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Lignin can be considered an essential under-exploited polymer from lignocellulosic

biomass representing a key for a profitable biorefinery. One method of lignin valorization

could be the improvement of physico-chemical properties by esterification to enhance

miscibility in apolar polyolefin matrices, thereby helping the production of bio-based

composites. The present work describes for the first time a succeeded chemical

esterification of industrial lignins with maleic anhydride in an acidic ionic liquid:

1-butyl-3-methyl imidazolium hydrogen sulfate without additional catalyst. This efficient

strategy was applied to four industrial lignins: two softwood Kraft lignins (Indulin AT,

Wayagamack), one hardwood Kraft lignin (Windsor), and one softwood organosolv lignin

(Lignol), distinct in origin, extraction process and thus chemical structure. The chemical,

structural, and thermal properties of modified lignins were characterized by 31P nuclear

magnetic resonance, infrared spectroscopy and thermal analyses, then compared to

those of unmodified lignins. After 4 h of reaction, between 30 to 52% of the constitutive

hydroxyls were esterified depending on the type of lignin sample. The regioselectivity of

the reaction was demonstrated to be preferentially orientated toward aliphatic hydroxyls

for three out of four lignins (66.6, 65.5, and 83.6% for Indulin AT, Windsor and Lignol,

respectively, vs. 51.7% for Wayagamack). The origin and the extraction process of the

polymer would thus influence the efficiency and the regioselectivity of this reaction. Finally,

we demonstrated that the covalent grafting of maleyl chain on lignins did not significantly

affect thermal stability and increased significantly the solubility in polar and protic solvent

probably due to additional exposed carboxylic groups resulted from mono-acylation

independently of H/G/S ratio. Blending with polyolefins could then be considered in

regard of compatibility with the obtained physico-chemical properties.
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INTRODUCTION

The biorefinery concept consists of the development of
innovative and sustainable strategies for the valorization of a
whole biomass such as a plant in its entirety and in particular the
three main constitutive polymers; cellulose, hemicellulose and
lignin, respectively (Ferreira, 2017). Lignins are complex highly
branched amorphous polymers based on polyphenolic structures
constituted of phenylpropane units, e.g., syringylpropane (S),
guaiacylpropane (G), and hydroxyphenylpropane (H), providing
interesting reactivity for chemical modifications (Erdtman, 1972;
Stevanovic and Perrin, 2009; Laurichesse and Avérous, 2014).
Lignin is henceforth considered as an essential under-exploited
potential offering a key-issue for a profitable biorefinery (Calvo-
Flores and Dobado, 2010; Doherty et al., 2011). Indeed, to date,
only 2% of industrial lignin is valorized into applications other
than energy production: base materials for the production of
chemicals, adhesives or fertilizers are some examples (Gandini
and Belgacem, 2008; Ion et al., 2018). An emergent way
of valorization could be the blending of lignin with apolar
matrices of polyolefins to produce partially bio-based composites
with improved rheological and thermomechanical properties
and better carbon footprint (Thielemans and Wool, 2005;
Laurichesse and Avérous, 2014). However, the difference in
polarity between lignins and polyolefins such as polyethylene
impedes considerably their miscibility. To overcome this
constraint, physico-chemical properties of lignin can be modified
by chemical esterification with apolar moieties (Nadji et al., 2010;
Gordobil et al., 2015). The acyl donors generally used for these
modifications are short acyl chains present in acetic, butyric,
succinic or maleic anhydrides (Xiao et al., 2001; Thielemans and
Wool, 2005; Tamminen et al., 2012) or acyl chlorides (Koivu
et al., 2016). Some drawbacks can be the use of tetrahydrofurane,
1,4-dioxane orN-methyl pyrrolidone as organic solvents, thionyl
chloride as hazardous chemical reagents, and pyridine derivatives
or 1-methyl imidazole as catalysts. Besides the use of non-
environmentally friendly chemicals, drastic reaction conditions
are often applied (high temperature reaction, extreme pH)
together with the production of by-products and salts involving
purification steps, which are not in agreement with the current
environmental requirements and green chemistry framework
(Anastas and Eghbali, 2010; Zhao et al., 2017). The development
of alternative strategies thus remains a current scientific and
technological challenge in the biorefinery concept. In this way,
one can take advantage of the use of some ILs able to act
both as solvent for lignin and as catalyst for lignin esterification
based. For example, a recent study reported the IL to promote
lignin acetylation of aliphatic hydroxyl groups while aromatic
acetate were deacetylated, in DMSO as solvent (Suzuki et al.,
2018). Earlier, based on the acidic properties of 1-butyl-3-
methyl imidazolium hydrogen sulfate ([Bmim][HSO4]), it was
evidenced that this IL acts as a catalyst for esterification of linear
alcohols (Fraga-Dubreuil et al., 2002).

On the other hand, the access to a lignin fraction with
an adequate purity or structural integrity for considering
valorization requires an efficient fractioning of lignocellulosic
biomass (LCB) upstream. From now on, a very large panel

of fractioning, and delignification pretreatments of LCB is
described in the literature. These include the use of dilute
acid or alkali solutions, liquid hot water, organosolv, steam
explosion, liquid hot water, ultrasounds-assisted processes, or
high voltage electrical discharges methods (Park and Kim,
2012; Zhu et al., 2012; Putro et al., 2016; Brahim et al.,
2017; Gominho et al., 2019). Some imidazolium-based ionic
liquids (ILs) are now well-recognized for efficiently fractionate
LCB under mild conditions (Brandt et al., 2011; Papa et al.,
2012; Auxenfans et al., 2014; Husson et al., 2018; Singh
et al., 2018). These ILs constitute promising solvents with
unique properties such as low vapor pressure, recyclability,
thermostability, and acceptable toxicity for some of them,
particularly those with cation alkyl chain length inferior or
equal to 4 carbons (García-Lorenzo et al., 2008; Egorova
and Ananikov, 2014). In this context, it can be noticed that
[Bmim] [HSO4] would be a suitable candidate to induce lignin
removal from LCB as effective as acetate or chloride anion
imidazolium-based IL. The acidic properties of this IL coupled
with residual water content allow inducing acid-catalyzed
hydrolysis of the β-O-4 linkage resulting in its dissociation
from the carbohydrate matrix and then its dissolution (Brandt
et al., 2011; Carvalho et al., 2015; Bernardo et al., 2019).
It can then be imagined that chemical esterification of
lignin could be directly implemented in the IL used for
pretreatment/fractioning to avoid tremendous procedures of
lignin extraction.

