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published or not. The documents may come     Unsupervised Bayesian reconstruction of individual life histories from otolith signatures : case study of Sr : Ca transects of eel (Anguilla anguilla) otoliths

72% changed habitat once or of several times, mainly before age four. This method opens new avenues for the analysis of individual habitat strategies. In addition, it could be easily applied to any other measures (microchemistry or not) taken along an otolith growth axis to ories.

Introduction

The recent bloom of ecology studies using otolith microchemistry emphasises the remarkable use of otolith between the environment e, sequential elemental measures acquired along an otolith growth axis are thought to record environmental information along the fish lifespan. River basin origin have been inferred from strontium hile salinity

). With more most popular water masses of different salinity for at least 20 fish species. To date, more than 28 published studies have exploited strontium calcium ratios for the analysis of life histories of eels species (Anguilla and costly rather than a easures were rmalised, the treatment of sequential Sr:Ca measures of eel otoliths data consisted in calculation of the mean values of each individual eel (Tsukamoto and Arai 2001[START_REF] Jessop | Migratory behavio[END_REF]. For assigned to a specific water mass according to the mean value of Sr:Ca measures. This is questionable as each Sr:Ca otolith measure is a specific indicator of a water mass so that the mean of two different water masses has no ecological meaning. Besides, the temporal dimension of the data was lost. Other studies interpreted directly individual Sr:Ca transects values plotted potential of the otolith accuracy for investigating fish life history traits. The chemistry to trace migration pathways is premised on a significant correlation elemental composition of otoliths and physicochemical properties of the ambient [START_REF] Campana | Chemistry an applications[END_REF]Martin and Thorrold 2005;Thorrold et al. 1997). Henc isotopes ratios (Milton and Chenery 2003;Thorrold and Shuttleworth 2000), w level has been inferred from ratios of strontium on calcium (Tzeng et al. 1994 than 200 research articles published, strontium calcium ratios became the microchemistry application to fish ecology, as a tool to track movements across (Troadec et al. 2000;[START_REF] Fablet | Semi-local extraction of ring structures in images of biological application to the Ba[END_REF] or other issues such as stock discrimination [START_REF] Campana | Stock Discrimination Using Can[END_REF], or fish individual status [START_REF] Cardinale | E stock, a Can[END_REF]). Within a signal processing framework, each Sr:Ca measure is associated with a hidden state variable standing for an environmental information (in our case, an habitat and the associated water mass), and the temporal nature of the sequence of Sr:Ca measures can be restored from the otolith growth pattern. Formally, the reconstruction of the individual patterns of habitat use is stated as the Bayesian reconstruction of the temporal sequence of the hidden state variables from the otolith growth pattern, the first years of the fish life have a greater spatial resolution last years of the fish life. As a consequence, evenly spaced Sr:Ca measures tran non equal number of measures for each year of the fish life. In addition, the cla individual migratory behaviours relied on a priori classes, which may not ac supervised method accounting for the mean and the variations of each ind (Daverat and Tomas in press). From classes of li of the eels resuled from a visual interpretation of the associated Sr:Ca signa consuming, such a scheme also appears rather subjective.

sequential measures and infer a relevant interpretation of the chemical signal (S terms of environmental information (here the habitat visited by the fish). Sign methods appeared as a promising tool to tackle this issue. Multidisciplinary already applied signal processing techniques to process fish otolith data for age observed sequence of Sr:Ca signatures. The proposed scheme mainly relies on Gaussian mixture models and hidden Markov models. All these developments were implemented under method was in terms of a method for the treatment of sequential measures taken on an otolith growth axis is further discussed. The interpretation of the macrostructures, so-called "rings", laid annually [START_REF] Berg | Age determination of eels, Anguilla anguilla (L.): comparison o otolith ring patterns[END_REF] observed on the otoliths along the longest growth axis, provided an estimation of individual growth patterns. The elver mark was set as the origin of the time axis and only the interval 

Data

Material and Methods

An eel ecology study [START_REF] Daverat | Tracking conti shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, riverine eels of the Gironde-Garonne-Dordogne watershed[END_REF], led to the acquisition of 192 individual eel S series. The fish samples were collected in the Gironde river basin SW France habitats (water masses). 63 eels (33%) were collected in freshwater habitats, 11 movements across freshwater, brackish and marine habitats. Hence, only th otolith corresponding to the continental life of the eel was retained (from glass e edge). The acquisition method was described in [START_REF] Daverat | Tracking conti shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, riverine eels of the Gironde-Garonne-Dordogne watershed[END_REF], and electron microprobe measures of Sr and C was recorded as a distance from the glass eel mark.

between the elver mark and the edge was taken into account, as the ecological issue was the continental habitat use pattern of the eel after the glass eel stage until the time of capture.

ith respect to e series was

).

