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Abstract

In this work, we propose a new Gappy reduced order method to fill the gap
within an incomplete turbulent and incompressible data field in such a way
to satisfy the physical and topological changes of the fluid flow after a non-
parameterized geometrical variation in the fluid domain 1. A single baseline
simulation is assumed to be performed prior geometrical variations. The
proposed method is an enhancement of the Gappy-POD method proposed
by Everson and Sirovich in 1995, in the case where the given set of empirical
eigenfunctions is not sufficient and is not interpolant for the recovering of
the modal coefficients for each Gappy snapshot by a least squares procedure.
This happens when the available data cannot be written as an interpolation
of the baseline POD modes. This is typically the case when we introduce
non-parameterized geometrical modifications in the fluid domain. Here, after
the baseline simulation, additional solutions of the incompressible Navier-
Stokes equations are solely performed over a restricted fluid domain, that
contains the geometrical modifications. These local Large Eddy Similations
that we will call hybrid simulations are performed by using the immersed
boundary technique, where the latter is a fluid boundary and is defined by
the baseline velocity field. Then, we propose to repair the POD modes using
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a local modification of the baseline POD modes in the restricted fluid domain.
The modal coefficients of the least squares optimization of the Gappy-POD
technique are now well recovered thanks to these updated modes, i.e. the
residual of the Gappy-POD technique in the restricted fluid domain is now
equal to zero. Furthermore, we will propose a physical correction of the latter
enhanced Gappy-POD modal coefficients thanks to a Galerkin projection of
the full Navier-Stokes equations upon the new compression modes of the
available data. This repairing procedure of the global velocity reconstruction
by the physical constraint was tested on a 3D semi-industrial test case of
a typical aeronautical injection system. The speed-up relative to this new
technique is equal to 100, which allows us to perform an exploration of two
new designs of the aeronautical injection system.

Keywords: Proper Orthogonal Decomposition (POD), novel Gappy
reduced order method, Gappy-POD, Non-parameterized geometrical
variation, hybrid approach, Locally available data, Galerkin projection,
dynamic extrapolation, Navier-Stokes equations, Large Eddy Simulation
(LES), eeronautical injection system, design exploration in industry,
efficiency, robustness

1. Introduction

A large number of complex simulations of 3D unsteady and incompress-
ible turbulent flows encountered in aeronautical engines, associated with dif-
ferent geometrical configurations, are crucial for designing new technologies.
We consider the conception of the injection system in an aeronautical engine.
We need multiple 3D incompressible and unsteady simulations of the non-
reacting fluid flow in the primary zone of the combustor that occurs before
the ignition point. These simulations are associated with different geometries
of the injection system, so that the topology of the resulting incompressible
and turbulent fluid flow could influence the flame stability in the combus-
tion zone of the gas turbine. This industrial process is challenging because
of the size and the complexity of these numerical simulations. We propose
to use reduced order modeling technologies to speed computational return
times. Recently, we have proposed a new physical methodology to stabilize
the classical POD-Galerkin Reduced Order Modeling (ROM) for the turbu-
lent and incompressible Navier-Stokes equations, in order to cover a proper
evolution of the Turbulent Kinetic Energy (TKE) spectrum and guarantee

2



a conservation of the kinetic energy within the ROM, see [1, 2]. Neverthe-
less, if the proposed ROM is accurate for a given geometrical configuration,
its accuracy is not guaranteed for complex geometrical variations, such as
non-parameterized topological ones. The geometrical inaccuracy within a
baseline reduced order model associated with a reference reduced order POD
basis comes from the first POD mode corresponding to the mean velocity
field. The velocity field needs to be predicted correctly in the entire domain,
so that the Galerkin projection is predictible, for the new geometrical config-
uration. To remedy for this inaccuracy, we propose a novel approach based
on the application of the Gappy- POD algorithm. The Gappy-POD has
been first introduced in [3] as a technique for reconstruction of incomplete
data field, assuming that the incomplete data vector represents a solution
whose behavior can be characterized with an existing snapshots set. In [4],
the POD technique was applied for inverse design purpose, in order to de-
termine the optimal airfoil shape as an interpolation of known designs. In
this paper, the POD technique was also applied in an iterative procedure
in order to determine a POD associated with an incomplete pressure field
on an airfoil at a given angle of attack. This iterative scheme was proposed
for the first time in Everson et al. [3] for finding empirical eigenfunctions
from the gappy data and it has been shown numerically that the method
yields a spectrum and eigenfunctions that are close to those obtained from
unmarred data. In Murray et al. [5], the Gappy-POD was applied in order
to complete velocity data obtained using particle image velocimetry, which is
often marred by missing data in various spatial locations due to inconsistent
seeding and other factors. The results demonstrate that the Gappy-POD
can provide an estimate that is accurate within the experimental uncertainty
of the measured data. In Csi et al. [6], the Gappy-POD approach was per-
formed on the inverse design of various airfoil shapes. In Raben et al. [7], the
Gappy-POD method was applied to replace erroneous measurements in digi-
tal particle velocimetry (DPIV), where a locally adaptive criterion allows for
determination of the optimum number of POD modes required for the recon-
struction of each replaced measurement. In Duan et al. [8], the Gappy-POD
was applied for aerodynamic shape optimization. In Mifsud et al. [9], the
Gappy-POD is used to fuse wind-tunnel measurements and computational
fluid dynamics (CFD) data to provide a consistent and more comprehensive
output of greater utility. In Jiang et al. [10], the Gappy-POD was applied in
a sensor-CFD data fusion procedure for airflow field estimation.