Before considering the development of a one-batch process
including delignificaton of LCB and subsequent transformation
of lignin in the same IL, the study of both the feasibility of
chemical esterification of lignin in ([Bmim] [HSO4and the
versatility of this strategy is inherent. For this reason, we selected
four distinct industrials lignin as representative substrates:
two softwood Kraft lignins (Indulin AT, Wayagamack),
one hardwood Kraft lignin (Windsor) and one softwood
organosolv lignin (Lignol) distinct in origin, extraction process,
and thus chemical structure. The raw materials were firstly
characterized, especially the hydroxyl groups. Then, the impact
of single incubation in [Bmim][HSO4] on the structural and
physicochemical properties was studied. Finally, the feasibility
of lignin esterification with maleic anhydride was investigated
without additional catalyst. Extracted modified lignins were
finely characterized and the performances and selectivity of these
non-conventional reaction systems were discussed based on
quantitative data.

MATERIALS AND METHODS

Reagent
Maleic anhydride (>99%), 2-chloro-4,4,5,5-tetramethyl-
1,3,2-dioxaphospholane (95%), chromium acetylacetonate
(>97%), N-Hydroxyphtalimide (97%), acetonitrile (HPLC
grade), chloroform-d (99.8%), and pyridine (99.8%) were
acquired from Sigma-Aldrich (Steinheim, Germany). 1-butyl-3-
methylimidazolium hydrogen sulfate [Bmim][HSO4] (98%) was
produced by Solvionic SA (Verniole, France).
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Industrial Lignins
Kruger Wayagamack and Domtar Windsor furnished two
Kraft black liquors, used to precipitate Kraft lignin. Kruger
Wayagamack black liquor was extracted from softwood and
exhibited 50.9% of solid content with a pH = 14, and a
volumetric mass of 1.27 g.ml−1. Domtar Windsor black liquor
was from hardwood and contained 24.0% of solid with a
pH = 13 and a volumetric mass of 1.12 g.ml−1. Wayagamack
and Windsor lignins were extracted from black liquor followed
by a precipitation procedure using carbon dioxyde described
in a previous study (Schorr et al., 2014). Indulin AT lignin
was extracted from softwood by Kraft process and furnished
by the Westvaco Company. Composition in Klason and acid
soluble lignins, total sugars and ash contents of these three Kraft
lignins were reported by Schorr et al. (2014) and summarized
in Supplementary Table 1 and suggested a satisfactory purity
(>95% with around 1% of residual sugars) allowing to consider
as significant the result on lignin esterification. LignolTM lignin
was extracted by organosolv process applied on softwood and
produced by Lignol Innovation LTD (Berlin et al., 2011).

Esterification of Industrial Lignins
The four industrial lignins were lyophilized and [Bmim][HSO4]
was dried at 80◦C under vacuum for 4 h (Rotavapor R-200,
Büchi, France). Lignins and [Bmim][HSO4] were then stored
in desiccator for 48 h before each reaction. The water content
and water activity of the industrial lignins and [Bmim][HSO4]
were then determined by Karl Fischer coulometry method (831
KF Coulometer, Metrohm, France) and a thermoconstanter
(LabTouch Aw, Novasina, Switzerland), respectively. Data were
reported in Table 1 as a mean of two replicates. Reactions
were carried out in parallel with a synthesis station (Carousel
12+, Interchim, France) allowing to implement simultaneously
12 identical reactions. In a typical reaction, 300mg of
[Bmim][HSO4] (melting point 28◦C) were incubated at 75◦C
under vigorous stirring until total liquefaction. Reaction was
initiated by introducing lignin (10mg) and maleic anhydride
in distinct ratio: 1/1, 1/2, 1/5, 1/7.5, and 1/10 (w/w) and was
performed at 75◦C for 4 h under vigorous stirring. After this
duration, the mixture was cooled down in an ice bath in order
to stop the reaction. Acetonitrile was added in the reaction
medium to precipitate the modified lignin. The resulted solid
residue was collected by vacuum filtration, thoroughly washed
with acetonitrile to eliminate unreacted maleic anhydride and
[Bmim][HSO4], allowing to check that there is no residual IL, and
then dried for 4 h at 100◦C. Control experiments without maleic
anhydride were also carried out in [Bmim][HSO4] (30/1 IL/lignin
ratio, w/w) under the same conditions followed by similar
extraction procedure to evaluate the impact of [Bmim][HSO4] on
the four industrial lignins. Control, reaction and extraction were
replicated three times.

Solubility of Lignins and Their
Corresponding Esters
The solubility of Wayagamack and Windsor lignins (distinct
by their respective H/G/S ratio) before and after esterification
was determined in methanol and chloroform according to

TABLE 1 | Water content and water activity of lyophilized lignins and dried

[Bmim][HSO4].

