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Abstract

In man-made environments such as indoor scenes, when
point-based 3D reconstruction fails due to the lack of tex-
ture, lines can still be detected and used to support surfaces.
We present a novel method for watertight piecewise-planar
surface reconstruction from 3D line segments with visibility
information. First, planes are extracted by a novel RANSAC
approach for line segments that allows multiple shape sup-
port. Then, each 3D cell of a plane arrangement is labeled
full or empty based on line attachment to planes, visibil-
ity and regularization. Experiments show the robustness to
sparse input data, noise and outliers.

1. Introduction

Numerous applications make use of 3D models of ex-
isting objects. In particular, models of existing buildings
(e.g., BIMs) allow virtual visits and work planning, as well
as simulations and optimizations, e.g., for thermal perfor-
mance, acoustics or lighting. The building geometry is of-
ten reconstructed from 3D point clouds captured with lidars
or using cameras and photogrammetry. But with cameras,
registration and surface reconstruction often fail on indoor
environments because of the lack of texture and strong view
points changes: salient points are scarce, point matching is
difficult and less reliable, and when calibration nonetheless
succeeds, generated points are extremely sparse and recon-
structed surfaces suffer from holes and inaccuracies.

Yet, recent results hint it is possible to rely on line seg-
ments rather than points. Lines are indeed prevalent in man-
made environments, even if textureless. From robust de-
tection [17, 41] and matching [60, 56, 18] to camera reg-
istration [13, 42, 43, 36] and 3D segment reconstruction
[22, 21], lines can be used when photometric approaches
fail for lack of texture. But as opposed to point process-
ing, line-based surface reconstruction has little been studied
[57, 34]. This paper presents a novel approach to do so.

A change of paradigm is needed to consider 3D line
segments rather than points. Transposing point-based meth-
ods to lines is difficult as many point-related assumptions do
not hold for line segments. Indeed, points should be numer-

Figure 1: Datasets (from top to bottom) Andalusian, Deliv-
eryArea, Barn, TimberFrame, Bridge: (from left to right)
image sample, 3D line segments, our reconstruction.

ous enough (often, in thousands), with a uniform enough
sampling, with an accurate enough detection and matching,
and most of all, they must belong at most to one primi-
tive. On the contrary, only a few tens of lines (rarely hun-
dreds) are typically detected, and their density and sam-
pling uniformity is so low that they cannot directly support
a good surface reconstruction. Also, due to noise in local
gradients and varying occlusions depending on viewpoints,
segment detection is less accurate and often leads to over-
segmentation and unstable end-points, ignored by most 2D
line matchers. Only after image registration and 3D seg-
ment reconstruction can 2D detections be related to actual
fragments of a 3D line segment, moreover possibly differ-
ing according to the different viewpoints. Besides, curvy
shapes as cylinders may yield unstable occlusion edges (sil-
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Figure 2: Line-based 3D reconstruction pipeline. This pa-
per covers from Input to Output.

houettes), yielding noise or outliers. Finally, some 3D lines
identify straight edges that are creases between two planar
surfaces, and thus support two shapes, contrary to points.

Belonging to two primitives rather than one requires re-
considering shape detection. In particular, in greedy itera-
tive methods, removing all data supporting a detected shape
could prevent detecting other shapes because all or a sig-
nificant fraction of features would then be missing. For in-
stance, it would not be possible to detect all the faces of a
cube given only its edges. And even if enough 3D data re-
mains for detection, shape sampling would be affected and
some shapes would be less likely or unlikely to be detected.

Overview. We propose the first complete reconstruction
pipeline that inputs 3D line segments with visibility infor-
mation and outputs a watertight piecewise-planar surface
without self-intersection (cf. Fig. 2). We first extract primi-
tive planes from the line cloud, distinguishing two kinds of
line segments: textural lines, supporting a single plane, and
structural lines, at the edge between two planes. Then we
label each 3D cell of the plane arrangement as full or empty
by minimizing an energy based on line type, line segment
support, visibility constrains and regularization.

Our main contributions are as follows:
- We define a robust and scalable plane detection method

from 3D line segments, without scene assumptions. This
novel non-straightforward RANSAC formulation takes into
account a key specificity of lines vs points, namely that they
can support up to two primitives (at edges), which breaks
the greedy iterative detection traditionally used with points.

- We totally recast the surface reconstruction approach
of [10, 6] into a line-based setting. We meaningfully and
efficiently generalize data fidelity and visibility from points
to line segments, taking care of lines supporting two planes.
We also feature a simpler and lighter treatment of noise.

- We validate our method on existing datasets, and pro-
vide new ones to assess line-based reconstruction quality.
Examples of our reconstructions are illustrated on Fig. 1.

2. Related work
Surface reconstruction has been extensively studied from

3D points [5] and/or images [16]. We consider here the
input to be 3D line segments (with viewpoints), that can be
sparse, missing, noisy and corrupted with outliers. We aim
at an idealized piecewise-planar and watertight surface.