Other than Gappy-POD methods have been proposed to deal with flows in
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variable geometries. Hay et al. [11] have used the Lagrangian sensitivity with
respect to shape parameters of a baseline POD basis, in order to compute
subsequently a reduced order model at perturbed states. However, there is
no guarantee these bases will be divergent free once mapped on any other
geometry. This technique was applied for the 2D incompressible Navier-
Stokes equations for a flow over a square cylinder. The considered mapping
is the rotation of the cylinder. We cite also [12], where a POD method
has been developed for modeling nonlinear flows with deforming meshes,
thanks to dynamic functions that depend on parameters associated with
flow unsteadiness.

In this work, we consider the turbulent and incompressible Navier-Stokes
equations and we suppose a non-parameterized geometric variation locally
in the fluid flow domain. We want to predict correctly and efficiently the
velocity field in the scope of this new geometry, from a local high-fidelity
computational knowledge available in a restricted fluid domain (RFD). This
domain surrounds the geometrical modifications. A Gappy-POD is used as
a first prediction step of the flow field in the scope of the new geometry
defined by the interpolation of a pre-computed POD basis associated with
one or several baseline high-fidelity simulations. The interpolation modal
coefficients are determined via an optimization problem of the squared L2-
error between the available high-fidelity data around the non-parameterized
geometric modification and the interpolation, evaluated only in the RFD.
We will show that the interpolation assumption of the available data by the
baseline POD basis vectors will be the origin of high point-wise errors on the
velocity field topology in the scope of the new geometry, because of the non-
parameterized geometrical changes. Indeed, the residual of the Gappy-POD
optimization problem is far from being equal to zero in this case, due to the
impossible interpolation of the new geometrical available data by a baseline
eigenbasis, which is of different topology. In order to correct these point-
wise errors, we propose a second correction step which requires the local
modification of the baseline POD basis vectors in order to fit the coherent
structures of the local geometrical available physical data. The new basis
vectors are termed updated modes. The residual of the optimization Gappy-
POD problem will be equal to zero in this case. We precise that our proposed
algorithm for the correction of the predicted missing data is efficient, because
only one local POD performed with the local available data followed by a
Gappy-POD is sufficient to correct and refine the topology of the fluid flow
in the scope of the geometrical modification. Furthermore, it is important to
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precise that the local data around the geometrical modification is obtained
thanks to the solution of a hybrid model coupling the restricted fluid domain
to the reduced projection of the equations outside this domain. The coupling
is an application of a penalization approach of the velocity field by setting
a reference reduced order solution associated with a reference configuration
as a physical fluid immersed boundary. This means that at the beginning
we do not have access to any time and space information of the fluid flow
in the new geometrical configuration, and we will access this information
successively thanks to the hybrid approach and the newly proposed Gappy
reduced order method.

The paper is organized as follows: in section 2, we briefly recall the Proper
Orthogonal Decomposition technique. In section 3, we recall the Gappy-POD
technique. In section 4, we give the mathematical framework of the POD-
Galerkin projection of the 3D Navier-Stokes equations. In section 5, we
show, for an incomplete 2D unsteady and laminar fluid flow, the impact of
non-parameterized geometrical variation in the fluid domain on the accuracy
of the classical Gappy-POD technique. In section 6, we propose our novel
Gappy reduced order technique as discribed above. In section 7, numerical
applications on a 2D laminar case and a 3D semi-industrial aeronautical
injection system, are presented. This will enable us to perform a robust
design exploration of this semi-industrial injection system with respect to
non-parameterized geometrical variations in the swirler, such as the opening
diameter of the primary zone of the combustor or the opening angle of this
zone, with a speed up of the order of 100 with respect to a LES computation.

2. Proper Orthogonal Decomposition (POD)

We denote by X = [L2(Ω)]3 the functional Hilbert space of the squared
integrable functions over a bounded 3D−open set Ω. The corresponding in-
ner product is the one associated with the kinetic energy functional norm.
They will be denoted respectively by (., .) and ‖.‖. Consider U(t) ∈ X the
baseline velocity field of an unsteady incompressible flow, prior any geomet-
rical modification. A reduced order POD subspace is obtained thanks to the
snapshots method [13]. More precisely, if we discretize the time interval to M
points, then the snapshots set is given as follows: S = {U(ti) i = 1, ...,M}.
The associated POD eigenmodes Φn, n = 1, ...,M , computed via the snap-
shots POD [13] start with the solution of the following eigenvalues problem
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given the temporal correlations matrix:

Cij = (U (ti) , U (tj)), (1)

of size M×M . We denote by (An)n=1,...,M = (Ai,n)1≤i≤M and (λn)n=1,...,M for
n = 1, ...,M , sets of respectively orthonormal eigenvectors and eigenvalues
of the matrix C. Then, the POD-eigenmodes associated with λn, are given
by:

Φn(x) = 1√
λn

M∑
i=1

Ai,nU(ti, x) ,∀x ∈ Ω ∀n = 1, ...,M. (2)

3. Gappy-POD

By following [3], a mask has to be defined. Here, the support of this
mask is the RFD where the POD modes of the baseline simulation are not
consistent with the new geometry. If we denote by ΩR the RFD, then:

• n(x) = 1 if x ∈ ΩR (U(t, GNew) is known),

• n(x) = 0 otherwise (U(t, GNew) is unknown).

