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ABSTRACT

This paper copes with the reconstruction of accretionary mor-
phogenesis within a given observation plane from an image
depicting successive (typically seasonal or daily) growthstruc-
tures. Modeling accretionary growth shapes as the level-sets
of a potential function, a variational framework is derived
from geometric criteria. It resorts to minimizing an energy
functional involving two terms: a regularization term and a
data-driven term which constrain the evolution of the shapes
with respect to a growth orientation field. Experiments car-
ried out on real data (e.g., fish otoliths) validate the proposed
approach, which opens new research directions for informa-
tion extraction and decoding from biological archives.

1. INTRODUCTION AND PROBLEM STATEMENT

Shape deformation has been widely studied in the field of
computer vision mainly for applications to shape matching
or deformable object analysis [4, 16]. In this paper, we focus
on the deformation of structures which grow according to an
accretionary process. In the biological domain, examples of
such structures include tree trunks, the shells of shellfish, fish
otoliths, corals, bones, vertebrae.... Other examples related to
crystallization process could also be cited. The characteristics
of the accretionary growth generally vary over time, gener-
ally with some given periodicity (mainly daily and annual),in
terms of crystalline organization or composition. This leads to
the presence of successive dated layers with different optical
densities and provides the basis for exploiting such structures
as biological archives: for instance, for the reconstruction of
the daily temperatures of the environment [6] or for the anal-
ysis of individual migration paths [7].

Concerning shape characteristics, the presence of these
successive layers potentially permit to back-track the evolu-
tion of the shape of the observed structure from the primary
core to the outline. The morphogenesis of such structures
could then be studied at the individual level, and not only from
a statistical point of view at a population level. However, this
issue does not reduce to matching successive shapes [4, 16],

Fig. 1. Illustration of the goal of the paper: image of
a structure growing according to an accretionary process
(a pollock otolith) in a given observation plane containing
the growth center (top); reconstructed series of the evolved
shapes (down).

since the automated segmentation of the growth rings is it-
self a complex problem due to the presence of blind areas and
so-called subjective contours [9]. But, it can be stated as an
inverse problem for which the goal is to reconstruct the series
of the 2D shapes of the observed structure within some obser-
vation plane given an image of this structure. Image orienta-
tions (i.e., the orientations of image gradients) locally convey
relevant information on the shape of the growth rings, since
they can be viewed as estimations of the growth directions.
Consequently, the reconstruction of the series of shapes of
the processed biological structure is solved for such that these
shapes are locally normal to image orientations. Formally,a
level-set representation of the accretionary growth permits to
derive a variational formulation from purely geometric con-
straints including both orientation-based and shape regularity
constraints. The reconstruction of the morphogenesis thenre-
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Fig. 2. Level-set representation of the accretionary growth
process: the evolution of the shape is described by a potential
functionU , such that the growth shape at timet is its level-
line Γt(U) = {p ∈ R2 such thatU(p) = t}.

sorts to a variational interpolation which is efficiently solved
for within a multiresolution framework.

2. PROPOSED APPROACH

2.1. Joint level-set representation and variational setting

The accretionary growth process is modeled as a potential
functionU defined overR2 with values in[O, T ] such that
the level setΓt(U) of U for level t is the shape of the consid-
ered biological structure within a given observation planeat
time t, that is to say

Γt(U) = {p ∈ R2 such thatU(p) = t} (1)

Intrinsically, such a representation guarantees that the growth
is normal to the shape, as commonly assumed for accretionary
growth. Note that, in practice, the actual tile information
might not be available, so that the values of potential func-
tion U are not actual time values, but are homogeneous to
time.

Based on this level-set representation, we aim at estimat-
ing the potential functionU associated with a given biological
structure. Formally, some boundary conditions are assumed
to be provided. These conditions include the shapes at times
0 and T, which may be automatically extracted [3]. solving
for the reconstruction ofU is then stated as the computation
of the extension of the boundary valuesGB associated with
boundary conditionsB, to the whole domainR2 according to
some energy criterionE:

Û = arg min
U∈U(GB)

E(U), (2)

whereU(GB) is the set of the functions fromR2 to R which
are equal toGB on boundary setB. EnergyE(U) is split
into two terms: a regularization term issued from a geometric
shape prior and a data-driven term setting orientation-based
constraints:

E(U) = ER(U) + γEO(U), (3)

whereγ is a weighting factor balancing the relative influence
of each term. The regularization term is defined as the sum of
the perimeter of the growth shapes computed as