To deal with sparse data, some methods detect planes
based on 3D features and dominant orientations [49], pos-
sibly with a Manhattan-world assumption [15], and create
piecewise-planar depth maps taking into account visibility
and local consistency. Other approaches consider 2D image
patches back-projected on 3D planes [35, 7]. In contrast,
our method produces a watertight mesh, does not impose
a few specific orientations, and can work with 3D features
only, not requiring images and not working at pixel level.

Another approach to little input data is to extend bound-
aries and primitives until they intersect [9]. It however does
not ensure a watertight reconstruction either. This is only
achieved by methods that create a volumetric partition of
the 3D space and extract the surface from full and empty
cells. The partition can be a voxel grid [45], a 3D Delaunay
triangulation [30, 55] or a plane arrangement [10, 6].

Wireframe reconstruction is what most lined-based
methods focus on: rather than surfaces, they study how to
generate meaningful 3D line segments [25, 22, 21, 23], after
line matching is performed [44]. And more general curves
than lines are not used beyond structure from motion [39].

Surface reconstruction with lines in addition to points
has received a modest attention. [2] reconstruct planes from
a 3D line and a neighboring detected point. It requires lines
surrounded with texture and is outlier-sensitive. It also does
not prevent self-intersections nor guarantees watertightness.
[4] segments images into likely planar polygons based on
3D corner junctions and use best supporting lines to recon-
struct polygons in 3D. For 2.5D reconstruction, extracted
3D lines [44] are used with a dense height map to build a
line arrangement on the ground plane and create geomet-
ric primitives and building masks [59]. In [49], pairs of
3D lines generated from vanishing directions provide plane
hypotheses, validated by 3D points. The surface is a set
of planar patches created from plane assignment to pixels.
[50] adds points uniformly sampled on the 3D lines to the
Delaunay triangulation, introducing extra parameters, and
although visibility is treated without sampling, the method
is unlikely to work on scenes with only sparse lines. [20]
also shows a meshing improvement using 3D line segments.

Surface reconstruction from line segments only, when
points fail due to the lack of texture, has little been studied.
[58] presents a single-view surface reconstruction based on
2D line segments. Lines are paired from segment extensions
along their direction, and planes orientations are sought by
RANSAC, hypothesizing mutually orthogonal correspond-
ing 3D lines. Articulating lines are found at plane inter-



sections to construct a multi-plane structure. Our structural
lines are called ‘articulation’ or ‘articulating’ lines in [58].
They are discovered late, to set plane offsets, whereas we
differentiate them early at plane detection. For robotic map-
ping, [57] considers all combinations of two non-collinear
coplanar line segments as plane hypotheses. Line segments
are then assigned to possibly multiple planes in a face com-
plex built from plane intersections. The reconstructed sur-
face is made of faces depending on an occlusion score.
Compared to our approach, this method does not scale well
to many lines, is sensitive to outliers, relies on a number of
conservative heuristics that can be detrimental to surface re-
call, involves no regularization, and does not reconstruct a
watertight mesh. As for [34], it first reprojects 3D lines into
images that see them, studies the intersection of segments
in 2D rather than planes in 3D, and infers plane hypothe-
ses. The surface is made from image faces back-projected
onto a possible 3D plane. Although less sensitive to out-
liers, this method involves heuristics and no proper regu-
larization, and it reconstructs a non-watertight mesh with
floating polygons and possible self-intersections.

Extracting 3D planes from line segments has little
been treated; the literature focuses on point clouds, chiefly
ignoring line clouds. The most popular scheme for points,
which is robust to sparsity contrary to region growing as
in [10, 6], is RANSAC [11, 46]. But as explained below,
it cannot straightforwardly be applied to line segments be-
cause it relies on different distribution hypotheses and be-
cause of the possible association of a segment to several
primitives, also invalidating line discretization into points.
Still, [57] takes line segments as input, but plane detection
is somewhat exhaustive, hence with scalability issues, and
sensitive to outliers. Using laser data, [8] exploits 3D lines
to detect planes, but it uses strong properties of lidar acqui-
sition, namely line parallelism and large and dense data.

An open question is if multi-model methods [61, 51, 24,
33], which assume non-overlapping segmented data, can be
adapted not only to large inputs but also to multiple shape
support [29, 1], as absolutely required for line segments.

Surface reconstruction from a plane arrangement is
a common topic, with variants enforcing plane regularity
[32, 37] or level of detail [54], or offering reconstruction
simplicity [38]. It is largely orthogonal to our work. Here
we build on [6], with line-specific data and visibility terms.

3. Plane detection from 3D line segments
The first step of our approach is to detect planes that are

supported by line segments in the input line cloud L. We
use the RANSAC framework [14] as it scales well to large
scenes and deals well with a high proportion of outliers,
which are unavoidable in photogrammetric data.

As argued above and shown experimentally (cf. Sect. 5),
a key requirement is to allow a line to belong to two planes.

Lines supporting one plane are considered textural; lines
supporting two planes are deemed structural. Yet some ac-
tual texture lines may support additional “virtual” planes, as
when a line is drawn around an object, e.g., at the borders of
a frieze around the walls of a room, which belongs both to
the vertical walls and to an non-physical horizontal plane.