In the e will refer to this time axis as the age axis, since it refers to the time spent from the elver mark. 
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Considering a linear model, Θ H is explicitly defined by the mean value m H , the effect of the age λ A and the effect of the season λ S . For a Sr:Ca measure y at age a and hydrological season s (normalized average monthly flow), the associated likelihood g(y|a,s,Θ H ,σ H ) is given by:
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The constant model is a particular case of the linear model with λ =λ =0. uld note that no labelled data is available to perform this estima a mixed set of Sr:Ca measures {y i } associated with unknown habitats (with considered ones). The estimation of the parameters of the hab
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Hence, in the subsequent, we will only detail the developments for the latter.

As a first step, we aim at determining for each habitat type H the associated model parameters (Θ H ,σ H ). One sho tion, but only in the three itat models
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is then stated as an unsupervised issue. To this end, given the Sr:Ca measures {y i } relative to explanatory variables {a i ,s i }, the whole distribution of {y i } is ussian habitat modelled as a Gaussian mixture issued from the superimposition of the three Ga models:
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, where R, E and M stand for the labels relative to the three habitats: respectively, river (R), estuary (E) and marine area (M). π R , π E , π M are the prior probabilities for each habitat. Given {y i } and {a i ,s i }, we aim at estimating the parameters of the mixture model {π

H , Θ H , σ H } H ∈ {R,E,M} such that { } { } ( ) M E R H , , ∈
according to the maximum likelihood (ML). This model estimation is carried

EM (Expectation-Maximization) alg H H H s a y p , , , ,

Θ σ π

best fits to the distribution of the dataset {y i } out using the orithm [START_REF] Bishop | 200 patterns of American eels in an im microchemistry[END_REF]. The computations involved in this ing the mean values of the Gaussian modes. We rely on the statement that the lower the salinity of the habitat the lower the mean Sr:Ca measure (Fig. 1).

h mode was influence of between the contributions of each group of predictors permited to evaluate the relative importance of habitat, season and age (Silber et al. 1995). These statistical tests were performed with R ries of Sr:Ca measures as illustrated (Fig. 2). This issue resorts to the estimation of the temporal sequence of the habitat-related path and is formally stated as a Bayesian labelling issue, that is to say retrieving the temporal habitat sequence {x } corresponding to a given observed series of Sr:Ca measures {y t }, where, for each time t, x t is a label: R (river), E (estuary) or M (Marine area).

Within a Bayesian framework, this labelling issue comes to the determination of the best sequence according to the Maximum A Posteriori (MAP) criterion, that is to say iterative procedure are detailed in Annex I.

The estimated mixture parameters are finally assigned to each habitat by sort

The goodness of the fits of the constant model and the linear model for eac compared with AIC (Akaike Information Criterion) method [START_REF] Awad | Properties of the Akaike information criterion[END_REF] Further assumptions are required to solve for this minimization issue. Two investigated. First, assuming that Sr:Ca
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This first model is however rather simplistic and does not explictily model fish m among habitats. To account for these temporal dynamics, first-order Gaussian h models (Rabiner 1989) are used. These models were initially developed and speech analysis. As il ) ovements idden Markov exploited for lustrated (Fig. 3), two main components are involved: a prior on the temporal dynamics of the state variables {x t } which models fish movements from x t-1 to x t and a data-driven term characterizing the probabilistic distribution of the observed Sr:Ca measures y given the habitat type x .