Where, we add the notation of ”GNew” to a new physical quantity we need
to compute in association with a new geometry, to differentiate it with the a
priori baseline quantities that has been computed for a reference geometry.
At this point, we suppose that we have access to the high-fidelity model for
the new geometry GNew in ΩR only: U(t, GNew)|ΩR

Now, given a baseline POD basis (Φi)i=1,...,M with a baseline snapshots
set associated with one or several geometries, then the predicted intermedi-
ate velocity field Ũ(t) for the new geometry is determined as follows in the
Gappy-POD algorithm:

Ũ(t, GNew, x) =
N∑
n=1

bn(t, GNew)Φn(x), (3)

where the interpolation POD coefficients bn are determined by the following
minimization of the instantaneous error between the interpolation (3) and
the high fidelity solution, on ΩR only:
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(
b1(t, GNew), ..., bN(t, GNew)

)
= argminβ1,β2,...,βN

∥∥∥∥∥
N∑
n=1

βn(t)Φn − U(t, GNew)|ΩR

∥∥∥∥∥
2

[L2(ΩR)]3
,

(4)
Finally, the complete predicted velocity field Upredicted for the new geometry
is obtained by:

•
Upredicted(t, GNew, x) = U(t, GNew, x) ifx ∈ ΩR. (5)

• Upredicted(t, GNew, x) = Ũ(t, x) otherwise.

We recall that in (5), we supposed that we know U(t, GNew) restricted to
ΩR. We will propose in section 6.1.1 a procedure to derive a fastly computed
prediction for U(t, GNew)|ΩR

.

4. Model Order Reduction by POD

Let us denote by UROM the reduced approximation of the filtered field
given by a LES model.

To achieve the POD reduced order modeling of the filtered incompressible
Navier-Stokes equations, the approximated velocity field is expressed in the
reduced order POD subspace:

UROM(t, x) =
N∑
n=1

an(t)Φn(x), ∀x ∈ Ω, (6)

where, N << M denotes the number of retained high energetic POD modes,
and a1(t), a2(t),..., aN(t) are the temporal weights which are solutions of the
following coupled dynamical system:

dan

dt
+
(
div(UROM(t)⊗ UROM(t)),Φn

)
= ν

(
∆UROM(t),Φn

)
− 1

ρ
(∇p(t),Φn)(

q, div(UROM(t))
)
H0

= 0 ,∀q ∈ H0

an(0) =
(
Ū(0),Φn

)
(7)

where div denotes the divergence operator, p(t) is the pressure field, ρ the
density, ν denotes the kinematic viscosity, Ū(0) is the initial condition of the
velocity field and H0 is the subspace of the divergence free X-functions.
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We point out the fact that the equations upon which we perform the
POD-Galerkin projection are the high-fidelity incompressible Navier-Stokes
equations without any turbulence model and numerical scheme taken into
account. However, the POD computation is associated with High-Fidelity
snapshots Ū(t) obtained from LES of the Navier-Stokes equations.

In general, the first POD mode which describes the mean topology of the
fluid flow is not kept and a ROM of the fluid dynamics equations represents
only the fluctuating part. Here, POD modes are not restricted to the fluc-
tuation part of Ū , they also approximate the mean velocity. This could be
very valuable because we are interested in using the reduced order modeling
in order to predict the flow for new geometries [14]. This enables the ROM
to consider naturally the influence of the velocity fluctuations on the velocity
mean.

So, we point out the following two remarks concerning our formulation of
the reduced order modeling:

• The POD modes contain only the energetic scales of the flow. The
dissipative scales at the Taylor macro-scale are not present in the basis.

• The flow rate in the flow domain is not guaranteed except if penalization
is added in the pressure term to take into account the pressure difference
between the inlet and the outlet.

We proposed in [1, 2] to tackle these limits thanks to a physical stabiliza-
tion by satisfying the kinetic energy budget. It is based on the enrichement of
the POD-Galerkin ROM with the flow rate driving forces and with the most
dissipative scales based on the velocity gradient. We refer to [2] for more
details concerning this enrichment strategy of the POD-Galerkin ROM.

This stabilization step is done because we need to have a reference POD
basis which is rich enough to take into account the large features of scales in
the case of turbulent and incompressible fluid flows. We will denote by ΦE

the dissipative basis. This is very important from the following two points
of view:

• The reference dissipative POD basis constitutes a good candidate when
applying the newly proposed Gappy reduced order method in order to
reconstruct new incomplete snapshots set.
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• The reference reduced order modeling obtained by the POD Galerkin
projection of the Navier-Stokes equations upon the reference and en-
riched POD basis is stable in the sense of the kinetic energy conser-
vation physical constraint. So, if we use the latter stable ROM in the
hybrid approach as a physical boundary condition in order to compute
the local data around the geometrical modification, it guarantees the
stability of the LES with global penalization of the velocity field with
the reference reduced order solution by POD-Galerkin.