Water content (%, w/w) aw

Lignins

Indulin AT 3.24 ± 0.04 0.32

Windsor 3.12 ± 0.88 0.38

Wayagamack 3.23 ± 1.14 0.33

LignolTM 2.04 ± 0.70 0.34

Ionic Liquid

[Bmim][HSO4] 0.02 ± 0.01 0.13

experimental procedure reported in previous studies (Cybulska
et al., 2012; Sameni et al., 2017). At room temperature, 5mL
of organic solvent were added to 50mg oven-dried lignin (or
maleated lignin). The samples were sonicated for 10min in a
water bath sonicator at 40◦C. The resulted suspensions were
filtered with paper filter (Whatman no 1). Filters and retentats
were air dried and then weighed. The soluble fraction was
calculated by subtracting the insoluble fraction from the initial
50mg lignin weight. Solubility values were expressed as mean
values of three replicates with standard deviations (±) in g.L−1.

Structural and Thermal Analyses
Pyrolysis-GC/MS
Pyrolysis-GC/MS analyses were performed in triplicate
according experimental procedure described by Schorr et al.
(2014). Each peak of chromatograms was identified according
to NIST Mass Spectral Library and literature data (Meier and
Faix, 1992). H/G/S ratio was calculated based on relative area
(%) of each degradation product. All results were presented in
Supplementary Table 2.

Infrared Spectroscopy
Raw, control and modified lignins were characterized by infrared
spectrometry using a FTIR-8400S (Shimadzu, France) equipped
with a universal ATR sampling accessory with diamond crystal.
Solid samples, without further preparation, were analyzed
between 4,000 and 600 cm−1 using 128 scans with a resolution
of 4 cm−1. All spectra were normalized at 1,510 cm−1, the band
assigned to aromatic rings vibration (Faix, 1991, 1992).

31P NMR Analyses
Based on reference works from Argyropoulos et al., the
quantification of lignin hydroxyls groups were performed
by 31P NMR analyses (Argyropoulos, 1994, 1995). The
sample preparation consisted in the derivatization of lignin
hydroxyls with the phosphorylating agent: 2-chloro-tetra-1,3,2-
dioxophospholane (TMDP). For this, 15mg of dried lignin or
modified lignin were introduced in a glass vial of 1.5mL. 350
µL of pyridine/deuterated chloroform mixture (1.6/1 v/v) were
then added followed by 100 µL of TMDP and 200 µL of
a solution containing 55mM of N-hydryphtalimide (internal
standard) and 7.15mM of chromium acetylacetonate solubilized
in pyridine/deuterated chloroform mixture (1.6/1 v/v). Once
prepared, the sample was immediately transferred in NMR
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TABLE 2 | Assignment of chemical shifts and integration regions in 31P NMR

spectra of lignin after derivatization with 2-chloro-tetra-1,3,2-dioxophospholane

adapted from literature data (Crestini and Argyropoulos, 1997; Crestini et al.,

1998; Pu et al., 2011; Fiţigǎu et al., 2013).

Structure Abbreviation Chemical shift δ (ppm)

Aliphatic-OH HOaliph 145.4–150.0

Aromatic-OH HOph 137.6–144.0

Syringyl-OH ∼142.7

Guaiacyl-OH 139.0–140.2

p-hydroxyphenyl ∼137.8

Carboxylic acid-OH HOCOOH 133.6–136.0

tube. In this way, TMDP reacts with hydroxyl groups of
lignin to generate phosphite derivatives, distinguishing aliphatic,
phenolic hydroxyls, and carboxylic acids groups by their distinct
chemical shift. 31P NMR spectra were acquired on a Bruker
Avance III HD 500 MHz spectrometer equipped with BBI
5mm probe operating at 202,4360 MHz (500,0800 MHz for 1H
canal). Spectra acquisition, adapted from literature data (Crestini
and Argyropoulos, 1997) was obtained by reverse pulse angle
decoupling at 30◦. Spectra consisted of 62 scans with spectral
width of 81.5 kHz collected with a relaxation delay of 25 s
at 298.1 K. Treatments of spectra were performed on Brucker
TopSpin 3.2 software. The residual 31P signal of product issued
from the reaction of water with the phosphorylating agent at
132.2 ppm was used as reference. Assignment was established
according to literature data and gathered in Table 2 (Crestini
and Argyropoulos, 1997; Crestini et al., 1998; Pu et al., 2011;
Fi̧tigǎu et al., 2013). After integration, esterification yield (Y%)
and regioselectivity (R%) were determined according to the
equations below:

(1) Y(HOtotal) = [(HOaliph+ HOph)control lignin - (HOaliph+

HOph) maleated lignin]/(HOaliph+HOph)control lignin x 100
(2) R(HOaliph) = [(HOaliph)control lignin - (HOaliph)

maleated lignin]/[((HOaliph)control lignin - (HOaliph) maleated lignin)
+ ((HOph)control lignin - (HOph) maleated lignin)] x 100

(3) R(HOph) = [(HOph)control lignin -
(HOph)lignin maleated]/[((HOaliph)control lignin - (HOaliph)

maleated lignin) + ((HOph)control lignin - (HOph) maleated lignin)]
x 100

where HOaliph, HOph and HOCOOH correspond, respectively,
to hydroxyls groups from aliphatic, phenolic and carboxylic
acid moieties.

Thermal Gravimetric Analyses
Thermal Gravimetric Analyses (TGA) were performed on
a Simultaneous Thermal Analyzer STA 449C Jupiter Unit
(Netzsch), at a heating rate of 10◦C.min−1 under a constant
argon flow of 50mL.min−1 and from room temperature to 800◦C
(approximately 20mg of each compound). Values of isothermal
drift and sensitivity are 0.6 µg h−1 and 0.1 µg, respectively. The
TGA apparatus is coupled with a Quadrupole QMS 403 Aeolos
mass spectrometer, MS (Detector SEV/Sekundär Elektronen
Vervielfacher (Channeltron), stainless steel capillary, counting

time 20ms per m/z with a resting time of 1 s, scanning width
1/51 amu).