Candidate plane construction. We generate candidates
by sampling the minimum number of observations required
to create a model, i.e., two non-collinear line segments to
define a plane. Two 3D segments la, lb can be coplanar in
two ways: they can be parallel, or their supporting infinite
lines can intersect. With noisy real data, the latter can be re-
laxed using a maximum small distance ε between the lines.
We discard parallelism because, when reconstructing man-
made environments such as buildings, it may generate many
bad planes. Indeed, two random vertical segments (e.g., de-
tected on windows) are parallel but statistically unlikely to
support an actual, physical plane (e.g., segments on differ-
ent facades). We thus threshold the angle ∠(la, lb), which
also excludes the degenerate case of collinear segments.

Greedy detection and multi-support issues. We sample
planes as line pairs and perform an iterative extraction of the
most significant planes, i.e., with the largest number of sup-
porting segments after a given number of sampling trials.
However, contrary to usual RANSAC, we cannot remove
supporting segments at once as they may actually belong to
two planes; it would lead to detecting the main planes only,
missing planes with a smaller support. The supplementary
material (supp. mat.) illustrates failure cases. Conversely,
we cannot consider all segments as available at each itera-
tion: it would statistically lead to multiple detections of the
same large planes and again miss planes with small support.

A natural way to allow a datum to be part of several de-
tection in greedy RANSAC is to remove inliers for model
sampling but not for data assignment to models [58]. But
for sparse data (which is the case with line segments), it
fails to detect models with little data support, e.g., prevent-
ing detecting all the faces of a cube from its sole edges.

Another way to allow the same datum to seed several
models is to bound their number, i.e., 2 for lines supporting
planes. But it does not work either as it often associates a
line twice to more or less the same plane. As illustrated in
the supplementary material too, this yields very bad results.

Our solution is to bound the number of supported planes
per line segment, but with an additional condition to prevent
shared segments to belong to similar planes.

Candidate plane generation. We note Λ(P ) the set of
line segments supporting a plane P , Π(l) the set of planes
supported by a line segment l ∈ L, with |Π(l) | ≤ 2, and
Li the set of segments supporting i plane(s) for i in 0, 1, 2.

We construct these sets iteratively by generating candi-
dates planes P and assigning them segments l ∈ L, some



of which may have already been assigned to another plane
Π(l). Only line segments in L2 are discarded from the pool
of available segments to support a plane, as they already
support two planes. Initially, L0 = L, and L1 = L2 = ∅.

As line segments are not put aside as soon as they are
assigned to a plane, they can be drawn again to generate new
candidate models. However, generating several times the
same plane (with the same supporting line segments) would
not only reduce efficiency, but also make some models little
likely to be drawn, as models with a large support would be
sampled much more often. To prevent it, after drawing a
first line segment la ∈ L0 ∪ L1, there are two cases. If la ∈
L0, i.e., if la has not been assigned to any plane yet, then the
second segment lb can be drawn unconditionally in L0∪L1

as it will always yield a new model. If la ∈ L1, i.e., if la
has already been assigned to some plane P ′, with Π(la) =
{P ′}, then lines in Λ(P ′), i.e., supporting P ′, are excluded
when drawing the second segment lb. This ensures la, lb
cannot participate to the same already existing model. As
the number of extracted planes is typically less than a few
hundred, this drawing can be optimized by incrementally
keeping track of the sets Λ̄(P ) = L \ (L2 ∪ Λ(P )), that
have not already been assigned to a detected plane P .

We do not prevent a line pair to be redrawn when it pre-
viously failed to generate an accepted model (for lack of
planarity, parallelism or poor support) because it does not
lead to unbalanced chances to detect a plane. And if | L | is
not too large, we can draw systematically all line pairs.

Note that we do not prevent a line pair to be redrawn
when it previously failed to generate an accepted model (for
lack of planarity, parallelism or poor support). It is not an
issue as it does not lead to unbalanced chances to detect a
plane. Yet, when the number of input line segments is not
too large, we can perform a systematic drawing of all line
pairs, possibly exploiting the above filtering. In this case,
all possible models are considered and at most once.

Inlier selection. After picking a candidate plane P , we
populate the support Λ(P ). For this, we go through each
segment l ∈ L0 ∪ L1 and assign it to Λ(P ) if close enough
to P , i.e., if d(l, P ) ≤ ε. Several distances can be used,
such as the average or the maximum distance to the plane.

If l already supports some other plane P ′, i.e., if Π(l) =
{P ′}, then also assigning l to P would make it a structural
segment. As such, we impose that it lies close to the line at
the intersection of both planes, i.e., d(l, P ∩ P ′) ≤ ε. This
condition is stronger than imposing both d(l, P ) ≤ ε and
d(l, P ′) ≤ ε as the angle between P and P ′ could be small
and l could then be close to both P and P ′ although far
from their intersection. This condition is actually crucial.
Without it, we would tend to associate l to two planes P and
P ′ which are very similar, and fail to detect crease lines.

