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Robust relay control for buck converters : experimental application

A. Ndoye1, R. Delpoux 1, L. Hetel 2, A. Kruszewski3, J.-F. Trégouët1 and X. Lin-Shi1

Abstract— In this paper, a robust relay control of a buck
converter is proposed. The controller is synthesized based on
the design of a continuous controller for the average model of
a buck converter usually used when Pulse Width Modulation
(PWM) is considered. To deal with parameter uncertainties, the
controller implements an integral action. In this paper, local
stability is proven for the hybrid system, thereby ensuring zero
steady state error on the voltage output. A subset of the robust
basin of attraction is explicitly constructed. The effectiveness
of this control is illustrated experimentally.

I. INTRODUCTION

DC-DC converters are devices which are used in many
modern applications including power systems and power
electronics [13], due to their high frequency, low cost and
small size [5]. They belong to the class of switched system
which represents the subclass of hybrid systems for which
active subsystem is selected according to some switching
rule [14]. The study of switched system has attracted a lot
of attention from the scientific community over the past
few years [4] [9] [10]. In the literature, we find mainly
two approaches for DC-DC converters control. The most
widely used approach in practice is based on the use of
Pulse Width Modulation (PWM) [8]. In this approach the
hybrid character of the system is bypassed considering an
average model for converters. The average model assumption
is validated for large switching frequency. The method is
simple to implement and has the advantage to have a constant
and known sampling frequency. However, it is necessary to
maintain a frequency separation between the closed loop
system dynamic and the switching frequency. On the other
hand relay control, where the control takes value in a finite
set of constant vectors has been widely studied. However,
few practical implementations are proposed. There are two
main reasons for this. In the literature, robustness of the con-
trol is of particular interest. Indeed, many contributions are
dedicated to the design of stabilizing rules for the case where
the equilibrium point is known. Nevertheless, they cannot be
applied in the practical case where uncertainties may appear.
Besides, this approach requires a great computing capacity.
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In this paper, a new approach for the design of a relay con-
trol for buck converters is presented. The proposed approach
is able to deal with uncertain parameters. The controller is
synthesized based on the design of a continuous controller
for the average model of a buck converter usually used
when PWM is considered. In this paper the results of [7]
are revised to cope with time-varying parameter such as
a load variation by implementing an integral action. Local
stability is proven, thereby ensuring zero steady state error
on the voltage output in a hybrid framework. A similar
methodology can be found in [1]. With the use of an integral
action, the authors guarantee zero steady state error under
the assumption that the discrepancy in the modelling is
bounded. However, the limits of this discrepancy are not
explicitly defined. In this paper, we guarantee the existence
of an equilibrium for which the reference of the output
is always achieved for all unknown parameters which are
supposed to belong to a bounded known interval by using
a polytopic model. Besides a subset included in the robust
basin of attraction is explicitly constructed. Finally, the
evolution of technology and computing resources makes it
possible to implement experimentally the proposed approach.
The uses of a user-programmable Field-Programmable Gate
Array (FPGA) demonstrates the effectiveness of the proposed
approach experimentally.

The paper is structured as follows: Section II presents the
modelling of the buck converter which will be used in this
paper and the problem formulation. Section III is dedicated to
the main contribution of this paper. It is about, first, designing
the robust relay control from the existence of a continuous
control, then we present a constructive method for designing
a subset included in the robust domain of attraction. In
Section IV, the control is applied to a buck converter, the
effectiveness of the control is presented through simulation
and experimental results.

Notations: By | · |, we denote the Euclidean vector norm
of a vector. For a matrix M , Mᵀ denotes the transpose
of M . B(x, cB) denotes the open ball centered on x with
radius cB > 0 : B(x, cB) = {y ∈ Rn : |x − y|< cB} and
IN represents the set {1, 2, ..., N}. For a symmetric positive
definite matrix P ∈ Rn×n and a positive scalar c, we denote
by E(P, c) the ellipsoid :{x ∈ Rn : xTPx < c}. The convex
hull of the set U is denoted by conv{U}.