Differential Scanning Calorimetry
Differential scanning calorimetric analyses (DSC) were carried
out on a Netzsch DSC 204 F1 heat flux differential calorimeter.
A constant heating rate of 10◦C.min−1 was selected for analyses,
from room temperature up to 160◦C (1st heating), then
cooling down to room temperature and finally heated to 200◦C
(2nd heating), under a constant argon flow of 200mL.min−1

(approximately 6.0mg of each compound).

RESULT AND DISCUSSION

Chemical esterification of four industrial lignins were
investigated in [Bmim][HSO4]. The catalytic properties of
this IL (Gupta et al., 2007) associated to its β parameter of
Kamlett Taft superior to 0.5 (Ventura et al., 2012) suggested that
this non-conventional solvent could be a suitable alternative for
our strategy in joining both lignin solvation and catalytic activity.
However, before considering chemical modification of lignin, the
structure of the starting lignins and the impact of incubation in
[Bmim][HSO4] were assessed.

Characterization of the Raw Lignins
As the potential of esterification depends on lignin hydroxyl
groups and their accessibility/reactivity, we propose to first
quantify each type of hydroxyl for all raw lignins and
their respective H/G/S ratio by two methods: pyrolysis-
GC/MS (Supplementary Table 2) and 31PNMRdiscussed below.
Indulin AT, Lignol, and Wayagamack lignins exhibited similar
distribution of the three phenylpropan units: 93–96% of G
units, 1–4% of H units, and 2–3% of S units. This similarity
can be explained by their softwood origin while the Windsor
lignin originated from hardwood exhibits a different H/G/S ratio
of 1/32/67. In Table 3 the hydroxyl quantification from 31P
NMR spectra is reported. Indulin AT exhibited a total hydroxyl
concentration (5.58 mmol.g−1 of lignin) superior to those of
all others lignins. Distribution between HOPh and HOaliph gave
a ratio of 0.89 in agreement with previous studies (Fi̧tigǎu
et al., 2013). Wayagamack lignin exhibited HOPh/HOaliph

ratio of 1.09 (with a total hydroxyl concentration of 2.79
mmol.g−1 of lignin). In comparison to Indulin AT, these lower
hydroxyls contents determined for Wayagamack lignin could
be due to condensation reactions. This could be in agreement
with the difference of condensation index between these two
lignins (Supplementary Table 3). The hydroxyl concentrations
can also decrease by oxidation reactions occurring during the
precipitation step of the recovery process and leading to the
formation of additional carboxylic functions (Gierer, 1985;
Asgari and Argyropoulos, 1998; Kouisni, 2011). This could be
correlated to the higher concentration of HOCOOH groups for
Wayagamack in comparison to Indulin AT (0.64 mmol.g−1 of
lignin for Wayaagmack vs. 0.40-0.48 mmol.g−1 of lignin for
the three other). The Windsor lignin presented a total hydroxyl
concentration of 3.87 mmol.g−1 of lignin with a HOPh/HOaliph

ratio of 1.25. 60% of HOPh provided from S units. HOPh amount
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TABLE 3 | Quantification by 31P NMR of hydroxyl groups (mmol.g−1 of lignin) in

raw lignins.

Concentration

(mmol.g−1 of lignin)

Industrial lignins

Indulin AT Wayagamack Lignol Windsor

HOaliph 2.19 ± 0.01 1.34 ± 0.07 1.39 ± 0.02 1.56 ± 0.12

HOPh 1.95 ± 0.06 1.45 ± 0.28 1.37 ± 0.14 1.93 ± 0.01

HOSyringyl nd nd nd 1.17 ± 0.06

HOGuaiacyl 1.43 ± 0.01 1.17 ± 0.01 1.14 ± 0.11 0.56 ± 0.04

HOHydroxyphenyl 0.08 ± 0.01 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01

Condensed HOPh 0.44 ± 0.07 0.25 ± 0.04 0.19 ± 0.01 0.17 ± 0.10

HOCOOH 0.44 ± 0.03 0.64 ± 0.01 0.48 ± 0.02 0.39 ± 0.02

HOa
total 4.58 ± 0.07 3.43 ± 0.05 3.23 ± 0.14 3.87 ± 0.14

HOb
esterifiable 4.14 ± 0.04 2.79 ± 0.04 2.75 ± 0.12 3.49 ± 0.13

Ratio HOPh/HOaliph 0.89 ± 0.04 1.09 ± 0.08 0.99 ± 0.11 1.25 ± 0.09

Ratio H/G/S 4/96/0 2/98/0 3/97/0 2/38/60

Ratio H/G/Sc 4/94/2 1/96/3 4/93/3 1/32/67

aHOtotal = HOaliph + HOPh + HOCOOH.
bHOesterifiable = HOaliph + HOPh.
cCalculated using pyrolysis-GC-MS analyses.

nd, not detected.

of Lignol lignin was similar to those from Indulin AT while
the HOaliph was lower. This lignin, issued from hardwood does
not seem as sensitive to oxydation reaction as Wayagamack.
Finally, Lignol lignin presented a hydroxyl group concentration
of 3.23 mmol.g−1 of lignin with a HOPh/HOaliph ratio close
to 1.Among the three lignins extracted from softwood, Lignol
showed a lower condensed HOPh content, in agreement with the
mild conditions of organosolv process. As the ratios evaluated
by both methods are in close agreement, a classification of
the four lignins according to their potential of esterification
(concentration of hydroxyl groups susceptible to be implied in
O-acylation reaction) can be suggested: Indulin AT > Windsor
> Wayagamack≈ Lignol.