Plane selection. Last, we sample Niter models and keep
the plane with the largest number of inliers. (See the

supp. mat. for the abstract version of the algorithm.)
This plane detection differs from [58], that samples and

populates planes from 2D line pairs instead of 3D lines,
making inlier search quadratic, not linear, and requiring
heuristically to only consider pairs defined by intersecting
segment extensions, which is highly unstable due to noise in
endpoints and which induces plane splitting at occlusions.
We have none of these downsides. Besides, structural lines
in [58] are found with heuristics after RANSAC, consider-
ing plane pairs and candidate lines, which only makes sense
as they have few (<10) planes. We get them directly, with-
out heuristics, in greater number, and for many more planes.

Plane refitting. After each plane Pbest is selected, it is ac-
tually refitted to its inliers Λbest before being stored into Π,
based on the (signed) distance of the segment endpoints,
weighted by the segment length. As it changes the plane
equation, we check whether the slice centered on the refit-
ted plane P ′ with thickness ε now contains extra segments.
If so, they are added as inliers and refitting is repeated.

Plane fusion. Modeling a building may require different
levels of details, including small plane differences such as
wall offsets for door jambs, baseboards or switches. But
setting a small ε to do so may easily break a wall or a ceil-
ing into several fragments because it is not perfectly planar
due to construction inaccuracies or load deflections. Each
country actually has standards (official or not) defining con-
struction tolerances, e.g., 1 cm error every 2 m for walls.

To prevent this arbitrary fragmentation while preserving
details, we add a plane fusion step with a tolerance higher
than ε, i.e., with a maximal distance threshold εfus > ε to
the plane refitted on the union of inliers. This allows merg-
ing at εfus accuracy several plane fragments detected at ε.
However, to make sure it applies only to cases described
above, we impose a maximum angle θfus when merging
two planes and minimum proportion pfus of common inliers.
Concretely, we consider all pairs of planes in Π whose angle
is less than θfus, sort them, pick the pair with the smallest
angle, and try merging it. If it succeeds, the two planes are
removed, the new refitted plane is added, and the priority
queue based on angles is updated before iterating. If it fails,
the pair of planes is discarded and the next pair is consid-
ered. This is similar to a heuristics used in Polyfit [38].

Plane limitation. To make sure not too many planes are
given to the surface reconstruction step, because of possible
limitations (cf. Sect. 6), the algorithm may be stopped after
at most Nmax (best) greedy detections.

4. Surface reconstruction
The second step of our approach is surface reconstruc-

tion based on detected planes and observations of 3D line
segments. Rather than selecting plane-based faces with hard
constraints for the the surface to be manifold and watertight



[38], we follow [10, 6] and consider a scene bounding box,
partition it into 3D cells constructed from the planes, and
assign each cell with a status ‘full’ or ‘empty’ depending on
segment visibility, with a regularization prior coping with
sparse and missing data. The reconstructed surface is then
the interface between full and empty cells. By construction,
it is watertight and free from self-intersections. Our contri-
bution is a total reformulation of [10, 6] in terms of lines,
making the difference between textural and structural lines,
and with a lighter treatment of noise in data.

The volume partition is given by a cell complex C made
from an arrangement of planes detected in the line cloud.
For each cell c ∈ C, we represent occupancy by a discrete
variable xc ∈ {0, 1}: 0 for empty and 1 for full. A surface
is uniquely defined by a cell assignment x : C 7→ {0, 1},
where x(c) = xc. The optimal cell assignment x is de-
fined as the minimum of an energy E(x) which is the sum
of three terms: a primitive term Eprim(x) penalizing line
segments not lying on the reconstructed surface, a visibility
term Evis(x) penalizing surface reconstructions on the path
between observations and their viewpoints, and a regular-
ization term Eregul(x) penalizing complex surfaces.

E(x) = Eprim(x) + Evis(x) + Eregul(x) (1)

Dealing with noise. To deal with noise in input data, [6]
introduces slack in the choice of cells penalized for not be-
ing at the reconstructed surface and lets regularization make
the right choices. The resulting formulation and resolution
is heavy. Instead, we assume that plane extraction (Sect. 3)
did a good-enough job: any segment supporting a plane
(resp. two planes) is considered as a noisy inlier and is pro-
jected on the plane (resp. the intersection of the two planes).
A segment not supporting any plane is treated as an out-
lier for data fidelity (no penalty for not being on the recon-
structed surface) but not for visibility (penalty for not being
seen from viewpoints if hidden by reconstructed surface).

Primitive term. Eprim(x) penalizes line segments that
support planes but do not lie on the reconstructed surface.
But it does not penalize the presence of matter in front of
segments w.r.t. viewpoints, letting the visibility term do it.
Segments that support no plane are ignored as if outliers.

For a segment l supporting one plane P , and for each
viewpoint v seeing at least a part of l, we consider the set
C of all cells c immediately behind l w.r.t. v, possibly only
along a fraction lc of l due to occlusions (cf. Fig. 3(a)). Each
c∈C is penalized if not full, with a cost 1−xc.