II. PROBLEM STATEMENT

The circuit diagram of the buck converter is shown in
Fig. 1. This converter belongs to the class of ”chopper”
circuits or attenuation circuits [12], since output voltage
magnitude is lower than the input one.
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Fig. 1: Electrical scheme

The inductor current and the load voltage are noted i
and v respectively. The resistor R models the converter
load, while C and L represent the capacitance and the
inductance respectively. The parameter E is the magnitude
of the voltage source. In this article we consider the ideal
topology: parasitic elements of the electrical components are
dismissed and the transistor S as well as the diode D are
replaced by switch and wire as shown in Fig. 2.
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Fig. 2: Ideal representation of the buck converter

With the state vector x = [i, v]ᵀ, the dynamical model of
the buck converter is represented by the following equations:

ẋ = Ãjx+ B̃j , j ∈ {1, 2} (1)

where

Ã1 =

 0
−1

L
1

C
− 1

RC

 , B̃1 =

EL
0

 (2)

Ã2 =

 0
−1

L
1

C
− 1

RC

 , B̃2 =

[
0
0

]
(3)

Besides, considering the fact that Ã1 = Ã2 and B̃2 = 02×1,
we obtain a simpler representation

ẋ = Ã1x+ B̃1u, (4)

where the control u governs the switch and takes value in
the set U defined as follows:

U = {0, 1} (5)

For this converter, the control aims regulating the output
voltage v(t) to a given level Vref for all unknown parameter
which are supposed to belong to a bounded known interval.
Due to uncertainties a steady state error may occur. For this
purpose the control law implements an integral action.
Model (4) is augmented with an additional state variable
z such as z =

∫
(x2 − Vref ) which is the integral of the

output voltage error. Thus by denoting ζ =
[
xᵀ z

]ᵀ
, the

augmented model is written as:

ζ̇ = A(θ)ζ +Bu+ h (6)

where ζ ∈ R3, θ := 1/R with θ ∈ Θ := [θmin, θmax], with

A(θ) =


0

−1

L
0

1

C
− 1

C
· θ 0

0 1 0

 , B =

EL0
0

 , h =

 0
0

−Vref


(7)

Due to the discontinuities of the control u ∈ U , the solutions
of the closed-loop will be considered in the sense of Fillipov
[6].

Remark 1: Because of the integral action, the matrix A(θ)
is not full rank. Therefore, classical approaches [3] [2] for the
global stabilization of a switched system to an equilibrium
point cannot be used directly. However our approach allows
to avoid this obstruction by restricting to local stabilization
: the switching law is designed by embedding locally the
behaviour of a continuous controller.

Remark 2: The matrix A(θ) is affine with respect to the
parameter θ. So it is possible to define a convex polytope of
N = 2 vertices containing all the admissible values of the
uncertain matrix. The vertices of this polytopic model are
defined as follows:

A1 = A(θmin); A2 = A(θmax) (8)

These vertices will be used in the next section in order to
design a robust relay control for the buck converter.

III. UNCERTAIN RELAY CONTROL SYNTHESIS

A. State feedback stabilization

In the continuous framework, control synthesis for uncer-
tain parameters with integral action has already been widely
treated in the literature, see for example [11]. Following this
strategy, let us first define the set Φe of equilibria of Filippov
solutions of (6) for u ∈ conv{U}, that is:

Φe = {(ζ∗θ , u∗θ) ∈ R3× [0, 1] : A(θ)ζ∗θ +Bu∗θ +h = 0} (9)

From the definition of matrices in (7), resolving equation
involved in (9) leads to:

−1

L
v∗θ +

E

L
u∗θ = 0,

1

C
i∗θ −

1

RC
v∗θ = 0,

v∗θ = Vref .

(10)

So that: 
i∗θ = θ · Vref ,
v∗θ = Vref,

u∗θ =
Vref
E

,

,∀z∗θ ∈ R. (11)

As a result, Φe admits the following explicit expression:

Φe =

[
θ
1

]
Vref × R× {Vref

E
} (12)



Note that the introduction of the integral action eliminates
the θ dependency on the voltage output at the equilibrium.