5. Limits of the classical Gappy-POD in our setting

In this section, we illustrate the limits of the Gappy-POD for our par-
ticular application. Suppose that we have the access to one or several high
fidelity aerodynamic simulations corresponding to one or several geometric
configurations, as shown on Figures 1 and 2.

Figure 1: On the left, a channel configuration with an obstacle on the upper and lower
walls. On the right, a channel configuration with a new obstacle at this time, translated
with respect to the first one in the horizontal direction, and with a new length
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Figure 2: On the left, a velocity field snapshot in the channel configuration with an
obstacle on the upper and lower walls. On the right, a velocity field snapshot in the
channel configuration with a new obstacle see Figure 1.

Figure 3: On the left, ΦE
1 the first POD mode with the enriched snapshots set. On the

right, ΦE
2 the second POD mode with the enriched snapshots set
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Figure 4: On the left, a channel configuration with two obstacles on the lower and up-
per walls situated respectively at the same position of the above ones, but with a new
intermediate length and two different widths. On the right, a mask vector describing the
restricted fluid domain ΩR of the new solution by the red color, and the unknown flow
field data zone by the blue color

Let
(
ΦE
i

)
i=1,...,N

be the POD basis (Figure 3) with the baseline instanta-
neous snapshots set where all the snapshots are completely known.

Let U(t, GNew) (see Figures 4 and 6) be another solution vector with
a new configuration. We have two classical ways to build the fluid velocity
field associated with the new technology: 1) either we apply directly an order
reduction of the Navier-Stokes equations upon the POD basis associated with
the baseline snapshots. Then, it is clear that the baseline POD basis functions
will fail to characterize the flow data close to the new geometry. We note
from Figure 3 that the enriched POD modes have a non-zero velocity of the
fluid flow even in the obstacles associated with each ones of the baseline test
cases shown on Figure 2. Hence, these POD velocity modes could not be
used in a confident way to model correctly a new geometrical fluid flow. 2)
Another possibility is to apply a Gappy-POD procedure if we have the access
to some high-fidelity informations with the corresponding mask n, as shown
on Figure 4.

The complete predicted velocity field Upredicted(t, GNew) by Gappy-POD
for the new geometry is shown on Figure 5, and the associated high-fidelity
solution in 6.
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Figure 5: Final time step predicted flow field Upredicted(T, GNew) by Gappy-POD

It is clear when compared to the high-fidelity model solution, that the
Gappy-POD under estimates the velocity field in the fluid domain. This
could be explained because the baseline POD modes are not interpolant
within the local zoom in red defined by the mask vector. The associated
absolute nodal errors with respect to the high fidelity aerodynamic field in
the direction of the abscissa axis, scaled by the inlet velocity value, are shown
on Figure 7. We detail our new procedure in the following section, that is
able to take into account such geometrical variations.
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Figure 6: U(t, GNew): Final time step 2D laminar incompressible flow in a channel, given
a constant inlet velocity on the channel inlet, an outlet boundary condition on the channel
outlet and a wall boundary condition on the upper and lower walls of the channel

Figure 7: |U1(t,x,GNew)−Upredicted
1 (t,x,GNew)|

Uinlet

13



6. Proposition of a new algorithm

6.1. Newly proposed Algorithm
6.1.1. Hybrid approach: Local High Fidelity solution/Global reduced order

solution
We will begin our fluid flow computation by applying a hybrid approach

as illustrated on Figure 8. We set in the scope of the new geometry of
the fluid domain the velocity field as a fluid immersed boundary condition
defined by the solution of a baseline reduced order model associated with a
baseline fluid flow that has been computed once and for all in association
with a reference geometrical domain. The global zone defined by a reference
fluid flow is forced around the local zone as a penalization. In the local zoom
we run the finite volume high-fidelity equations of the Navier-Stokes model.
We precise that the reference reduced order solution is saved on a coarser
grid for Ω \ΩR (see Figure 8) in order to gain efficiency when computing the
pressure field during the hybrid simulation along the global fluid domain. We
denote Uhybrid the velocity field obtained by this approach.

Figure 8: Schematic representation of the hybrid approach

6.1.2. Newly proposed Gappy reduced order method
We will apply a new Gappy reduced order method in order to compute a

calibrated velocity field in the wake of the new geometry. We want to benefit
from the knowledge of the local high-fidelity solution by the hybrid approach.
Hence, we perform the following steps:

1. We define updated modes Ψn from the local modification of the refer-
ence ones in such a way to include the coherent structures of the newly
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computed local high-fidelity solution by the hybrid approach. These
updated modes are obtained thanks to the following steps:

• Compute the complete fields Upredicted(t, x,GNew) with the classi-
cal Gappy-POD approach (4). We precise that the Gappy-POD
modes Φn in (4) are here the reference POD modes ΦE

n projected
on the coarse mesh of the fluid zone Ω \ ΩR.
• Computation of a new POD basis associated with the previous

reconstructed aerodynamic fields Upredicted(t, x,GNew): Ψn(x) =
1√
cn

M∑
i=1
Ci,nUpredicted(ti, x,GNew), where (Cn)n=1,...,M are the eigen-

vectors of the correlations matrix defined by:
(Upredicted(ti, GNew), Upredicted(tj, GNew))[L2(Ω)]3 , and (cn)n=1,...,M is
the sequence of the associated eigenvalues.