Impact of Incubation in [Bmim][HSO4] on
Lignin Properties in View of Further
Transformation
Structural Properties
FTIR analyses of the four industrial lignins (Indulin AT,
Wayagamack, Lignol, and Windsor) were performed after
incubation in [Bmim][HSO4] for 4 h at 75◦C, and extraction
process. The obtained data were compared to the corresponding
rawmaterials (Figure 1). FTIR spectra of Indulin AT (Figure 1A)
before and after incubation in [Bmim][HSO4] did not evidence
significant differences suggesting the preservation of overall
structural integrity of this lignin in these conditions, as already
suggested in the literature for other imidazolium-based ILs
(Hulin et al., 2015). This observation is in agreement with
the similar quantification of hydroxyl group of Indulin AT
before (Table 3) and after incubation in the IL (Table 4). For
Wayagamack, Lignol and to a lesser extent Windsor lignins
(Figures 1B–D), a slight decrease in intensity of the band at 1,707

cm−1, characteristic of carbonyl stretching, was observed. This
could be due to reaction implying ketone functions catalyzed
by [Bmim][HSO4] (Gupta et al., 2007). It was also noticed
that for the Wayagamack and Lignol lignins a slight increase
in the band intensity at 1,080 cm−1 occurred, assigned to the
C-O deformation in aliphatic esters and secondary hydroxyls
(Casas et al., 2012). In this way, aldolization and/or ketolization
catalyzed by [HSO4] anion may occur between lignin ketones
and electrophile groups, leading to the formation of C-C covalent
bonds and secondary alcohols. This aldolization can also be
suggested for the Windsor lignin by the diminution of the
band intensity at 1,111 cm−1, assigned to C-O of aliphatic
ethers. Anyhow, these modifications on FTIR spectra, revealed
after incubation in [Bmim][HSO4] of raw lignins, remained
minor. Additional information was provided by 31P NMR
spectra on the distinct types of hydroxyl groups than FTIR
cannot discriminate (Pu et al., 2011). Figure 2 shows 31P NMR
spectra of the four phosphorylated industrial lignins (Indulin AT,
Wayagamack, Windsor and Lignol) before and after incubation
in [Bmim][HSO4]. Decreases of peak intensity of phenolic
hydroxyls from G units (HOph, 139.0–140.2 ppm) and carboxylic
acid hydroxyls (HOCOOH, 133.6–136.0 ppm) were observed for
Wayagamack, Windsor, and Lignol lignins (Figures 2B–D). In
the case of Indulin AT, the intensity decrease was much less
marked (Figure 2A). Contrary to other lignins, intensity of
HOaliph peak from Lignol decreased significantly (Figure 2C).
Concerning the Windsor, intensity of peaks assigned to HOph

from the S units was more strongly decreased than those from G
units after incubation in [Bmim][HSO4] (Figure 2D). Although
the overall structural integrity of lignins would be preserved
after incubation in [Bmim][HSO4], some chemical modifications
specifically affecting amount aliphatic, phenolic, and carboxylic
acid hydroxyl groups occurred. These observations are reinforced
by quantifications reported before incubation in IL of raw lignins
(Table 3) and after incubation (Table 4). This could be due to
condensation reactions between β-ketone and hydroxyl or β-
carbonyl groups in acidic conditions (Wayman and Lora, 1980;
Hussin et al., 2014). In addition, decrease in HOph may be due to
dehydration resulting from acid-catalyzed elimination reactions
(El Hage et al., 2009; Hussin et al., 2014).

Thermal Properties
The thermal properties of the four industrial lignins were
characterized by thermogravimetric analysis (TGA) before
(Supplementary Figure 1) and after (Supplementary Figure 2)
incubation in [Bmim][HSO4]. TGA curves represent weight
loss of lignin relative to temperature of thermal degradation.
The first derivative of the corresponding curve (DTG) shows
rate of weight loss. The peaks of the DTG curves may be
defined as thermal degradation temperatures: Tonset as the
temperature at which the degradation of the polymer starts,
T50% as the temperature at which lignin sample attained 50%
of degradation and DTG as thermal decomposition temperature
at which maximal decomposition occurs. Table 5 summarizes
thermal analyses data relative to the four lignins before and
after incubation in [Bmim][HSO4]. TGA thermograms suggested
that thermal degradation behavior was different after incubation

Frontiers in Chemistry | www.frontiersin.org 5 August 2019 | Volume 7 | Article 578

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Husson et al. Esterification of Industrial Lignins in Ionic Liquid

FIGURE 1 | ATR–FTIR spectra of the four industrial lignins: Indulin AT (A), Wayagamack (B), Lignol (C), and Windsor (D) before (blue) and after incubation in

[Bmim][HSO4] for 4 h at 75◦C (red).

TABLE 4 | Quantification by 31P NMR of hydroxyl groups concentration (mmol.g−1 of lignin) in control lignin (incubated in [Bmim][HSO4] for 4 h at 75◦C without maleic

anhydride) and in maleated lignins and regioselectivity of the reaction (R%).

Control lignin (mmol.g−1 of lignin) Lignin maleate (mmol.g−1 of lignin) Regioselectivity (%)

HOaliph HOph HOaliph HOph HOaliph HOph

Indulin AT 2.29 ± 0.17 1.66 ± 0.16 0.88 ± 0.47 1.00 ± 0.36 66.6 ± 3.7 33.4 ± 3.7

Wayagamack 0.79 ± 0.38 1.10 ± 0.07 0.31 ± 0.02 0.77 ± 0.08 51.7 ± 11.7 48.3 ± 11.7