For a segment l supporting two planes P1, P2, a cell
behind l w.r.t. viewpoint v need not be full. (Penalizing
emptiness actually yields terrible results, as the supp. mat.
shows.) Any configuration is valid as long as the space
around l is not empty (cf. Fig. 3(b)): salient edges, reentrant
edges or planes (if the seemingly structural line happens to
only be textural). To penalize only when all three cells c

viewpoint Occluded
part of 

    part 
of    in  

(a) Primitive term, l ∈ P

viewpoint

   part of   
in     ,     ,    

(b) Primitive term, l ∈ P1 ∩P2

Occluded
part of 

Figure 3: (c) Visibility term

around a visible fraction of l are empty (ignoring the cell in
front), we consider a cost of max(0, 1 −

∑
c xc), which is

equal to 1 in this case, and 0 in other configurations.
Both textural and structural cases can be covered with a

single formula, where we weigh the cost by the length of the
visible fraction of l and normalize it by a scale of interest σ:

Eprim(x)=
∑

l∈L1∪L2

∑
v∈V(l)

∑
C∈C(l,v)

| lC |
σ

max(0, 1−
∑
c∈C

xc)

(2)
where L1∪L2 is the set of segments l supporting at least
one plane, V(l) is the set of viewpoints v seeing l, C(l, v) is
the set of cells c adjacent to l but not in the triangles of sight
from v to non occluded fragments of l (locally 1 or 3 cells
as to whether l belongs to 1 plane or 2 planes), lC is the set
of fragments of l in each cell c ∈ C, and | lC | is the sum of
the lengths of segment fragments in lC .

Visibility term. Evis(x) penalizes reconstructed surface
boundaries between viewpoints and segments, as [10, 6]. It
measures the number of times a 3D segment l is to be con-
sidered an outlier as it should not be visible from a given
viewpoint v, weighted by the length of the visible parts lv,f
of l on the offending faces f (possibly fragmented due to
occlusions). Contrary to Eprim(x), all segments are consid-
ered in Evis(x), not just segments supporting a plane:

Evis(x)=λvis

∑
l∈L

∑
v∈V(l)

∑
f∈F(l,v)

| lv,f |
σ
|xc+v

f
− xc−v

f
|

(3)
whereF(l, v) is the set of faces f of the complex intersected
by the visibility triangle (l, v), at some unoccluded segment
fractions lv,f totalizing a length of | lv,f |, and c+v

f , c−vf are
the cells on each side of f (c+v

f being nearest to v).

Regularization term. Eregul(x) penalizes surface com-
plexity as the sum of the length of reconstructed edges and
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Figure 4: HouseInterior: (1) an image of the dataset, (2) points densely sampled on surface, (3) reconstruction with [10],
(4) failed reconstruction with [10] from points sampled on lines, (5) 3D lines detected with Line3D++ [19], with noise and
outliers, (6) our reconstruction, which is nonetheless superior, (7) histograms of distance errors w.r.t. ground truth (m).

the number of corners, with relative weights λedge, λcorner,
as defined in [6]. Area penalization makes little sense here
due to the low density of observations in some regions.

Solving. Minimizing this higher-order energy is a non lin-
ear integral optimization problem (max in eq. (2)). As in
[6], integral variables are relaxed to real values and slack
variables are introduced. The resulting linear problem is
solved and fractional results are rounded to produce the final
integral values. See details in the supplementary material.

Properties of reconstructed surface. By construction,
the surface we produce is watertight, even if the input data
is very sparse, and not self-intersecting. Our process treats
outliers (with RANSAC at plane detection stage, and reg-
ularization during reconstruction) and noise (with a model
tolerance at plane detection stage and via projections when
reconstructing). It has also several positive properties:
• Insensitivity to line over-segmentation: if a 3D line

segment l is split, E(x) does not change and thus the same
surface is reconstructed. This provides robustness to over-
segmentation, which is a common weakness of line segment
detectors. (It may however change inlier-ness.)
• Little sensitivity at endpoints: given a line segment

l, slightly changing its endpoint only makes a marginal
change to E(x). (Yet it may change inlier-ness too.)
• Insensitivity to dummy planes: given a 3D cell assign-

ment x, if an extra plane is randomly inserted in the arrange-
ment, the value of Evis(x) does not change as it only de-
pends on surface transitions encountered on visibility path.

5. Experiments
We experimented both with real and synthetic data, for

qualitative and quantitative analysis. The real datasets
consist of images of a ‘MeetingRoom’ from [43], of
a ‘Barn’ from Tanks and Temples [28], of a ‘Deliver-
yArea’, a ’Bridge’ and of a corridor named ‘Terrains’ from
ETH3D [48]. All scenes are poorly textured (walls of uni-
form colors). The synthetic datasets include a ‘Timber-
Frame’ house [25] as well as two new synthetic datasets, to