Let us state the main result of the article.
Theorem 1: Given any θn ∈ Θ and (ζ∗θn , u

∗
θn

) ∈ Φe with:

z∗θn = 0 (13)

Assume that there exist P = P ᵀ ∈ R3×3 and K ∈ R1×3

such that:

P =

p1 p1,2 p1,3
∗ p2 p2,3
∗ ∗ p3

 � 0 (14)

p1,3 6= 0 (15)

(A(θ) +BK)
ᵀ
P + P (A(θ) +BK) + δP ≺ 0, ∀ θ ∈ Θ.

(16)
Then, there exists (ζ∗θ , u

∗
θ) ∈ Φe and positive scalars C, ε

with
z∗θ = −p1(θ − θn)Vref

p1,3
(17)

such that the Filippov solutions ζ(t) of the closed-loop
system (6), under the control law:

u(ζ) = 1−sign
(
(ζ − ζ∗θn)ᵀPB

)
=

{
0, (ζ − ζ∗θn)ᵀPB ≥ 0

1, (ζ − ζ∗θn)ᵀPB < 0

(18)
satisfy

‖ζ(t)− ζ∗θ ‖2≤ Ce−δt‖ζ(0)− ζ∗θ ‖2,∀ t ≥ 0. (19)

for all ‖ζ(0)− ζ∗θ ‖2< ε.
Proof: The proof uses arguments based on results

provided by [7]. The control synthesis is based on the
existence of linear state feedback with gain K.
Consider the coordinates transformation η = ζ − ζ∗θ , v =
u− u∗θ. System (6) can be re-written as

η̇ = A(θ)η +Bv (20)

where relation (9) has been used. Note that v takes values
in the set V defined as follows:

V = {−u∗θ, 1− u∗θ} (21)

with u∗θ = Vref/E.
Then from (16), V (η) = ηᵀPη satisfies:

∂V

∂η
(A(θ)η +BK)η < −δV (η),∀η 6= 0. (22)

Let us denote:

CV(K) := {x ∈ Rn : Kx ∈ conv(V)} (23)

Since 0 ∈ Int{conv(V)} = [−u∗θ, 1− u∗θ] for any Vref 6= 0,
there exits a level set such that:

Ω0 := E(P, 1) ⊂ CV(K) (24)

Note that for any η ∈ Ω0, there exits N scalars αj(η) >
0,∀j ∈ IN , with

∑N
j=1 αj(η) = 1 such that:

Kη =

N∑
j=1

αj(η) vj (25)

From (22) and (25), we have:
N∑
j=1

αj(η)
∂V

∂η
(A(θ)η +Bvj) < −2δV (η),∀η ∈ Ω0 \{0}

(26)
Now considering that αj(η) > 0,∀j ∈ IN , there must be at
least one j ∈ IN such that:

∂V

∂η
(A(θ)η +Bvj) < −δV (η),∀η ∈ Ω0 \{0} (27)

Thus by choosing the control v such that

v(η) ∈ arg min
ṽ∈V

ηTPBṽ. (28)

one ensures the existence of positive scalars C and ε such
that the Filippov solutions η(t) of system (20), (28) with
‖η(0)‖2< ε, satisfy

‖η(t)‖2≤ Ce−δt‖η(0)‖2,∀ t ≥ 0. (29)

For V = {−u∗θ, 1− u∗θ}, the control

v(η) =

{
−u∗θ, if BᵀPη ≥ 0
1− u∗θ, if BᵀPη < 0

(30)

is a particular case of (28). By definition, v = u − u∗θ and
η = ζ − ζ∗θ , that is, the control applied to system (6) takes
the form

u(ζ) =

{
0, if BᵀP (ζ − ζ∗θ ) ≥ 0
1, if BᵀP (ζ − ζ∗θ ) < 0

(31)

Note that ζ∗θ is unknown, then we can re-expressed BTP (ζ−
ζ∗θ ) as:

BᵀP (ζ − ζ∗θ ) = BᵀP (ζ − ζ∗θn)−BᵀP (ζ∗θ − ζ∗θn) (32)

From (13) and (17)

BᵀP
(
ζ∗θ − ζ∗θn

)
=

(
E/L 0 0

)p1 p1,2 p1,3
∗ p2 p2,3
∗ ∗ p3


 (θ − θn)Vref

0

−p1(θ−θn)Vref

p1,3


= 0.