Lignol 1.18 ± 0.29 1.20 ± 0.04 0.50 ± 0.10 1.07 ± 0.01 83.6 ± 0.9 16.4 ± 0.9

Windsor 1.26 ± 0.42 1.43 ± 0.16 0.55 ± 0.01 1.00 ± 0.20 65.5 ± 4.9 34.5 ± 4.9

in IL (Supplementary Figures 1, 2). The incubation seemed to
minimize the differences between Tonset value of each lignin.
Indeed, these values ranged between 200.0 and 215.7◦C after
incubation vs. 145.0 and 183.3◦C for raw materials. After
incubation in IL, thermal degradation of the four lignins was
slower and required higher temperature for starting. However,
IndulinAT exhibited a decrease in T50% and relative mass loss
at 798◦C after incubation in [Bmim][HSO4]. The increase of
Tonset after incubation could be related to the decrease in
carboxylic acid hydroxyl groups evidenced by 31P NMR and
FTIR spectra. This effect would be particularly marked for
Lignol lignin. Previous results obtained by 31P NMR suggested
that incubation in [Bmim][HSO4] decreases the concentration

in HOph of lignins. These HOph groups allow the prevention
of autocondensation of lignin during thermal decomposition
(Zhao et al., 2014). We suggested that IL incubation of
Wayagamack, Lignol, and Windsor lignins would generate some
more condensed aromatic structures leading to higher stability
as revealed by increase in Tonset. Glass transition temperature
(Tg) of the raw lignins were then determined by DSC and
ranged between 135.5 and 150.0◦C. Although not precisely
ascertainable in our experiments, there is an effect of IL
incubation that could be due to variation in hydroxyl groups,
or maybe the presence of low molecular weight contaminants or
residual solvent (Vasile and Zaikov, 2006; Sadeghifar et al., 2012
Cui et al., 2013).
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FIGURE 2 | 31P NMR spectra of the four phosphorylated industrial lignins: Indulin AT (A), Wayagamack (B), Lignol (C), and Windsor (D) before (blue) and after

incubation in [Bmim][HSO4] for 4 h at 75◦C (red). N-hydroxyphtalimide was used as internal standard with chemical shifts of phosphitylated N-hydroxy

N-hydroxyphtalimide centered on 152.2 ppm.

TABLE 5 | Thermal analyses summary of lignins before and after incubation in [Bmim][HSO4] for 4 h at 75◦C.

Lignins Tonset (
◦C) T50% (◦C) Residual relative massa (%) DTG max (◦C)

Raw Indulin AT 145.0 645.7 46.6 349.0

Wayagamack 183.3 516.0 41.3 397.3

Lignol 162.5 461.2 38.5 390.9

Windsor 165.0 482.8 39.7 359.9

After incubation in [Bmim][HSO4] Indulin AT 215.7 572.3 44.0 338.4

Wayagamack 211.3 552.0 43.6 338.8

Lignol 200.0 631.6 46.9 335.5

Windsor 208.8 632.9 46.8 342.4

aResidual relative mass (%) determined at 798◦C.

All together, these characterizations provided evidence that
control lignins obtained after IL incubation of raw lignins left a
good potential in hydroxyl groups for esterification.

Chemical Esterification of Lignins in
[Bmim][HSO4]
Determination of Suitable Lignin/Maleic

Anhydride Ratio
Chemical esterifications of Indulin AT and Lignol, two industrial
softwood lignins distinct by their respective extraction processes

(Kraft vs. organosolv), were firstly performed in [Bmim][HSO4]
with various lignin/maleic anhydride ratio (w/w) to target the
optimal conditions. For this study, a temperature of 75◦C and
a duration of 4 h were selected based on a previous work
concerning chemical esterification of lignin in dioxane (Schorr
et al., 2014). After incubation in [Bmim][HSO4] in presence of
various maleic anhydride amount, all FTIR spectra of recovered
Indulin AT (Figure 3) showed the presence of a characteristic
band of ester carbonyl at 1,718 cm−1 not observed on the
FTIR spectrum of incubated Indulin AT without acyl donor
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FIGURE 3 | ATR–FTIR spectra of Indulin AT after incubation in [Bmim][HSO4]

for 4 h at 75◦C (A) and after esterification in similar conditions with the

lignin/maleic anhydride ratio of 1/1 w/w (B), 1/2 w/w (C), 1/5 w/w (D), 1/7.5

w/w (E), and 1/10 w/w (F).

FIGURE 4 | ATR–FTIR spectra of Lignol after incubation in [Bmim][HSO4] for

4 h at 75◦C (A) and after esterification in similar conditions with the

lignin/maleic anhydride ratio of 1/1 w/w (B), 1/2 w/w (C), 1/5 w/w (D), 1/7.5

w/w (E), and 1/10 w/w (F).

(Figure 1A). This carbonyl ester band is distinct from those
of maleic anhydride (1,737 cm−1) and those assigned to free
carboxylic group (1,707 cm−1). The presence of this band at 1,718
cm−1 was supported by significant increase of band intensities
at 1,206 cm−1 and 1,160 cm−1, corresponding to C-C and C=O
stretching and C=O from conjugated ester groups, respectively
(Faix, 1992; Boeriu et al., 2004). These characteristic bands
suggested the feasibility of the chemical esterification of Indulin
AT lignin in [Bmim][HSO4]. Esterification in this IL would be
more efficient with the lignin/maleic anhydride ratio of 1/7.5
w/w (Figure 3E and Figure 5A) while the best ratio in dioxane

FIGURE 5 | ATR–FTIR spectra of the four maleated lignins: Indulin AT (A),

Lignol (B), Wayagamack (C), and Windsor (D) after esterification in

[Bmim][HSO4] for 4 h at 75◦C with the lignin/maleic anhydride ratio of 1/7.5

w/w.

was 1/2 w/w (Schorr et al., 2014). To confirm the relevance
of this lignin/maleic anhydride ratio, similar reactions were
performed with Lignol lignin. The FTIR spectra of recovered
Lignol were presented in Figure 4. From the ratio of 1/1 w/w, the
band at 1,721 cm−1, characteristic of ester carbonyl, appeared.
The intensity of this band increased as the higher ratio. A
slight band at 1,176 cm−1 (see red arrow on Figure 4C) can
be observed, maybe assigned to carbonyl from aromatic ester
(Barra et al., 1999; Maldhure et al., 2012). The increase of band
intensity at 1,124 cm−1, assigned to secondary alcohols and
ester carbonyl groups, also confirmed the synthesis of lignin
maleate (Faix, 1992; Casas et al., 2012). For 1/7.5 and 1/10 w/w
ratio, the intensity of the band at 1,161 cm−1 increased and
constituted thus a supplementary proof of chemical esterification
of lignin (see spectra on Figures 4D–F and Figure 5B). Based on
these results, chemical esterifications of the two other industrial
lignins (Wayagamack and Windsor) with maleic anhydride were
performed with the ratio lignin/maleic anhydride1/7.5 w/w. After
extraction from reaction media, FTIR analyses of recovered
lignins confirmed the feasibility of chemical esterification of
Wayagamack, and Windsor lignins as illustrating by their
corresponding infrared footprint (Figures 5C,D).