The temporal prior is stated as a first-order Markov chain. This resorts to the assumption that, given the sequence of state variables (x 0 , x 1 , ..., x t-1 ) from time 0 to time t-1, the state variable at time t only depends on x t-1 . It means that this model only keeps the memory of its last state to jump to the next one. Formally, this leads to the property that t t ) ( ) , ,..., (
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. Consequently, a first-order Markov chain is fully characterized by its transition matrix Γ:
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which specifies the likelihood that the fish is in habitat type H (Fig. 4), whereas direct transitions from A to C are impossible, paths from A through B are possible.
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where denotes the set of habitat-related Sr:Ca models ,
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To exploit this Gaussian hidden Markov model, we first need to estimate the parameters of the prior term. Similarly to the estimation of the parameters of the Gaussian mixture model, etermine the transition matrix associated with the maximum likelihood for the whole set of samples: this estimation is performed according to the ML criterion which resorts to d
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This maximization issue is solved for using the EM algorithm. We let the reader refer to Rabiner (1989) for a detailed description of this estimation procedure. We only review its main characteristics. This procedure iterates two steps until convergence. Given the current estimate Γ k of the transition matrix, the Expectation step resorts to the computation of the posterior likelihoods:
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The M-step follows to update the transition matrix Γ k+1 from these posterior likelihoods as their average over the whole dataset:
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Given the estimate of the parameters of the hidden Markov model, the determ optimal MAP sequence ( ) Since the habitat sequences are calibrated over time, a variety of measures can also be defined to characterize individual life traits. We focus on the analysis of the time at which the transitions from one habitat to another occur, and of the time spent in a given habitat between two transitions. For a given type of transition from habitat type H 1 to habitat type H 2 (i.e., within the set of transitions {R to E, R to M, E to M, E to R, M to R, M to E}), the whole set of habitat sequences

Analysis of habitat sequences

Given the set of the individual habitat sequence, a quantitative analysis of fish m carried out. First the global analysis of the habitat sequences delivers a qua by the quality and the order of the visited habitats: for instance, the movement p from habitat sequence RRRREEEERRRRR is RER. Given the whol automated and unsupervised classification of individual movement behav determined, as well as the relative frequencies of these categories of movement p 
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is performed in terms of age, month and age group at which the transitions occur. Scale parameter µ is set to 1 for quantities given as monthly values and age groups and to 1/10 2 for quantities given as ages. 45167) has a ue of 46465).

Habitat, age and hydrological season (river flow) factors all had a significant influence on Sr/Ca values for each habitat (p<0.001) (Table 1).

The comparison of the relative contribution of the habitat factor with the contribution of both f SrCa values I 4.38-4.79], l. 1995). Since the effect of age and season is significant in terms p-statistics, we report the results of the analysis of the individual chronologies of habitat with respect to the linear model. odel and the ig. 5). As the e associated habitat sequences may be chaotic and may involve numerous short and unlikely transitions. On the contrary, the explicit modelling of fish movements between habitats thanks to the estimated transition odel.

Consequently, this model was chosen to further characterize life traits from the estimated habitat sequences. Eels sampled in the Gironde watershed displayed a wide repertoire of habitat use patterns, such as residences all life long in the same habitat as defined in the model (river, estuary, marine area) or as single or multiple shifts among habitats (Fig. 6).

Results

Comparison between constant and linear models.

The linear model accounting for habitat, age and season effects (AIC value of better performance than the model only accounting for habitat effect (AIC val age and season factors revealed that habitat contributes more to the variation o than age and season with a ratio of effect standard deviations of 4.58 [95%C (Silber et a

Individual chronologies of habitat use.

The comparison of the habitat sequences issued from the Gaussian mixture m hidden Markov models showed the improvements brought by the latter one (F Gaussian mixture models do not account for time coherence, th matrix leads to the smoother results reported for the hidden Markov m of movement ur analysis is rns up to age 6. As illustrated, 37 patterns are represented (Fig. 7). While only the first 20 patterns account for more than 80% of the samples, the first five patterns occur with a frequency greater than This resident ment patterns 6.5% of the a. While 33% of the sample was collected in the river, only 14.3% of the samples are labeled as residents in the river habitat. Similarly, the reported categorization leads to only 7.8% of residents in the the estuary. ll as patterns nly between eably, up to 5 successive migrations between the river and the estuarine area can be observed for the same individual before age 6. Fewer samples involve migrations among the three habitats.

However, about 9% of the samples are associated to patterns including a first migration from the river to the estuarine area, and then one or several movements between the estuarine and the marine areas. Conversely, very few individuals (below 2%) move from the marine area to the river after a stay in the estuarine area.