σp
† ε εfus θfus pfus Niter Nmax λvis λedge λcorner

2.5 2 cm 3 ε 10° 20% 50k 160 0.1 0.01 0.01

Table 1: Parameters (all datasets are metric). † in Line3D++

Dataset #img | L | |Π | |Πfus | | L0 | | L1 | | L2 | #res
TimberFrame 241 7268 140 131 264 4507 2497 79024
Andalusian 249 1234 160 148 242 597 395 14503
MeetingRoom 32 831 135 130 25 383 423 9028
Terrains 42 3223 120 105 9 356 2858 18189
DeliveryArea 948 1586 160 160 30 771 785 29222
Barn 410 7936 160 141 41 2157 5738 83989
Bridge 110 7437 150 102 338 4168 2931 48315
HouseInterior 159 1995 120 106 1 286 1708 18304

Table 2: Dataset statistics: number of images #img, number
of 3D line segments | L |, number of 3D planes before fu-
sion |Π |, number of 3D planes after fusion |Πfus |, number
of segments supporting no plane | L0 |, one plane | L1 | or
two planes | L2 |, and total number of sub-segments #res.

be publicly released. ‘HouseInterior’ is a living room, with
both large planar areas (walls, floor and ceiling) and smaller
details (chair and table legs). ‘Andalusian’ is the outside of
a modern house; it is piecewise-planar and uniformly white.

MeetingRoom was calibrated with LineSfM [40, 43] and
we recalibrated the other real datasets using Colmap [47],
with distortion correction as it impacts line detection. The
synthetic datasets came with their exact calibration.

We then ran Line3D++ [19], as defined in [21], to de-
tect and reconstruct 3D line segments. As seen on Figs. 1,
4, 5 and in the supplementary material, line segments ob-
tained from Line3D++ are extremely noisy: lines that are
mostly parallel, orthogonal, planar or colinear in the origi-
nal scene turn out to be reconstructed with visible discrep-
ancies. There are also many missing lines and many out-
liers. For instance, in MeetingRoom, many segments are
floating in the air in the middle of the room. Line3D++ also
tends to duplicate the same segment many times with a little
displacement, leading to a treatment as noise or outlier.

Finally, we ran our plane detection and surface recon-
struction, using a complete plane arrangement as baseline
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Figure 5: MeetingRoom (a), Terrains (b): (1) image sample, (2) segments from Line3D++ [19, 21], (3) our reconstruction,
point-based reconstructions with Colmap [47] then (4) Poisson [27], (5) Delaunay [31], (6) Chauve et al.[10], (7) Polyfit [38].

(see Sect. 6). Tab. 1 lists default parameters for all datasets.
We often had to tweak σp of Line3D++ to get decent input
lines, and sometimes our λedge = λcorner (see the supp. mat.
for a sensitivity study). Tab. 2 reports detection statistics.

Comparing to point-based reconstruction. To show the
relevance of lines for scenes with little or no texture, in
contrast to point-based methods (which are doubtlessly su-
perior on textured scenes), we compare our method to a
point-based piecewise-planar reconstruction [10] on House-
Interior (cf. Fig. 4). Even when densely sampling point on
the ground-truth surface as seen from the viewpoints, [10]
yields a reconstruction with missing details (e.g., the lounge
table) due to missing primitives in hidden area (e.g., under
the table). Moreover, [10] uses a regularization that min-
imizes the reconstructed area, which is relevant for points
uniformly sampled on the surface but strongly penalizes
unsampled regions (e.g., invisible planes of lounge table).
In contrast, our method leads to a better plane discovery
and a reconstruction robust to non-uniform sampling. (We
also tried reconstructing from points sampled on the 3D
lines, but the result is terrible; many planes are missed as
points belong at most to one plane. As lines mostly lie on
edges, the area cost also dominates the data term and creates
holes in large planar regions.) More comparisons, also with
Colmap [47] and Polyfit [38], are on Fig. 5. The supp. mat.

also studies the sensitivity to the number of images.
Comparing to other line-based reconstruction methods.
As said above, there are very few reconstruction methods
based on lines. [34] mostly reconstructs a soup of planes,
sometimes with adjacencies, but without any topological
guarantee. [57] provides a slightly more behaved mesh, but
reconstructions still look messy and overly simple, although
usable enough for robotic planning. No code nor data are
available for comparing with either of these methods.
Quantitative evaluation. We evaluate the quality of re-
construction with two criteria: precision (proximity to the
ground truth) and completeness (how much of the ground
truth is reconstructed). For this, we pick 2M points both on
the reconstruction and on the ground truth, and we compute
the nearest-neighbor distance from one set to the other.

Histograms of distances for HouseInterior are plotted on
Fig. 4(7). Regarding precision, most of the points sampled
on the reconstruction (91.4%) lie at less than 5 cm to the
ground truth, showing that our RANSAC planes fit well the
underlying surface and that our energy properly balances
data fidelity and regularization. The error profile for com-
pleteness is similar, and 95% of the points on the ground
truth are less than 8 cm to the reconstruction. It shows our
regularization term do not over-smooth too much the sur-
face by erasing details that would penalize completeness.
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Figure 6: Robustness of RANSAC on lines for a cube de-
fined by its edges. Value in grid is the average number of
cube planes found, depending on the perturbation.