Reaction Performances and Selectivity
Figure 6 evidences significant differences between 31P NMR
spectra of control lignins (incubated in [Bmim][HSO4] for 4 h
at 75◦C without maleic anhydride) and esterified lignins. In
most of the case, 31P NMR spectra of esterified lignins present
a decrease of peak intensity of HOaliph (145.4–150.0 ppm) and
HOph (139.0–140.2 ppm) as compared to control lignins spectra.
A sharp increase of peak intensity corresponding to HOCOOH

(133.6–136.0 ppm) can be noticed. The esterification would
thus target both aliphatic and phenolic hydroxyls of lignins
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FIGURE 6 | 31P NMR spectra of the four industrial lignins: Indulin AT (A), Wayagamack (B), Lignol (C), and Windsor (D) after incubation in [Bmim][HSO4] for 4 h at

75◦C without maleic anhydride (control lignins, red spectra) and with maleic anhydride (maleated lignins, blue spectra). N-hydroxyphtalimide was used as internal

standard with chemical shifts of phosphitylated N-hydroxy N-hydroxyphtalimide around 150.7–153.6 ppm. Esterification was performed with the lignin/maleic

anhydride ratio of 1/7.5 w/w.

as already observed in FTIR spectra. Moreover, the increase
of hydroxyls from carboxylic groups confirmed the presence
of grafted maleyl chains on lignin by exposing free one-end
carboxylic groups of anhydride. Quantitative analyses of 31P
NMR spectra were used to determine esterification yield (Y in%)
and then to deduce the regioselectivity of the reaction (Table 4).
Global esterification yields obtained for Lignol and Wayagamack
(30.1 and 38.5%, respectively) were significantly lower than
those obtained with Windsor and Indulin AT (47.4 and 52.5%,
respectively). The quantitative results thus suggested a difference
of esterification performances between these four industrial
lignins, maybe influenced either by the origin (softwood or
hardwood) or the extraction process (Kraft or organosolv). The
comparison of these performances with literature data is not
an easy one. Indeed yields were often expressed as the mass
increase of recovered lignin after esterification, unfortunately
biased by mass loss during extraction from reaction medium
and/or residual adsorption of acyl donor (Nadji et al., 2010;
Cachet et al., 2014; Chatterjee et al., 2014; Gordobil et al., 2016).
However, our obtained yields seemed to be competitive with
some of those reported in literature. For instance, a mass increase
of 3.3% was determined for esterification of the organosolv
lignin with maleic anhydride in tetrahydrofuran. This yield
corresponded to 0.5 mmol of esterified hydroxyl groups per
gram of lignin (mmol/glignin) (Chatterjee et al., 2014). This result
was significantly lower than those obtained with our greener

strategy for the four tested lignins: in average 1.20 mmol/glignin
of esterified hydroxyls achieved in shorter duration.

Literature data usually suggests that esterification would
mainly occur directly or indirectly on aliphatic hydroxyls
(Thielemans and Wool, 2005; Nadji et al., 2009; Ahvazi et al.,
2011; Maldhure et al., 2011, 2012; Chatterjee et al., 2014; Suzuki
et al., 2018). In this context, we proposed to finely define
the resulted regioselectivity from our reaction system for the
four industrial lignins. It can be observed that HOaliph were
preferentially esterified for Indulin AT, Lignol, and Windsor
lignins (Table 4). These results agreed with the low selectivity
in favor to HOph from lignin suggested in a previous study
(Ahvazi et al., 2011). Interestingly, similar part of HOph were
esterified (around 33% of total esterified hydroxyl groups) for
Indulin AT and Windsor: two lignins extracted from wood
by Kraft process. This regioselectivity could be explained by
the high amount of syringyl units with two methoxy groups
on the aromatic ring inducing probably steric hindrance in
the molecular environment of HOph (Thielemans and Wool,
2005). Concerning the Wayagamack lignin, hydroxyl groups
were esterified regardless of their respective nature (51.7% of
HOaliph vs. 48.3% of HOph). This absence of regioselectvity
could suggest that chemical modification of lignin occurred
during extraction process. About Lignol lignin, HOaliph were
preferentially esterified with a regioselectivity of 83.6%. Although
organosolv process preserved the native structure of lignin and
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thus the amount in coniferyl alcohol, we expected a higher
availability of HOph for esterification with maleic anhydride.
By this way, we suggested that the solvation in [Bmim][HSO4]
could affected the reactivity of HOph in agreement with results
in dioxane previously reported in the literature (Ahvazi et al.,
2011). In solution, maleic anhydride exhibits two carboxylic
functions allowing either mono-acylation or di-acylation. The
HOCOOH/HOesterified ratio can distinguish between these two
possible reactions. For Lignol and Wayagamack lignins, the
ratio was, respectively, of 0.94 and 0.92 suggesting a mechanism
exclusively oriented towardmono-acylation. On the contrary, the
ratio of 0.59 determined for Indulin AT, suggested that 1/3 of
maleic anhydride induced di-acylation on lignin.