Analysis and classification of movement patterns

From the overall analysis of the reduced habitat sequences, the different classes patterns associated with the considered dataset were automatically determined. O restricted to fish older than four years and take into account the movement patte 5%. Among the first four patterns, three correspond to resident behaviour. behaviour however account for only 28% of the samples and 72% of the move involve at least one movement. Residents in the marine habitat account for sample which is quite consistent with the 7% of fish collected in the marine are estuary area while our sample is composed of 60% of fish collected in Concerning migration behaviours, patterns involving only one migration as we involving several migrations between two types of habitats are encountered, but o the river and the estuarine area or between the estuarine and marine areas. Notic Transitions between the river and the marine area did not occur. Besides, the reported results n-dependent.

Analysis of transitions schedules and duration of habitat use

at use before their absence, ary did not seem age specific (Fig. 9), but their frequency decreased with age with a maximum of transitions occurring at age 1. The duration of the stay in the river was less than two years with a maximum of fish spending less than one year in the river before moving to the estuary (Fig. 9).

Transitions from the estuary to the river and transitions from the estuary to the marine area did not occur for a specific age of the eel, as shown (Fig. 10) but decreased as the age of the fish increased. Most eels spent less than one year in the estuary before moving either to the river or to the marine area (Fig. 10).

Analysis of the transitions between habitats.

In order to keep a consistent temporal resolution through the fish life, only the f life of the fish were further considered for the rest of the analysis. The propo transitions from one habitat to another one were evaluated first as a function of habitat as presented for instance for the estuary (Fig. 8) at the individual level.

that movements among habiats are seldom compared also shows that the occurrence of the transition is seaso Age at transition between the river and the estuary and duration of the habit changing habitat were investigated for eels of more than four years old. Due to transitions between the marine habitat and the river were not analysed. As expected, the contribution of habitat has been shown to be much greater than that of age and season. Outside the metamorphosis from leptocephalus larvae into glass eel, no significant effect of ontogeny due to growth or age was observed so far on Sr:Ca incorporation into eel otolith [START_REF] Daverat | Tracking conti shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, riverine eels of the Gironde-Garonne-Dordogne watershed[END_REF][START_REF] Kawakami | Factors influencing otolith strontium/calcium ratios in Anguilla japonica elvers[END_REF]Kraus and Secor 2003;Tzeng 1996). A validation using another fish species reared for two years in constant salinity failed in detecting any age effect on Sr:Ca incorporation into otoliths (Elsdon and 

Spatial and temporal resolution of the analysis

The integration of the temporal dimension in Sr:Ca series was an important issue Time series were reconstructed using resampling techniques. The spatial reso analysis on the otolith was constrained by analytic requirements. In this study, analyse only the first 6 years of life in order to keep a consistent temporal re method was based on a constant growth of the otolith through the year. It would by accounting for the sea

Habitat-related modelling of otolith signatures

In this study, a mono-proxy approach was used to model habitat-related otolith c

The proposed unsupervised scheme based on Gaussian mixture models permits to estim model parameters for each habitat zone from unlabelled data. A linear model Gillanders 2005). Age may affect Sr incorporation at a greater time scale than a few years, especially for some eels that can spend up to 20 years in their feeding habitats. As the mean ered, the age ry weak, was asses, of the variations of the river flow were introduced in the model developed here. In this study site, measures of Sr:Ca ratio in the water, collected at different seasons showed that values were slightly estuarine and and Sr:Ca value erimental and or 2004).

Further applications of this model could take into account other types of effects such as physiology parameters, fooding conditions or temperature [START_REF] Campana | Chemistry an applications[END_REF]Campana et al. ponential, ...) is framework vironments or states experienced of Sr:Ca ratio with oxygen isotopes ratios as a proxy of estimation of

Reconstruction of habitats use chronologies

The proposed method turned out to be particularly adapted to the analysis of large data sets.