Since BᵀPζ∗θ = BᵀPζ∗θn , control (31) can be re-expressed
as

u(ζ) =

{
0, if BᵀP

(
ζ − ζ∗θn

)
≥ 0

1, if BᵀP
(
ζ − ζ∗θn

)
< 0

(33)

which is the same as control (18).
From (29), using the definition of η = ζ− ζ∗θ , the relation

(19) holds, which ends the proof.

B. Constructive method for the control synthesis

Here we design a subset included in the robust domain
of attraction. The subset is represented by ellipsoid E(P, 1).
This guarantees that any solution of system (20) originating
from the invariant ellipsoid is exponentially converging to the
origin with the decay rate δ for any θ ∈ Θ. The methodology
that we present here is adapted from [7]. Roughly speaking,
it is about optimizing the size of this ellipsoid, using LMI.



However, to obtain a LMI formulation, the problem could
be boiled down to optimize the size of a ball with radius
cB > 0 included in the ellipsoid.
Remark that the set conv(V) used in (23), is a convex
polytope, so it can be described by a finite number Ng of
vectors gi ∈ Rm such that [15]:

conv(V) =
{
v ∈ Rm : gᵀi v 6 1, i ∈ INg

}
(34)

Lemma 1: Consider system (20). For ε = 1/c2B and for a
given decay rate δ > 0, let P = Q−1 and λ represent the
solutions of the following LMI optimization problem:

inf
ε

s.t.

Q = Qᵀ > 0, λ > 0; (35a)
A1Q+QAᵀ

1 − λBBᵀ < −2δQ; (35b)
A2Q+QAᵀ

2 − λBBᵀ < −2δQ; (35c)

(35d)
[
εI I
I Q

]
> 0

(35e)

 1
λ

2
gkB

ᵀ

(
λ

2
gkB

ᵀ)ᵀ Q

 > 0, with k ∈ INg
.

If p1,3 6= 0 as specified in (15), then any solution of system
(20) under the control law (28) with P = Q−1 originating
from the invariant ellipsoid E(P, 1) is exponentially converg-
ing to the origin with the decay rate δ.
Proof: The set of LMIs (35b),(35c) guarantees that the
function V (η) = ηᵀPη satisfies the relation (22) with

K =
−λ
2
BᵀQ−1.

The LMI (35d) ensures that B(0, cB) ⊂ E(P, 1).
And finally the set of LMIs (35e), by applying the Schur
complement, guarantees that:

1− gᵀkKQK
ᵀgk > 0, k ∈ INg

(36)

By remarking that the minimum of V along the hyperplane
gᵀkKη = 1 is given by min

gᵀkKη=1
ηᵀPη = (gᵀkKQK

ᵀgk)−1 ,

then (36) ensures that for any η ∈ E(P, 1), we have gᵀkKη 6
1, k ∈ INg , i.e. Kη ∈ conv(V) which guarantees that the set
E(P, 1) is in the domain of attraction of the equilibrium point
η = 0.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Experimental setup presentation

The test bench used to illustrate the proposed control law
is represented in Fig. 3. The buck converter parameters are
shown in Table I.

TABLE I: Buck converter parameters
Parameters Values

R [5 , 10] Ω

E 24 V
C 40 µF
L 1.3 mH

DC Sources

Voltage and currents
sensors

Capacitor

Inductances Switching cells
(transistors)

