Section 4 present experimental results on synthetic
images and an application to speckle removal in underwater
sonar images.

2. WAVELET SHRINKAGE

Wavelet shrinkage for noise removal was first introduced by
Donoho etal [1]. The detail coefficients of a wavelet de-
composition are indicators of the presence of signal rup-
tures: the greater the more relevant for image reconstruc-
tion. Consequently, the restoration of noisy images can be
viewed as the shrinkage of these wavelet coefficients. Ini-
tially, Donoho etal. [1] have proposed the hard- and soft-
shrinkage schemes. For instance, given an image I and the
associated wavelet decomposition WI , the hard-shrinkage
of the detail coefficients {WIk,l}, where k refers to the
scale level and l to the type of detail coefficients (horizontal,
vertical or diagonal), resorts to:

∀p, W̃ Ik,l(p) =





0, if WIk,l(p) < δ

WIk,l(p), otherwise
(1)

The threshold δ is set w.r.t. the noise characteristics: for
instance, for a Gaussian additive noise of standard devia-
tion σ, δ is typically set to 3σ. The filtered image Ĩ simply
results from the reconstruction using the modified wavelet
coefficients W̃ I:

Ĩ = W̃ IN,0ΦN,0 +
N∑

k=1

3∑

l=1

W̃ Ik,lΦk,l (2)

where Φk,l is the wavelet basis function at resolution k for
the quarter l (l = 0, low frequency, l = 1, 2, 3; horizontal,
vertical and diagonal high frequency).

The shrinkage rules can also be deduced from a Bayesian
setting [6, 9] when a priori information on the distribution
of the wavelet coefficients is considered. For instance, in
[9], a bivariate shrinkage scheme exploiting the inter-scale



dependencies is proposed:

∀p, W̃ Ik,l(p) =

(
α(k, l, p)−

√
3σN/σ

)
+

α(k, l, p)
WIk,l(p) (3)

with α(k, l, p) =
√
WI2

k,l(p) +WI2
k+1,l(p

+), where p+ is
the father of the point p in the wavelet decomposition. σN
is the standard deviation of the Gaussian noise and σ the
deviation of the a priori model for inter-scale dependencies.
This soft shrinkage scheme was proven experimentally to
outperform Donoho’s scheme [9]. In the subsequent, we
will use this scheme to perform a multi-wavelet analysis.

3. VARIATIONAL MULTI-WAVELET DENOISING

The key contribution of this paper is to introduce a well-
formalized framework to achieve a multi-wavelet denois-
ing. As illustrated in Fig.1, the performance of wavelet-
based denoising techniques strongly depend on the choice
of the wavelet basis. Besides, whereas a variety of wavelet
basis (e.g., daubechies, curvelets, ridgelets,...) has been in-
troduced [5, 11], real images usually involve different types
of structures. Hence, selecting only one wavelet basis might
not be optimal.

Rather than selecting an optimal wavelet basis, we pro-
pose to exploit the decompositions obtained from several
wavelet basis. Image restoration then comes to fuse these
analysis within a variational framework detailed below.

3.1. Robust energy setting

Given a noisy image I and a chosen set of wavelet basis B,
we first apply the bivariate shrinkage for each wavelet ba-
sis in B and compute the resulting filtered outputs {Ĩb}b∈B.
The fusion step is then stated as the following variational
issue:

min

∫ ∑

b∈B
ρb(Ĩ(p)− Ĩb(p)) +

∫
ρ2(∇I(p)) (4)

where ρi a M-estimator (e.g., Welsch M-estimator ρ(x) =
1− exp(−x2/σ2) with σ a scale parameter) and γ a weight
balancing the importance of the two energy terms. The first
term can be referred to as the data-driven term: it states that
the restored image Ĩ should be close to the mono-wavelet re-
sult {Ĩb}. The use of the M-estimator ρ1 guarantees the ro-
bustness to outliers such as local artifacts. The second term
set on the image gradient is aimed at imposing some regular-
ity constraints on the output image. Whereas quadratic cri-
teria are known to oversmooth meaningful image structures
(edges, ridges,...), the M-estimator ρ2 provides a mean to
preserve these structures in the filtered image, while smooth-
ing uniform areas.

The proposed variational setting can be regarded as a
way to drive the fusion of several mono-wavelet analysis by
a regularity constraint.

3.2. Minimization issue

Rather than exploiting the Euler-Lagrange partial derivative
equation derived from Eq.4, we adopt a discrete Markovian
setting. The energy in minimization (4) then resorts to:

J(I) =
∑

p

∑

b∈B
ρb(I(p)− Ĩb(p))

+
∑

(p,q)∈V
ρ2(I(p)− I(q))

(5)

where ∈ V is the 4-neighborhood.
The minimization of function J(I) is then solved for

using an iterated reweighted least-square scheme [4]. It it-
erates two steps. First, given the current estimate Ĩ , the fol-
lowing robust weights are computed:

∀p, ∀b ∈ B, wb(p) = ψ1(Ĩ(p)− Ĩb(p)) (6)

∀(p, q) ∈ V, w2(p, q) = ψ2(Ĩ(p)− Ĩ(q)) (7)

where ψi is the influence function associated to ρi (i.e.,
ψi(r) = 1/r · dρ/dr(r)). The second step comes to mini-
mize the reweighted least-square function J̃(I) given by:

J(I) =
∑

p

∑

b∈B
w1(p)‖I(p)− Ĩb(p)‖2

+
∑

(p,q)∈V
w2(p, q)‖I(p)− I(q)‖2

(8)

This minimization is carried out using the ICM algorithm.
The initialization is provided by the mean over the mono-
wavelet outputs:

Ĩ0 =
1

|B|
∑

b∈B
Ĩb

In practice, we use Welsch M-estimator ρi(x) = 1−exp(−x2/σ2
i ).