Our original data consisted in 192 individual Sr:Ca series containing 70 points of Sr:Ca measures on average. Hence a total of 14649 Sr:Ca measures, were analysed as 14649 events age of our sample was 7 years, and only the six first years of life were consid effect was weak compared to the habitat effect. The season effect, although ve explained by the seasonal variations of freshwater flows into marine water m Gironde watershed and by the variations of water temperature. Hence, seasonal fluctuating over the seasons without affecting the discrimination of marine, river habitats [START_REF] Daverat | Tracking conti shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, riverine eels of the Gironde-Garonne-Dordogne watershed[END_REF]. As expected, the relation between habitat was very strong, a result validated for eels and other species using coupled exp field validations [START_REF] Daverat | Tracking conti shifts of eels using otolith Sr/Ca ratios: validation and application to the coastal, riverine eels of the Gironde-Garonne-Dordogne watershed[END_REF][START_REF] Elsdon | Consistency of patterns betwee experiments and field collected fish in otolith chemistry : an example and ap salinity reconstructions[END_REF]Kraus and Sec 2000). In addition, other kinds of parametric models (polynomial, log-normal, ex could also be straightforwardly used. Besides, multi proxy approaches using multidimensional structural and/or chemistry otolith signatures may also investigated within th with a view to retrieving a more precise estimation of the en thought the fish life. The combination water temperature (Nelson et al. 1989) may for instance resort to a more precise the temporal resolution of the measures in the example developed here.

representing an habitat use. The proposed approach is computationally efficient, since only a few minutes are required to process the whole sample set, including both the estimation of the al patterns of ework is that ation of individual Sr:Ca series in terms of habitat use is provided From a methodological point of view, hidden Markov models have been shown to be much more efficient than Gaussian mixture models to reconstruct individual state sequences. These physiological for instance, ture). Besides, recent developments in the field of conditional random fields might also be investigated to take into account more complex time dynamics or continuous state sequence. ubjective and . 37 different sample, were identified within the processed sample set. The treatment of the same data set was performed according to a supervised classification in a previous study (Daverat and Tomas in press).

This categorization exploited only six classes and failed in describing with precision the repertoire of behaviour of the eels. Those six classes had been defined a priori from the visual inspection of all the plots of the individual Sr:Ca series and from results for other population found in the literature which was not very robust. Previous work indeed mainly relies on such supervised classification with a view to testing a priori hypotheses on patterns of habitat use. In most cases, some individual patterns did not fit to these a priori hypotheses [START_REF] Kotake | Seasonal variation in the migratory history of the japanese eel Anguilla japonica in Mikawa Bay, Japan[END_REF]Tsukamoto and Arai 2001;[START_REF] Jessop | Migratory behavio[END_REF] and were withdrawn from the analysis. tterns greatly the direct determination of the t use patterns found for A. anguilla in the Baltic sea (Limburg et al. 2003;Tzeng et al. 1997) As a by-product of the proposed approach, statistical descriptors of the fish movements between habitats, such as the distribution of the transition time from one habitat to another or the distributions of the time spent in a given habitat after a transition, were computed over the whole sample set. This resulted in a huge gain in analysis time and power, compared to previous methods that required to retrieve the information individually from each Sr:Ca On the contrary, the robust and unsupervised categorization of movement pa improves the investigation of unknown populations thanks to diversity of the patterns of habitat use and of the associated proportions.

The diversity of habitat use chronologies reported here is consistent with habita [START_REF] Jessop | Migratory behavio[END_REF]), A. rostrata (Cairns et al. 2004;[START_REF] Jessop | Migratory behavio[END_REF]; Morrison e well as A. australis and A. dieffenbachii [START_REF] Arai | different habitat use by New Zealand freshwater eels Anguilla australis and A. as revealed by otolith microchemistry[END_REF]). The present work existence of eels resident of their capture site (about 28%). Besides, as sugge named "transients" (Tsukamoto & Arai 2001) or "nomads" in (Daverat et al. 200 collected in the estuary might be interpreted as an absence of movement under fluctuations of river flows into the estuary. However, the estimated habitat-re account fo whatever the season. This makes unlikely the reconstruction of such mislabelle series. The analysis of transitions revealed that movements between two different habitats were not as frequent as the residence in the same habitat along the fish life. The same result was obtained for studies using mark recapture techniques [START_REF] Jellyman | Movements of shortfinned e australis, in Lake Ellesmer tracking[END_REF]Secor 2003) and telemetry (Parker 1995) that found that most yellow eels ten resident behaviour. Transitions are rare temporal events along the fish life whic difficult to observe directly. In this study, transitions between two different habi press). Analysis of transitions also revealed that most eels spend less than on habitat before changing again.