2. Galerkin projection step of the Navier-Stokes equations (still with no
modelling of the turbulence) over the new POD basis Ψn: ~c(t, GNew)
are the temporal coefficients of the Galerkin projection of the Navier-
Stokes equations upon Ψn.

• UROM(t, x,GNew) = Uhybrid(t, x,GNew) if x ∈ ΩR.

• UROM(t, x,GNew) =
N∑
n=1

cn(t, GNew)ΦE
n (x) otherwise, where ΦE

n

are the reference global POD modes defined on the refined ref-
erence grid.

It is important to note that the modes Ψn are mainly with local sup-
port ΩR and are the locally updated modes defined in step 1 by the
coherent structures obtained by data compression of the snapshots set{
Uhybrid(t, x,GNew), x ∈ ΩR

}
. Hence, the latter temporal coefficients

cn(t, GNew) describe mainly the dynamics of the new hybrid local high-
fidelity solution defined on ΩR. Moreover, it is important to notice that
the new Gappy reconstruction is done as usual following ΦE

n but with
temporal coefficients cn(t, GNew) that on the contrary to the Gappy-
POD will describe the dynamics of the new hybrid local high-fidelity
solution defined on ΩR.

We would like to summarize the notations we used until now in the paper:
this could be useful for the following part.
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• U : the nominal HF solution.

• Uhybrid(GNew): obtained by the immersed boundary technique (see sec-
tion 6.1.1). By construction Uhybrid(GNew)Ω\ΩR

= U .

• Ũ(GNew): Gappy-POD reconstruction (3).

• Upredicted(GNew): Gappy-POD prediction.

• UROM(GNew): New ROM prediction (see section 6.1.2).

6.2. A consistency result of the newly proposed algorithm
We propose a consistency result of our newly proposed approach that

shows that the error related with the application of this algorithm when no
geometrical variation occurs, is equal to zero.

Proposition 1. The newly Gappy reduced order approach proposed in sec-
tion 6.1.2 is consistent: if no geometrical modification is introduced, then the
ROM solution in step 2 is identical to the one obtained by the reduced order
model (7) upon the dissipative basis ΦE , under the following assumption:
the reference POD modes ΦE

n are orthogonal with respect to the gappy inner
product (., .)[L2(ΩR)]3.

Proof 1. Without geometrical modification U(GNew) = U = Uhybrid.
There exists N ≤M such that ∀ i = 1, ...,M,

∥∥∥U(ti)−
∑N
n=1(U(ti),ΦE

n )[L2(Ω)]3ΦE
n

∥∥∥2

[L2(Ω)]3
=

M × 0. In particular, this squared difference is zero on ΩR ⊂ Ω: ∀ i =
1, ...,M,

∥∥∥U(ti)−
∑N
n=1(U(ti),ΦE

n )[L2(Ω)]3ΦE
n

∥∥∥2

[L2(ΩR)]3
= 0. Hence, thanks to

the fact that the reference POD modes are orthogonal using the Gappy inner
product (., .)[L2(ΩR)]3, the unique solution of (4) for Φ = ΦE is bn(ti, GNew =

Gref ) = (U(ti),ΦE
n )[L2(Ω)]3. Then Ũ(t) =

N∑
n=1

(U(ti),ΦE
n )[L2(Ω)]3ΦE

n = U(t).

Hence Upredicted = U , and the POD basis on these snapshots are identical,
namely ΦE and Ψ are identical.

The proof was based on the fact that the Gappy-POD on the fluid region
ΩR is accurate because it is performed with the dissipative POD basis ΦE

associated with the same complete data over Ω that has been restricted to ΩR.

16



7. Numerical framework and experiments

7.1. Flow solver
For the presented simulations, the low-Mach number solver YALES2 [15]

for unstructured grids is retained. This flow solver has been specifically tai-
lored for the direct numerical simulation and large-eddy simulation of turbu-
lent reacting flows on large meshes counting several billion cells using mas-
sively parallel super-computers [16, 17]. The Poisson equation that arises
from the low-Mach formulation of the Navier-Stokes equations is solved with
a highly efficient Deflated Preconditioned Conjugated Gradient method [17].

7.2. 3D turbulent and unsteady incompressible semi-industrial test case
7.2.1. Test case presentation

In what follows, we apply our new approach for a 3D unsteady, turbulent
and incompressible fluid flow in a fuel injection system. The main objective
is to be able to have an efficient strategy for the computation of the aerody-
namic field in the primary zone of the combustion chamber. The Preccinsta
test case [18, 19] is presented in Figure 9. This lean-premixed burner has
been widely studied in the combustion community to validate large-eddy
simulation models [16, 20, 21, 22, 23, 24, 25].

Figure 9: The 3D unsteady turbulent and incompressible flow in a fuel injection system
and in the primary zone of the combustion chamber, given a constant inlet velocity, an
outlet boundary condition on the channel outlet and a wall boundary condition on the
upper and lower walls of the channel.