ER(U) =

∫

t∈[0,T ]

∫

p∈Γt(U)

1. (4)

The second term relies on orientation-based constraints. More
precisely, the gradients of the image depicting the observed
biological structure permit to locally infer the local growth
orientations. Let us denote byω the orientation field com-
puted as the normalized image gradient∇I/|∇I|, where∇I
is the gradient of imageI. For low gradient values, the com-
putation of the orientation is highly noisy. The norm of the
gradient is however known as a relevant measure of the relia-
bility of this gradient information. Thus, a confidence mapα
is defined asg(|∇I|), whereg is a continuous stepwise func-
tion rescaled between 0 and 1. As the normal to shapeΓt(U)
is expected to be tangent to orientationω given the confidence
weightα, energy termEO(U) is computed as follows

EO(U) =

∫

t∈[0,T ]

∫

p∈Γt(U)

α(p) ·
〈 ∇F (p)

|∇U(p)| , ω(p)⊥
〉2

(5)
Minimizing explicitly criterionE(U) is however infeasi-

ble in practice, since it would require to extract all the level-
lines ofU . From the co-area formula [12], an equivalent for-
mulation can be derived such that the resulting criterion only
involves the spatial derivatives ofU . More precisely, the min-
imization ofE(U) resorts to:

Û = arg min
U∈U(GB)

∫

p∈R2

|∇U |+γ·α·|∇U |·ρ
(〈 ∇U

|∇U | , ω
⊥

〉)

(6)
This variational setting involves two classical terms: thefirst
one is regularization term set as a the norm of the gradient of
the potential function and the second is the data-driven term,
which aims at aligning the orientation field ofU to orientation
constraintsω. In this second term, norm|∇U |, inherited from
the co-area transform, is a weighting factor such that more
influence is given to points where the gradient of the level-set
representation is high (conversely, where the growth is slow).

Criterion (6) is derived from purely geometric constraints.
In addition, level-set representations are contrast invariant (i.e.,
a contrast change does not affect the geometry of the level-
sets but only leads to different indexes for each level-set)[13].
Consequently, additional constraints are required to prevent



from retrieving unstable solutions. As constraints on the sur-
face between successive level-lines are equivalent to constraints
on first-order statisticsp(U) of U , minimization (6) will be
carried out subject top(U) is uniform. The choice of a uni-
form prior is arbitrary. Other priors might be used, if avail-
able, for instance priors related toa priori growth laws.

2.2. Minimization issue

To carry out the above constrained minimization, a two-step
iterative approach is proposed: the first step solves for un-
constrained minimization (6), and the second step carries out
an histogram equalization [10] to map the current solution
onto the constraint thatp(U) is uniform. We detail below the
unconstrained minimization. Besides, to improve the conver-
gence of this procedure and reduce the dependence with re-
spect to the initialization, we adopt a multiresolution frame-
work.

Unconstrained minimization (6) is solved for using a dis-
crete/Markovian setting of the associated variational criterion.
Hence, energyE(U = is computed as:

∑

p∈R2

|∇Up| + γ · αp · |∇Up| · ρ
(〈 ∇Up

|∇Up|
, ω⊥

p

〉)
, (7)

where∇Up is approximated as(Up1
− Up3

, Up2
− Up4

) with
p1, p2, p3, p4 the four western, northern, eastern and southern
neighbors of pixelp in the image. Besides, as the absolute
norm | | is not derivable in 0, its use may lead to numerical
instabilities. Therefore, it is replaced byρ(x) =

√
ε2 + x2.

An iterated weighted least square (IRLS) scheme is then ex-
ploited to minimize the resulting criterion [11]. This schemes
iterates the computation of weightsβ(p) = φ (∇Up), where
φ(x) = ρ′(x)/x, and the computation of the solution of the
weighted least-square issue

min
U∈U(GB)

∑

p∈R2

β(p)|∇Up|2+γ ·αp · ·
〈

∇Up√
|∇Up|

, ω⊥
p

〉2

(8)

given weight mapsβ. Using an incremental Gauss-Seidel
scheme, we recursively solve for the optimal incremental up-
date of potentialUp at pixel p given the potential function
elsewhere. This step relies on a linearization of the cost func-
tion with respect to the increment. This incremental refine-
ment is applied to all pixels except those belonging to bound-
ary setB.