The unsupervised categorization framework enlarges the scope of possible ana of fish ecology. Further developments of the analysis of eel habitat use cou More generally it provides a powerful tool to assess the relative efficiency tactics in terms of fitness. At a broader scale, the proposed approach demonstra interest in exploiting advanced processing techniques to fully exploit the rich individual biolog Annex I: EM parameter estimation for Gaussian mixture models ied out according to the maximum likelihood (ML) criterion. It resorts to the following maximization issue:

The estimation of the parameters of the Gaussian mixture models is carr 
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To solve for this maximization issue, we use the EM (Expectation-Maximization) algorithm [START_REF] Bishop | 200 patterns of American eels in an im microchemistry[END_REF]. Let us denote by x i the variable stating that the i th sample is issued from habitat x i . The EM algorithm iterates until convergence two steps. At iteration k, the E-step computes the posterior likelihood
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Given the posterior probabilities, the M-step aims at updating model parameters
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. To simplify the notations, let us denote by τ iH the posterior
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The n s: Figure 4: Illustration of the characteristics of the transition matrix which temporal dynamics of the state variable for a model involving four states A, graphical representation of this transition matrix (the arrows illustrate the dependencies between these states with associated likelihood with the associa probabilities). As illustrated, the particular case of transitions is the one corresponding to staying in the curr to one of the three states (namely, river (dots), estuary (plain), marine (dash)) as age or month.

  processing issue embedded in a Bayesian framework. The proposed computational methodology was applied to a set of 192 eel (Anguilla anguilla) another were modelled. Major movement characteristics such as age at transition between habitats and time spent in one habitat were estimated. As a straightforward output, an unsupervised classification of habitat use patterns was determined and showed

  spp). Data acquisition of otolith microchemistry remains technically, timely demanding. Hence, the challenge has first been a matter of data acquisition matter of data interpretation. So far, most otolith microchemistry transects of m interpreted by a visual evaluation of each individual signal. Whenever fo instance, Tzeng et al. 2002 classified eel life histories from the number of years against age class graphs, with Sr:Ca values assigned to a water mass according to their level(Morrison et al. 2003). This was not either satisfactory, as, due to the non-linearity of in the processed dataset( Tzeng et al. 2002, Daverat and Tomas in press). For instance, a large data set of 270 eel Sr:Ca transects was classified with a ividual curve fe histories defined a priori, the classification l. While time It emerged from this overview of previous work a need for an unsupervised and well-founded computational method that could at the same time account for the temporal nature of the r

  habitats and 14 eels (7%) in the coastal habitats. The aim of this study was to characterize the habitat use patterns of eels from the Gironde river basin, during their continental growing phase as a yellow eel. Sr:Ca ratios transects were used to track the eels e part of the el mark to the consisted in a concentrations in 8 µm diameter spots, evenly spaced every 20 µm along the otolith longest growth axis from the glass eel mark to the edge of the otolith. Along this transect of Sr:Ca measures, the position of each annual age mark Calibration over time of Sr :Ca series .

  Matlab 7 using Netlab (Nabney 2001) and CRF (Murphy 2004) toolboxes. This applied to the interpretation of 192 eel otolith Sr:Ca transects of measures individual habitat use histories. The generalisation of such

  and the age and season on Sr:Ca value was tested according to correlation statistics model prediction and the data (McCullagh and Nelder 1989). The comparison of the software (RDevelopmentCoreTeam 2005).Estimation of individual habitat use from Sr:Ca seriesOur goal was to analyze the individual patterns of habitat use from the se t sequence of habitat categories corresponding to the maximum posterior likelihood given the acquired series of Sr:Ca measures: {y t } and labels {x t } are statistically independent. Equation (2) reduces for each time t to:

  the observed movement patterns. The movement pattern is defined as the sequence of the successive habitats visited by the fish. This sequence is defined attern issued e otolith set, the iours can be atterns.

  , where Z is the normalization factor. putation of the The com

  of season. In the overall sample (192 eels), transitions as a function of age or as a function of season, between two different habitats, were less frequent than stays in the same This indicates to the residence in one habitat.