The scale parameters ({σb}, σ2) are initially set according
to the median value of the residuals:

σb = 1.57med(|Ĩ(p)− Ĩb(p)|),

σ2 = 1.57med
[
|Ĩ(p)− Ĩ(q)|, (p, q) ∈ V

]
;

and then updated w.r.t. a geometrical law at each iteration.



3.3. Coarse-to-fine strategy

In order to improve the convergence of the proposed scheme,
we take advantage from the multiresolution structure of the
wavelet decompositions to design a coarse-to-fine strategy.

At a given level resolution k∗, we first reconstruct the
mono-wavelet outputs {Ĩbk∗}b∈B from the shrinked wavelet

coefficients {W̃ I
b}b∈B using only resolution levels greater

than k∗:

Ĩbk∗ = W̃ IbN,0ΦN,0 +
N∑

k=k∗

3∑

l=1

W̃ I
b

k,lΦk,l (9)

Minimization (4) is carried out w.r.t. {Ĩbk}b∈B to determine
the filtered image Ĩk∗ at resolution k∗. Given Ĩk∗ , we com-
pute the associated wavelet decompositions {WĨbk∗}b∈B,

which are used to update the wavelet decompositions {W̃ I
b}b∈B

at level k∗k:

∀b, ∀l, W̃ I
b

k∗,l = (WĨbk∗)k∗,l (10)

This procedure is iterated at resolution k∗ − 1 using the up-

dated wavelet decompositions {W̃ I
b}b∈B. The output at the

finest resolution provides the filtered image.

4. EXPERIMENTS

4.1. Quantitative analysis on synthetic images

To validate the proposed approach, different experiments
have been carried out both for synthetic and real images.
In both cases, we use the same parameter setting: wavelet
decomposition with 4 levels, a set of 10 wavelet basis (haar,
dauchechies 4, 6 and 8, coiflets 1, 2 and 3, and symlets 4, 5
and 6), γ = 10. In a first step, we have performed a quan-
titative analysis for two synthetic images, reported in Fig.1,
w.r.t. to different an additive Gaussian noise with a vari-
ance from 10 to 90. It demonstrates that, in any case, the
multi-wavelet denoising outperforms all the mono-wavelet
ones. In addition, the results also stress the improvements
brought by combining all mono-wavelet filtering though the
proposed variational fusion scheme. The average gain re-
sulting from the fusion scheme is of 0.75dB w.r.t. the best
mono-wavelet denoising and 2dB w.r.t. the worst one.

4.2. Application to speckle removal in seabed sonar im-
ages

We apply the proposed multi-wavelet variational denoising
to speckle removal in seabed sonar images. Fig.3 depicts an
example of sonar image. Such images are highly corrupted
by a multiplicative speckle noise.

In order to resort to an additive noise, we first process
the logarithm of the sonar image. The resulting noise can be

Fig. 1. Comparison of the denoising results for an additive
Gaussian with a variance from 10 to 100 applied to “lena”
: we plot the evolution of the pSNR as a function of the stan-
dard deviation of the additive Gaussian noise for the worst
(WorstMonoW) and best (BestMonoW) mono-wavelet de-
noising result and the result of the variational multi-wavelet
method (VarMultiW).

roughly approximated as a Gaussian noise. We then apply
the proposed denoising scheme and reconstruct the filtered
image using the exponential function.

Fig.3 reports an example of speckle removal for a seabed
sonar image depicting a wreck lying on sand. We provide
a comparison of the proposed multi-wavelet variational de-
noising and of the Frost scheme [3]. The Frost scheme is
a locally adaptive linear filter. The zoom on details of the
wreck clearly stress the improvements brought by our ap-
proach. Local details such as masts are better separated
from noise using the variational approach.

5. CONCLUSION AND FUTURE WORK

In this paper, we have coped with the restoration of noisy
images. We have emphasized the potential improvements
brought by combining several wavelet analysis w.r.t. dif-
ferent types of wavelet basis or different parametrization
of a given wavelet basis. This fusion issue is stated in a
robust variational framework. The use of robust estima-
tors allow us to cope with the presence of outliers in the
mono-wavelet denoising outputs and to preserve relevant
image structures such as edges. The experiments carried
out for synthetic images corrupted by an additive Gaussian
noise quantitatively validate the improvement brought by
our scheme compared to mono-wavelet schemes. Besides,
the application to speckle removal in sea-bed sonar images
demonstrate its efficiency to cope with image restoration in
complex real cases.

In future work, we will investigate the adaption of our



noisy image Best mono-wavelet denoising multi-wavelet variational denoising

Fig. 2. Comparison of the multi-wavelet variational denoising to the best mono-wavelet denoising for “lena” corrupted by a
Gassian additive noise with a standard deviation set to 40. We display a zoom on the area around the eyes.

noisy image (speckle noise) locally adaptive Frost denoising multi-wavelet variational denoising

Fig. 3. Speckle removal for the sea-bed sonar image “Swansea” (we are thankful to GESMA for providing this image):
comparison of the proposed multi-wavelet variational method to the locally adaptive Frost technique [3].

variational multi-wavelet scheme to local noise characteris-
tics. Besides, concerning the application to the analysis of
sonar images, it might be relevant to better account for the
characteristics of shadow areas.
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