The 3D turbulent flow in the complex configuration presented in Figure 9
is considered. The kinematic viscosity ν = 10−5 m2/s yields a Reynolds
number 45, 000 based on the inlet velocity and the length of the duct. The
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presented high-fidelity simulation with 14 million tetrahedra runs over 512
cores during 5 days in order to obtain a physical simulation time equal to
250 ms. In order to build the dissipative reduced basis, 2500 snapshots of the
solution are taken, extracted at each time step of the original high-fidelity
simulation. We point out the fact that these 2500 snapshots are taken from
6644 time steps of the high-fidelity simulation corresponding to the final 25
ms of its total physical time.

7.2.2. Construction of a reference POD basis
As explained in the previous sections, we first need to construct a refer-

ence POD basis which is rich enough to take into account the large features
of scales in the case of turbulent and incompressible fluid flows. This ref-
erence POD basis is obtained in this semi-industrial case of the Preccinsta
burner, in association with snapshots data generated from only one LES
high-fidelity simulation of the Navier-Stokes equations with the reference
geometrical configuration presented in Figure 9. We show that our newly
proposed geometrical adaptive procedure is robust with only one complete
High-Fidelity simulation, the baseline simulation, and one dissipative large
scale reduced order basis in association. All the detailed informations con-
cerning the dissipative reduced order basis construction can be found in [2].

The velocity-based and gradient velocity-based POD modes were com-
puted through a snapshots POD. The CPU ressources needed for this com-
putation are 768 cores, to guarantee a memory availability to read the 2500
time snapshots. The computation runs during 6 hours for the velocity-based
POD modes and 9 hours for the gradient velocity-based POD modes. How-
ever, these operations were not well distributed over the 768 cores due to the
following issue: in YALES2, the post-processing would lead to at least one
file per snapshot. In this case, a temporal snapshot was not post-processed
as one file per subdomain, i.e. the number of solution files per time step was
less than the number of mesh partitions which is 128 in this case. This is
due to the limited number of files that we might save on the super computer,
especially when considering 2500 snapshots.

By applying the dissipative POD approach, we get a new velocity-based
reduced order basis as shown from Figure 10 until Figure 21. The enforce-
ment of the small scales is done starting from the 5th mode in the reduced
order basis. The new velocity-based modes ΦE

5 , ΦE
6 , ΦE

7 , ΦE
8 , ...,ΦE

12 show
very large features of spatial scales which were not observed within the clas-
sical POD modes. Moreover, the largest scales exhibit local structures in the

18



fluid domain which are the small vortices carrying out the dissipative energy,
by analogy with the gradient velocity-based POD modes (see [2] for more
details concerning the dissipative reduced basis construction).

Figure 10: Velocity mode ΦE
1 = Φ1. [2] Figure 11: Velocity mode ΦE

2 = Φ2. [2]

Figure 12: Velocity mode ΦE
3 = Φ3. [2] Figure 13: Velocity mode ΦE

4 = Φ4. [2]

Figure 14: Velocity mode ΦE
5 . [2] Figure 15: Velocity mode ΦE

6 . [2]

Figure 16: Velocity mode ΦE
7 . [2] Figure 17: Velocity mode ΦE

8 . [2]

Figure 18: Velocity mode ΦE
9 . [2] Figure 19: Velocity POD mode ΦE

10. [2]
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Figure 20: Velocity mode ΦE
11. [2] Figure 21: Velocity mode ΦE

12. [2]

7.2.3. Introducing new geometric configurations
Two new configurations of the injection system are introduced, see Fig-

ure 22.

Figure 22: Two new configurations are considered by introducing solid obstacles in the
swirler’s zone. These obstacles are defined using level set functions. We point out the fact
that our geometrical modifications are non-parameterized because the level set functions
are not necessarily defined by a parametric function but rather by a ”if loop” that delimits
the spatial location of the immersed solid boundary.

We will apply our newly proposed algorithm in order to determine for
each of these two configurations, the new fluid flow topology and the new
recirculation zones in a robust and efficient fashion.
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7.2.4. Hybrid approach: Local High Fidelity solution/Global reduced order
solution

As mentioned in section 6, the first step of our newly proposed algorithm
is to compute locally the new geometrical velocity field in a restricted fluid
domain that is identified by a mask, see Figure 23.

Figure 23: Mask vector that defines the local zone in red ΩR of interest around the
geometrical variations. In blue the global zone Ω \ ΩR.

The result of the hybrid approach is illustrated see Figure 24, when ap-
plied to the first configuration of Figure 22. The physical time needed in
order to obtain a solution with good statistics is far less than the time we
fixed in this case which is 21 ms. This physical time is ten times greater than
the flow through time associated with the zoom box in red. Therefore, the
maximal CPU time needed in order to perform the LES in the local zone in
red is in this case 3.5 hours on 128 cores. We have a very important reduc-
tion in the CPU time needed for this local LES with respect to the complete
LES, as a consequence of the reduction of the computation domain. The
remainder of the fluid domain is defined by the reference reduced order ve-
locity field associated with the reference configuration, which has been saved
on a coarser grid for the region Ω \ ΩR. We finally point out the fact that
the pressure field is computed all over the fluid domain by the High-Fidelity
solver, because our reference dissipative reduced order model does not con-
tain the pressure field. The pressure computation in the hybrid simulation
is efficient as we did a derefinement step by 30 percent for the reference dis-
sipative velocity modes in the global zone Ω \ ΩR in blue, see Figure 23. In
other words, the dissipative velocity modes, see Figure 10 until Figure 21,
are saved on a coarser grid in the blue zone of Figure 23.
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Figure 24: An unsteady solution field of the hybrid simulation: the inlet boundary condi-
tions for the local high-fidelity solution are well reproduced.