Qualitative evaluation. Figs. 1, 4, 5 illustrates our re-
constructions with sparse data (Andalusian, DeliveryArea,
MeetingRoom), and more (TimberFrame, Barn) or less tex-
ture (HouseInterior), possibly with thin objects like beams
(Bridge). Compared to usual point clouds, our 3D line
clouds are extremely sparse. Despite the noise on inliers
and the number of outliers due to Line3D++, our method
is able to reconstruct a good approximation of the scenes,
which illustrates the robustness of our approach. Still Barn
shows that it is hard to reconstruct a sieve-like shape (bal-
cony) due to the visibility lines traversing it.

Computation times. Although computing the visibility
term is linear in the number of sub-segments, it is the most
time-consuming part as it depends mostly on the number of
cells in the plane arrangement, which is up to cubic in the
number of planes. Time required for performing a whole
reconstruction varies from 30 minutes (MeetingRoom) to 3
hours 30 minutes (TimberFrame). Creating the linear pro-
gram from scene data takes more time than solving it.

Robustness of plane detection. To explore the robustness
of our RANSAC formulation, we experimented with a toy
example made of the 12 edges of a cube. We seek to ex-
tract the 6 planes associated to the 6 faces of the cube. We
consider two types of perturbations: noise and outliers.

The cube has an edge length of 2. We add noise to each
segment endpoint, drawn from a uniform distribution with
standard deviation ranging from 0 to 0.35. Outliers, from
0 to 50, are segments generated by uniformly picking pairs
of points in a 2-radius ball. Finally for each couple (noise,
#outliers), we report the number of planes that include the
4 edges of an actual face of the cube, using parameters ε =
0.06 and Niter = 100, and averaging over 20 iterations.

Results are presented on Fig. 6. As expected, with a low
level of perturbation, all planes are perfectly extracted. As
the level of perturbation increases, for both noise and out-
liers, the rate of missed detections increases. Yet, even with

a high level of noise, corresponding to a highly distorted
cube (very non planar faces), we get a mean of 3.95 planes.

Ablation study. We compared with variants of RANSAC
where (a) one line supports at most one plane, which leaves
fewer lines for ulterior extractions and detects less planes,
(b) we only consider d(l, P ) ≤ ε to decide if segment l is an
inlier to candidate plane P , ignoring if l∈L1, which misses
many planes. We also tried ignoring the notion of structural
lines at reconstruction time, treating segments with two sup-
ports as two ordinary lines (one for each plane), which fails
miserably. Last, we compared with a regularization using
only corners or edges, which yields lower quality recon-
structions. See supp. mat. for details and illustrations.

6. Conclusion

We studied the specifics of line-based reconstruction and
proposed the first method to create an intersection-free, wa-
tertight surface from observed line segments. Experiments
on synthetic and real data show it is robust to sparsity, out-
liers and noise, and that it outperforms point-based methods
on datasets with little or no texture.

Limitations and perspectives. The quality of 2D and 3D
line segments at input (from Line3D++) is the main bottle-
neck of our method. Improving them would be very helpful.

Mainly, it would be specially relevant too to merge points
and lines treatments into a single framework to offer a
smooth transition from textured regions to textureless areas.

Also, in our experiments, we used the full-extent plane
arrangement, i.e., with planes extending all the way to the
scene bounding box. This is not intrinsic to our method;
it merely provides a baseline. Because of a cubic com-
plexity in the number of planes, the acceptable number of
planes is limited to a few hundreds, which is in practice of-
ten enough for a single room or the exterior of a building,
but not enough for a complete BIM model. (It is also easy
to keep the best few hundred planes after RANSAC detec-
tion to make sure the pipeline succeeds.) Yet, preliminary
experiments with a coarse-to-fine approach show promis-
ing results for scaling to large scenes. In the cell complex,
limiting the plane extent with a heuristic on a coarse voxel-
based partition [10] or adapting 2D kinetic polygonal plane
partitioning [3] to 3D would also reduce the complexity.

Moreover, defining a notion of extent for line-detected
planes, similar to α-shapes in the case of points [12] but
adapted to lines [52, 53], could also be used to introduce so-
called ‘ghost planes’, corresponding to unobserved, hidden
planes at occluding edges of observed surfaces [10, 6].

Last, global regularization weights favor highly sampled
surfaces. Adapting them to be more sensitive to weakly sup-
ported surfaces as in [26] could improve the results.