  20 µm provided an approximate temporal resolution of one month for the first years of life up three months and more later than the 6 th year. This constraint leads us to solution. Our be improved sonal variations of the eel otolith growth. Despite the general variations of the eel otolith are known (Mounaix and Fontenelle 1994), a formalised model is, as far as we know, not available. haracteristics. ate was used to account for the significant influence on Sr:Ca values of age and season in addition to habitat.

  habitat Sr:Ca Gaussian mixture model and the reconstruction of all the individu habitat use. Compared to previous work, the key feature of this quantitative fram a non-subjective interpret from an unsupervised analysis. models could obvisouly take into account other types of discrete such as parameters, but they might be extended to continuous state variables ( tempera Unsupervised extraction and analysis of movement patterns A major contribution of the proposed Bayesian framework lies in the non-s unsupervised thus exhaustive categorization of individual movement patterns patterns of habitat use, with 20 patterns accounting for more than 80 % of the

  as well as those of other temperate eel species such as Anguilla japonica (Tsukamoto and Arai 2001; t al. 2003), as confirmed the sted by eels 4; Daverat et al. 2005), a significant number of eels (about 72%) changed habitats once or more. Chronologies with multiple transitions between the river and the estuary found for some eels the seasonal lated models r these seasonal fluctuations and Sr:Ca distributions are well discriminated d sequences, so that the hypothesis of patterns with multiple or seasonal movements was confirmed in the present study.

  of the eels increased. Similar results were obtained for Anguilla japonica (Tzeng et al. 2002) and A. rostrata (Morrison et al. 2003) as well as A. anguilla (Daverat and Tomas in e year in one lysis in terms ld consist in comparing individual parameters (size at age, age at maturity), of the different habitat use patterns. Such analysis could also focus on a specific stage of the fish (age or size class). of individual tes the actual potential of ical archive, such as fish otoliths, to characterize individual life traits. A wide range of applications for the analysis of individual life traits might be stated as such a Bayesian reconstruction of the time series of a state sequence from a set of chemical and structural measures.

  is the vector defined by [1 a i s i ]. This weighted linear regression leads to:
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 1 Figure 1: Distribution of Sr:Ca values and associated fitted Gaussian modes.
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 8 Figure 8: Proportions (Y axis, log scale) of instantaneous transitions from the estuarial states a function of

Figure 10 :

 10 Figure 10: Distribution of ages at transition from the estuary to the river (plain line) or to the marine habitat (dots) (left panel) and distribution of the estuary habitat use duration anterior to the transition (right panel).
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 2 Figure 2: Principle of the reconstruction of the time mesures spatially sampled along a growth axis of the otolith.
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 3 Figure 3: Graphical representation of the Gaussian hidden
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 56 Figure 5: Habitat use pattern issued from a given Sr:Ca series as obtained with mixture model (GMM) (left panel) or the hidden Markov model (HMM) (right p
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  Figure 7: A from the estimated habitat sequences.

  

Determination of habitat-related Sr:Ca model

  

	explanatory variables (fish age and month) was also considered. Formally, let us denote by
	g(.|Θ H ,σ H ) the Gaussian distribution of Sr:Ca measures for habitat H, parameterized by the
	Annual rings were used as time references to transform Sr :Ca series acquired w ard deviation σ H . Using a constant model Θ H =m H , g(.|m H ,σ H ) is mean model Θ H and the stand
	the distance to the elver mark to time series using a linear interpolation. The tim computed for a Sr:Ca measure y as:
	interpolated at a monthly precision (that is to say a time sampling rate of 1/12
	following, w	
	The actual temporal resolution of the Sr:Ca series depends both on the sampling resolution of
	the electron microprobe and obviously of the otolith growth rate. In a previou	s experiment
	nd for young (Daverat et al. 2005), a mean otolith growth rate of 20 µm per month was fou
	individuals, so that about 11 Sr:Ca measures are usually sampled for the first	growth years,
	whereas from the 6 th year fewer measures (down to 3 or 4) may be available	due to slower
	growth. Therefore, the results issued from the analysis of interpolated Sr:Ca time series need
	to be cautiously analyzed in terms of temporal precision, especially for the last years of the
	life of the older individuals.	
	Following Daverat et al. (2005), Sr :Ca measures can be regarded as a proxy	of the habitat
	type for eels of the Gironde watershed. Three habitat categories were considered according to
	salinity compartment: river, estuary and marine habitats. We further modelled the distribution
	of Sr:Ca signatures for each habitat as a Gaussian distribution parameterized by a mean model
	and a standard deviation.	
	Different models could be chosen. In this study, two different cases were investigated. The
	first one was a constant model parameterized by a mean value. In order to test for the
	influence of seasonality and age on the incorporation of strontium, a linear model with two

  These transitions are characterized by their transition times

	i t x ∈	is analyzed to extract the set of all the transitions from
		{ } n H H t 2 1	and the times
	spent in H 2 { }	

Table 1 : Anova table for the linear model.
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