The flow must be determined in the wake of the new swirler. In what
follows, we apply our newly proposed Gappy reduced order method in order
to adapt the fluid flow topology outside the red box of Figure 23 for it to
follow the geometrical variation of the swirler.

7.2.5. Application of the newly proposed Gappy reduced order method for the
two new configurations

We now apply the proposed Gappy reduced order method in section 6
to the new two configurations, see Figures 25 and 26 respectively, then we
get the reduced order model coefficients associated respectively with these
locally updated modes and the calibrated entire mean flow fields with respect
to the geometrical variation, are represented in Figure 33 and 34. We precise
that the computation of the updated POD basis Ψ was done in a completely
distributed fashion by processing all the predicted snapshots as one file per
subdomain which yields 128 files. Indeed, we were able to save the predicted
snapshots by Gappy-POD in one HDF5 file as the Gappy-POD is performed
outside the high-fidelity solver, so we are able to control the data processing.
Hence, the distributed Snapshots POD over a multiple of 128 cores will be
able to read effciently a large number of snapshots (2500 in this case) per
subdomain i.e. per CPU process.

Figure 25: Locally updated velocity modes Ψ1,Ψ2, Ψ3, Ψ4, Ψ5 and Ψ6 with respect to the
local high-fidelity solution associated with the first configuration. Few modes are of global
support Ω and many have a local support ΩR.
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Figure 26: Locally updated velocity modes Ψ1,Ψ2, Ψ3, Ψ4, Ψ5 and Ψ6 with respect to
the local high-fidelity solution associated with the second configuration. Few modes are
of global support Ω and many have a local support ΩR.

The ROM coefficients resepctively with the locally updated modes for the
two new configurations are shown on Figures 27, 28, 29, 30, 31 and 32.

Figure 27: c1(t, G1).
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Figure 28: c2(t, G1).

Figure 29: c3(t, G1).
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Figure 30: c1(t, G2).

Figure 31: c2(t, G2).
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Figure 32: c3(t, G2).

Figure 33: The new geometrical mean velocity fields for the first new geometry.
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Figure 34: The new geometrical mean velocity fields for the second new geometry.

7.2.6. Specification for the design in combustion: A posteriori verification of
the ROM quality on a 1D quantity of interest

In what follows we show the recirculation zones of each one of the two
mean fields with the two new configurations, given by the new Gappy ap-
proach and the complete LES. These recirculations zones are the same in
reacting and non reacting cases. In order to plot these recirculation zones, we
consider three axes in the fluid domain along the y-direction for z = 0 and for
different x− positions outside the RFD, in order to compare our new gappy
reduced order strategy with the result of the LES, see Figure 35. We add also
to these validation results, a comparison with the recirculation zones obtained
when the classical Gappy-POD approach is applied outside the reduced fluid
domain. All these results are summarized on Figures 36, 37, 38, 39, 40 and
table 1:

Figure 35: The three y−axes for the recirculation zones

27



Figure 36: Reference geometry: comparison of the recirculation zones obtained respec-
tively as a consequence of the dissipative Galerkin ROM by ΦE in orange and the HF LES
in black

Figure 37: First new geometry: comparison of the recirculation zones obtained respectively
as a consequence of the classical Gappy-POD in red and the HF LES in black

Figure 38: First new geometry: comparison of the recirculation zones obtained respectively
as a consequence of the geometrical reduced order strategy in orange and the HF LES in
black
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Figure 39: Second new geometry: comparison of the recirculation zones obtained respec-
tively as a consequence of the classical Gappy-POD in red and the HF LES in black

Figure 40: Second new geometry: comparison of the recirculation zones obtained respec-
tively as a consequence of the geometrical reduced order strategy in orange and the HF
LES in black

We propose in what follows two different criteria in order to evaluate the
quality of the new gappy approach to recover the mean velocity field with
respect to the complete LES.

1. The position of the recirculation zones with respect to each one of the
two walls of the aeronautical injector. If we denote by v(y) a velocity
value along the corresponding y−axis, then this position is defined on
each wall side by:

yg =
∫
y(v(y)− v̄)dy∫
(v(y)− v̄)dy ,
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as we can see on Figure 41. Then, we compute respectively the two
relative errors with respect to the position of the two recirculation zones
within the LES.

2. The L2−relative error with respect to the LES on each 1D y−axis.

Figure 41: Illustration of the positions of the two recircluation zones on each wall side

The results are shown in Tables 1, 2.

Table 1: Evaluation of the 1D L2−relative errors along the three y−axis respectively.
Geometry and y−axis Gappy-POD New Gappy approach

First new geometry: x = 35 mm 32% 24%
Second new geometry: x = 35 mm 36% 27%
First new geometry: x = 50 mm 41% 34%

Second new geometry: x = 50 mm 50% 27%
First new geometry: x = 55 mm 31% 46%

Second new geometry: x = 55 mm 32% 28%
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Table 2: Evaluation of the position of the recirculation zones of the two new geometries
and their relative errors, Err1 for our method and Err2 for the Gappy-POD, with respect
to the LES ones.