From the updated solutioñU of the unconstrained crite-
rion (6), a new solution is derived such that the constraint that
p(U) is uniform applies. This step simply comes to imple-
menting an equalization of the histogram ofŨ . As stressed
previously, this equalization step only changes the contrast
between level-lines, but the geometry of the level-set repre-
sentation remains unchanged. For computational efficiency,
this equalization step is not applied after each incremental

update, but typically every one hundred iterations. This pa-
rameter setting was experimentally proven to ensure the con-
vergence to non-degenerate estimations.

2.3. Multiresolution minimization

Minimization (6) is obviously not convex. To prevent from
being trapped in local minima and to ensure a better robust-
ness to the initialization, a multiresolution scheme is used.
Given a Gaussian pyramid of the orientation fieldω, the mul-
tiresolution approach comes to solve for the estimation of the
potential functionU at successive resolutions, from the coars-
est resolution to the finest one. The final estimate at a given
resolution serves as the initialization at the next resolution. In
practice, Gaussian pyramids with four levels are exploited.

2.4. Initialization

The computation of a relevant initialization to the proposed
gradient-based multiresolution scheme is important to ensure
a fast and pertinent convergence. The initialization is deliv-
ered by the AMLE (Absolutely Minimizing Lipschitz Exten-
sion) of the boundary conditions to the whole domain [5].
Since the AMLE resorts to the minimization of theL∞ norm,
the AMLE can be viewed as the less smooth interpolation op-
erator among all interpolation operator. The AMLE is imple-
mented as a diffusion operator∂U/dt = U∇∇ whereU∇∇ is
the second-order derivative in the direction of the gradient of
U . The key properties of the AMLE is that it is an artifact-
free and oscillation-free interpolant actually capable oftaking
into account isolated boundary points as well as curves.

3. RESULTS

Results of the reconstruction of the morphogenesis of differ-
ent real structures are reported to demonstrate the efficiency
of the proposed method. In all these results the boundary con-
ditions are simply issued from the extraction of the outline
and the position of the manually marked growth center. The
parameter setting was defined as follows: potential values of
U ranging from O (growth center) to 1 (outline),γ = 10 and
ε = 1. Concerning computational time, the proposed method
runs in about one minute for 1000x1000 images under a Pen-
tium IV at 2.5GHz.

Fig.3 reports a first example with a pollock otolith. An-
imated versions of these results can be viewed at webpage
www.ifremer.fr/lasaa/rfablet/mottolith. The observed rings are
seasonal rings (dark zones are winter rings whereas white
zones correspond to summer rings). It should however be
noted that none of the annual rings is actually closed. They all
involve subjective contours to be closed (especially the first
dark ring). Consequently, extracting closed rings appear as
complex issue if no additionala priori information is avail-
able. Conversely, the proposed framework successfully re-



Fig. 3. Reconstruction of the series of growth shapes for the pollock (Pollachius pollachius) otolith image depicted above based
on the gradient-based orientation field: image of the pollock otolith (left), reconstructed potential functionU (middle), series
of shape superposed to the otolith image (right).

Fig. 4. Examples of reconstruction of the series of growth shapes:image of the tree trunk section (left), reconstructed potential
functionU (middle), series of shape superposed to the processed image(middle left), image of a hake otolith section (left),
reconstructed potential functionU (middle right), series of shape superposed to the processedimage (right).

cover the deformations of the otolith from the core to the out-
line. The proposed level-set representation intrinsically en-
codes that closed shapes have to be reconstructed. Besides,
the constraints issued from local image orientations convey
sufficient information so that the estimated level-set represen-
tation approximately fits to the observed growth rings. Note,
for instance, that local shape deformations such as the one
occurring towards the top of the otolith is correctly taken into
account. Besides, it can stressed that the left and right otolith
sides are correctly matched. Results reported in Fig. further
illustrates the relevance of the proposed framework for a tree
trunk involving rather circular concentric ring shapes, and a
hake otolith involving complex ring structures. In both cases,
relevant shape series are reconstructed regarding the complex-
ity of the task.

The proposed solution for the reconstruction of the ac-
cretionary morphogenesis of biological structures open new
research directions with a view to exploiting the invaluable
potential of these biological archives in terms of information
extraction (growth axis extraction, ring segmentation), mor-
phogenesis analysis and modeling as well as 2D information
calibration and decoding (for instance, to analyze information
along different growth axis).
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