References
[1] S. Baadel, F. Thabtah, and J. Lu. Overlapping clustering:

A review. In SAI Computing Conference (SAI 2016), pages
233–237, July 2016. 3

[2] C. Baillard and A. Zisserman. Automatic reconstruction of
piecewise planar models from multiple views. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR
1999), pages 2559–2565, Ft. Collins, CO, USA, 1999. 2

[3] J. Bauchet and F. Lafarge. KIPPI: kinetic polygonal parti-
tioning of images. In IEEE Conference on Computer Vision
and Pattern Recognitio (CVPR 2018), pages 3146–3154, Salt
Lake City, UT, USA, June 2018. 8

[4] H. Bay, A. Ess, A. Neubeck, and L. Van Gool. 3D from line
segments in two poorly-textured, uncalibrated images. In 3rd
International Symposium on 3D Data Processing, Visualiza-
tion, and Transmission (3DPVT 2006), pages 496–503, June
2006. 2

[5] M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine,
A. Sharf, and C. Silva. State of the Art in Surface Recon-
struction from Point Clouds. In Eurographics 2014 - State of
the Art Reports, volume 1 of EUROGRAPHICS star report,
pages 161–185, Strasbourg, France, Apr. 2014. 2

[6] A. Boulch, M. de La Gorce, and R. Marlet. Piecewise-planar
3D reconstruction with edge and corner regularization. Com-
puter Graphics Forum (CGF 2014), 2014. 2, 3, 5, 6, 8

[7] A. Bourki, M. de La Gorce, R. Marlet, and N. Komodakis.
Patchwork stereo: Scalable, structure-aware 3D reconstruc-
tion in man-made environments. In IEEE Winter Confer-
ence on Applications of Computer Vision (WACV 2017), Mar.
2017. 2

[8] C. Cabo, S. G. Cortes, and C. Ordonez. Mobile laser scanner
data for automatic surface detection based on line arrange-
ment. Automation in Construction, 58:28 – 37, 2015. 3

[9] U. Castellani, S. Livatino, and R. B. Fisher. Improving en-
vironment modelling by edge occlusion surface completion.
In 1st International Symposium on 3D Data Processing Visu-
alization and Transmission (3DPVT 2002), pages 672–675.
IEEE, 2002. 2

[10] A. L. Chauve, P. Labatut, and J. P. Pons. Robust piecewise-
planar 3D reconstruction and completion from large-scale
unstructured point data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2010), pages 1261–
1268, June 2010. 2, 3, 5, 6, 7, 8

[11] S. Choi, T. Kim, and W. Yu. Performance evaluation of
ransac family. In British Machine Vision Conference (BMVC
2009), 2009. 3

[12] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the shape
of a set of points in the plane. IEEE Transactions on Infor-
mation Theory, 29(4):551–559, July 1983. 8

[13] A. Elqursh and A. Elgammal. Line-based relative pose esti-
mation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2011), pages 3049–3056, June 2011. 1

[14] M. A. Fischler and R. C. Bolles. Random sample consen-
sus: A paradigm for model fitting with applications to im-
age analysis and automated cartography. Commun. ACM,
24(6):381–395, June 1981. 3

[15] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.
Manhattan-world stereo. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2009), pages 1422–
1429, June 2009. 2

[16] Y. Furukawa and C. Hernández. Multi-view stereo: A tu-
torial. Foundations and Trends in Computer Graphics and
Vision (CGV 2015), 9(1-2):1–148, 2015. 2

[17] R. Grompone von Gioi, J. Jakubowicz, J.-M. Morel, and
G. Randall. LSD: a line segment detector. Image Processing
On Line (IPOL 2012), 2:35–55, 2012. 1

[18] K. Hirose and H. Saito. Fast line description for line-
based SLAM. In British Machine Vision Conference (BMVC
2012), 2012. 1

[19] M. Hofer. Line3D++, 2016. https://github.com/
manhofer/Line3Dpp. 6, 7

[20] M. Hofer, M. Maurer, and H. Bischof. Improving sparse 3D
models for man-made environments using line-based 3D re-
construction. In 2nd International Conference on 3D Vision
(3DV 2014), volume 1, pages 535–542, Dec. 2014. 2

[21] M. Hofer, M. Maurer, and H. Bischof. Efficient 3D scene
abstraction using line segments. Computer Vision and Image
Understanding (CVIU 2016), 3 2016. 1, 2, 6, 7

[22] M. Hofer, A. Wendel, and H. Bischof. Incremental line-
based 3D reconstruction using geometric constraints. In
British Machine Vision Conference (BMVC 2013), 2013. 1,
2

[23] N. Ienaga and H. Saito. Reconstruction of 3D models con-
sisting of line segments. In C.-S. Chen, J. Lu, and K.-K.
Ma, editors, Asian Conference on Computer Vision work-
shops (ACCVw 2017), pages 100–113. Springer International
Publishing, 2017. 2

[24] H. Isack and Y. Boykov. Energy-based geometric multi-
model fitting. International Journal of Computer Vision
(IJCV 2012), 97(2):123–147, Apr 2012. 3

[25] A. Jain, C. Kurz, T. Thormählen, and H. P. Seidel. Exploiting
global connectivity constraints for reconstruction of 3D line
segments from images. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2010), pages 1586–
1593, June 2010. 2, 6

[26] M. Jancosek and T. Pajdla. Multi-view reconstruction pre-
serving weakly-supported surfaces. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR 2011),
pages 3121–3128, 2011. 8

[27] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface re-
construction. In 4th Eurographics Symposium on Geometry
Processing (SGP 2006), pages 61–70, 2006. 7

[28] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun. Tanks
and temples: Benchmarking large-scale scene reconstruc-
tion. ACM Transactions on Graphics (TOG 2017), 36(4),
2017. 6
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