Thermal Properties of Lignin Maleate
Table 6 compares thermal analyses data relative to the
four lignins after esterification in [Bmim][HSO4] with
maleic anhydride. TGA and DTG thermograms of the four
lignins after esterification exhibited significant differences in
comparison with control lignins (Supplementary Figure 3

vs. Supplementary Figure 2). Indeed, thermograms of the
four maleated lignins presented henceforth two characteristic
temperatures of maximal degradation (DTG1max and DTG2max).
DTG1max ranged between 192.2 and 196.3◦C (Table 6). This
new DTG1max could be due to the thermal decomposition
of the covalently grafted maleyl chains on polymers. Overall,

it can be noticed a decrease in thermal stability for the
four maleated lignins as illustrated by the lower Tonset and
T50% (except for maleated Wayagamack lignin) than those
determined for corresponding control (Table 2). About maleated
Wayagamack, no significative change of T50% was detected as
already reported (Schorr et al., 2014). In addition, TGA-MS
coupled analyses of lignin maleates evidenced the generation of
degradation fragments with m/z of 26 (C2H2) and 44 (CO2).
Example of fragments generated during TGA-MS coupled
analysis of maleated Indulin AT lignin was presented in
Supplementary Figure 4. These fragments would be assigned
to thermal decomposition of maleic chains (Cascaval et al.,
1996; Chen et al., 2013). Combined with 31P NMR analyses,
these thermal degradation fragments strengthen the proof of
concept of efficient lignin esterification in [Bmim][HSO4] with
maleic anhydride without additional catalyst. Previous works
about esterification of lignins demonstrated that Tg decreased
drastically after efficient covalent grafting of alkyl chain on
the polymer (Schorr et al., 2014; Hulin et al., 2015). This
thermal behavior of modified lignins was thus consistent with a
succeeded esterification.

Solubility of Raw Lignins vs. Maleated
Lignins
Wayagamack and Windsor lignins were selected for their
contrasted H/G/S ratio (1/96/3 vs. 1/32/67, respectively).

TABLE 6 | Thermal analyses summary of lignins after chemical esterification in [Bmim][HSO4] with maleic anhydride for 4 h at 75◦C.

Modified Lignins Tonset (
◦C) T50% (◦C) Residual relative massa (%) DTG1 maxb (◦C) DTG2 maxc (◦C)

Indulin AT 147.1 478.4 40.0 196.3 324.1

Wayagamack 172.4 557.9 43.8 196.8 318.2

Lignol 155.8 491.5 41.1 192.2 325.0

Windsor 160.0 499.2 40.7 193.5 336.9

aResidual relative mass (%) determined at 798 ◦C.
bFirst maximum degradation temperature.
cSecond maximum degradation temperature.

FIGURE 7 | Solubility values of Wayagamack and Windsor lignins in methanol and chloroform before and after esterification. *Insoluble.
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Methanol and chloroform, distinct by their solubility parameter δ

from Hildebrand theory (14.3 vs. 9.2 (cal/cm−3)1/2, respectively)
and hydrogen bonding parameter δH from the Hansen theory
(10.9 vs. 2.8 (cal/cm−3)1/2, respectively), were chosen for this
study. The solubility values of Wayagamack and Windsor
lignins before and after esterification were presented in the
Figure 7. Windsor lignin exhibited a higher solubility values
than Wayagamack lignin in methanol (3.3 vs. 1.8 g.L−1) and
chloroform (0.43 g.L−1 vs. insoluble). As expected, methanol
was a more suitable solvent than chloroform to solubilize
lignins according to their respective δ and δH parameters. Based
on molecular weight measurements reported in Schorr et al.
(2014), we suggested that the higher solubility of Windsor
lignin in a given solvent in comparison to Wayagamack
lignin could be explained by its lower molecular weight (Mw
3863 vs. 4859, respectively). In addition, this higher solubility
could be also related to the higher HOtotal concentration in
Windsor lignin than in Wayagamack lignin (Table 3) as already
suggested (Sameni et al., 2017). In addition, whatever the
lignin, esterification induced an increase in solubility values
in methanol (x 2.7 for Wayagamack lignin and x 1.6 for
Windsor). This improvement could be related to mono-acylation
by maleic anhydride leading to additional exposed carboxylic
groups. Indeed, these groups would allow additional hydrogen
bonding with solvent and so a better solvation of the polymer.
In chloroform, this improvement was less marked with a
solubility of maleated lignins inferior to 1 g.L−1. Nevertheless,
Wayagamack lignin, initially insoluble in this solvent became
slightly more soluble. This weak solubility improvement in
aprotic organic solvent as chloroform seemed to be due to
a compromise induced by the covalent grafting of maleic
anhydride, providing both additional alkyl chains favorable to
solvation in this solvent and additional free carboxylic groups
which might be unfavorable.

CONCLUSION

Chemical esterifications of four industrial lignins, distinct
by their origin, and extraction process, were succeeded for
the first time with maleic anhydride in acidic ionic liquid.
This route was easy to implement, fast and did not require
additional catalyst. An excess of acyl donor favored the efficiency
of the reaction whatever the origin and extraction process
of lignin. Between 30 to 52% of hydroxyls of lignin were
esterified. For three out of four lignins (Indulin AT, Windsor,
Lignol), the regioselectivity of the reaction system was mainly
orientated toward aliphatic hydroxyls (>60%) reflecting both
their accessibility in the molecular environment and their

reactivity. For the Wayagamack lignin, esterification yield was
the lowest but the absence of selectivity between aliphatic and
phenolic hydroxyl suggested an improved reactivity of phenolic
hydroxyls in our reaction system. Esterification of lignins with
maleic anhydride increased significantly their solubility in polar
and protic solvent probably due to additional exposed carboxylic
groups resulted from mono-acylation. Although the covalent
grafting of maleyl chains on lignin induced a very slight decrease
in thermal stability, this remained compatible with temperature
conditions of extrusion process for the conception of partially
biosourced composites.
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