DC electronic Load

Rapid Control Prototyping 

Control + PWM

Fig. 3: Test bench

The controller hardware is Rapid Control Prototyping
(RCP) system dSpace MicroLabBox which is composed of a
Real-Time Processor (RTP) that communicates with a user-
programmable FPGA and several (digital and analog) in-
puts/outputs. The RTP (NXP QorIQ P5020, dual-core 2GHz)
operates with a sampling frequency Ts,RTP = 1.10−4s. It
provides a human machine interface and delivers control
references to a FPGA (Xilinx R© Kintex R©-7 XC7K325T
FPGA) implementing the control law. The FPGA clock has a
period of 1.10−8s. Experimentally, the MOSFET switching
causes the appearance of transitory phenomena on variables
to be measured. For this reason, the ADC sampling needs
to be triggered with the maximum switching frequency so
that measurements are interspersed between two switches.
Knowing that on the acquisition system, a measurement takes
1.10−6s, and that both measurements can be parallelized, the
minimum time between two variations of the control can be
fixed at Ts,FPGA = 5.10−6s. A counter, implemented for
this purpose, ensures a constant shift between the switching
instants and the measurements. The proposed mechanism is
represented in Fig. 4 where we have set the value of the
sampling period to Ts,FPGA = 5µs for tests. Therefore the
update period for the control is offset from a time equals to
Ts,FPGA/2 = 2.5µs.

B. Results

Consider the system (6). For the fixed target value Vref =
18V , the set V = {−0.75, 0.25} and ζ∗θn = (1.8 18 0)ᵀ.
The set conv(V) described in (34) is characterized by g1 =
−1.33, g2 = 4. For δ = 1300, the optimization problem (35)
leads to a control law of the form (18) with:

P =

 0.1 7.11.10−4 73

7.11.10−4 3.34.10−4 0.95

73 0.95 5.74.103

 (37)

which ensures the local stabilization in the ellipsoid E(P, 1).
For the results presented in the sequel, the initial value of the
load is, first, fixed to his nominal value equals to 10Ω. Then a
load step is applied, which changes the value to 5Ω. The new
equilibrium point is therefore equal to : ζ∗θ = (3.6 18 −
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Fig. 4: ADC sampling synchronization

0.0025)ᵀ. Thereafter, we show the robustness of the control
facing this perturbation.

Remark 3: The matrix P is obtained by solving the op-
timization problem (18). Therefore, its coefficients depend
on the buck converter parameters which are involved in the
matrix A1, A2 and B. This justifies the values obtained.
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Fig. 5: Load and line transient

1) Simulation results: The simulation results are depicted
in Fig. 5 and Fig. 6. Firstly, with the nominal parameter
which are known, we can see that the control is able to
regulate the state to the reference Vref = 18V . Once the
load variation occurs, the system remains stable and the
control is able to reach the new equilibrium point ζ∗θ with
zero steady error in the controlled output. Note that it is
possible to change the dynamics of the system by modifying
the parameter δ.
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Fig. 6: Zoom of the figure 5

2) Experimental results: To prove the effectiveness of this
approach, the target value is changed to Vref = 12V for the
experimental tests. Therefore the set V = {−0.5, 0.5} and
ζ∗θn = (1.2 12 0)ᵀ. The set conv(V) described in (34)
is characterized by g1 = −2, g2 = 2. For δ = 1300, the
optimization problem (35) leads to a control law of the form
(18) with:

P =

 0.026 1.78.10−4 18.24

1.78.10−4 8.35.10−5 0.24

18.24 0.24 5.74.103

 (38)

The results are represented in Fig. 7 and Fig. 8. During
the first 0.4ms, we can see that the control steers the
state to the reference Vref , and once the load variation
occurs, it is observed that the steady state error is effectively
cancelled and the perturbation rejected. In this case, the new
equilibrium point is equal to : ζ∗θ = (2.4 12 − 0.0017)ᵀ.
In [1], the authors deal with the perturbation rejection by
assuming a bounded discrepancy in the modelling. However,
its limits are not explicitly defined. Our method allows to
guarantee the convergence of the controlled output to its
reference for all unknown parameter which belong to a
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Fig. 7: Experimental results with integral action for relay
control

known interval equal here to [5 , 10]Ω.

V. CONCLUSION

In this paper, we have proposed an application of robust
relay control applied to a buck converter. The design of the
proposed control law uses the property of the existence of
a linear state feedback and includes an integral action to
cope with unknown load. A method capable of optimizing
a subset included in the domain of attraction is presented.
Experimental results show the effectiveness of the method
which allows to cancel the steady state error and to reject
load variations. Generalizing this approach for a larger class
of switched system is the topic of future works.
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