Config. HF New Gappy Gappy-POD Err1 Err2
Geo1: x = 35 mm yg1 = −0.0211 yg1 = −0.019 yg1 = −0.0246 6% 16%
Geo1: x = 35 mm yg2 = 0.022 yg2 = 0.020 yg2 = 0.023 6% 6%
Geo1: x = 50 mm yg1 = −0.0256 yg1 = −0.024 yg1 = −0.031 5% 22%
Geo1: x = 50 mm yg2 = 0.03 yg2 = 0.028 yg2 = 0.032 6% 9%
Geo1: x = 55 mm yg1 = −0.027 yg1 = −0.024 yg1 = −0.031 10% 14%
Geo1: x = 55 mm yg2 = 0.028 yg2 = 0.031 yg2 = 0.032 10% 13%
Geo2: x = 35 mm yg1 = −0.021 yg1 = −0.020 yg1 = −0.024 5% 15%
Geo2: x = 35 mm yg2 = 0.0195 yg2 = 0.0197 yg2 = 0.0234 0.9% 19%
Geo2: x = 50 mm yg1 = −0.027 yg1 = −0.025 yg1 = −0.031 8% 14%
Geo2: x = 50 mm yg2 = 0.023 yg2 = 0.026 yg2 = 0.032 16% 41%
Geo2: x = 55 mm yg1 = −0.029 yg1 = −0.028 yg1 = −0.031 4% 6%
Geo2: x = 55 mm yg2 = 0.027 yg2 = 0.031 yg2 = 0.032 16% 20%

We remark first that when no geometrical modification is introduced, see
Figure 36, the ROM velocity field is exactly the one obtained by the complete
LES. We remark also that the newly proposed geometrical Gappy reduced
order approach allows the reduced order solution to follow the real topology
of the fluid flow in the global zone of the domain, after non-parameterized
geometrical modifications. We see that the reduced order solution respects
the recirculation zones of the fluid flow, see Figures 38 and 40, and table 2.
These recirculation zones are different from the baseline configuration, see
Figure 36. We see also that the classical Gappy-POD approach does not
provide accurate results neither in the sense of the recirculation zones, nor in
the sense of the 1D L2−relative errors all along the three y− axis respectively
as shown in table 1.

7.2.7. CPU time reduction
In Table 3, we evaluate the efficiency of the newly proposed Gappy re-

duced order approach with respect to the high- fidelity simulation.
It is important to note that the step which is the most CPU-consuming

in the proposed approach is the hybrid computation by global penalization
of the velocity field: the pressure field is still computed all over the fluid
domain, so an effort has been done by coarsening the grid in the scope of a
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new geometry. We reached a maximum CPU time equal to 3.5 hours on 128
cores.

Table 3: Total computational cost.
Operation Wall Clock Time

High-fidelity YALES2 solver (512 cores) 5 days
High-fidelity over ΩR (128 cores) 3.5 hours

Classical Gappy-POD on ΩR (512 cores) 3 min
Distributed POD Ψ with

the predicted fields Upredicted(t, GNew) (512 cores) 3 min
Galerkin projection of the

Navier-Stokes equations upon Ψ (512 cores) 3 min
Resolution of the reduced equations (1 core) 3.7 sec

Speed up factor 100

7.3. 2D laminar and unsteady incompressible test case
7.3.1. Application of the newly proposed Gappy reduced order method

Now we apply the newly proposed approach to the laminar 2D case where
we identified some limits of the classical Gappy-POD approach to tackle
geometrical variations in section 5. The new geometrical entire flow data is
now illustrated on Figure 42.

Figure 42: Final time step corrected flow field UROM(t, GNew) by the newly proposed
Gappy reduced order approach
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The associated absolute nodal errors with respect to the high-fidelity
aerodynamic field Figure (6) in the direction of the abscissa axis, scaled by
the inlet velocity value, is shown on Figure 43.

Figure 43: |U1(t,x,GNew)−UROM
1 (t,x,GNew)|

Uinlet

Furthermore, the relative X-global instantaneous error between the cor-
rected flow field and the high fidelity one is plotted on Figure 44.

Figure 44: ‖U(t,GNew)−UROM (t,GNew)‖2
X

‖U(t,GNew)‖2
X
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Conclusion and prospects

In this paper we have proposed a new method in order to tackle geo-
metrical variabilities within the unsteady and incompressible Navier-Stokes
equations. Our new algorithm is based on a hybrid approach in order to
compute local LES around a new design definition and an adaptation of the
classical Gappy-POD approach in order to tackle geometrical variations of
turbulent fluid flows that might introduce irregularities in the flow topology
and for which the classical Gappy-POD is no longer sufficient. The main
idea is to update the reference POD basis of the Gappy-POD method by the
coherent structures of the local LES of the new design. The optimization
problem of the Gappy-POD is replaced in our method by a Galerkin projec-
tion of the governing Navier-Stokes equations on global and local POD modes
with the new design. This new approach proved good results when applied
to a typical aeronautical injection system. The speed-up associated with this
technique is equal to 100, by taking into account the hybrid computation of
the local LES in the RFD.
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