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ABSTRACT
Psychovision have shown that many grouping laws come

into play to structure human vision. They use informations of
different kinds, not only gray (or color)-level values. Here we
will show how an orientation interpolation operator working
in S1 (angle in [0, 2π[) can be used to recover geometrical
information in images. The operator is presented and is used
to produce fields that drive a Fast Marching contour extrac-
tion algorithm and a LIC-based smoothing method. Exper-
iment on real images are reported to validate the proposed
approach.

1. INTRODUCTION

The human vision is known for its ability to use global and
heterogeneous visual cues. Psychovisual experiments, in par-
ticular from the Gestaltists [1] indeed show that our vision is
structured by a number of grouping laws using different kind
of features: contrast change but also direction, spatial prox-
imity, global shape prior or specific structuring pattern like
T-junction and X-junction.

One important grouping law among those is the good con-
tinuation principle, which states that if two edgels (edge ele-
ment, i.e. a point together with the orientation of the curve
which should pass through it) are not too far apart and share
compatible directions, we tend to see the curve to which they
are both tangent as an edge. A lot of work has been done
towards a digital implementation of that phenomenon [2, 3].
They rely on extracting edges as curves, contrary to point-
wise extraction algorithm like the Canny-Deriche filter [4].
To this end, data of different nature needs to be integrated. In
particular, to cope with curves one need the orientation (an
element of S1 = {v ∈ R

2/ |v| = 1}, the unit circle of R
2) of

the tangent to that curve. It is with this idea in mind that this
work investigates orientation-driven image processing.

In [5] is presented an axiomatic approach for orientation
interpolation in which two operators are singled out: the cur-
vature and the Absolutely Minimizing Lipschitz Extension
(AMLE). The second one is well known in scalar computer
vision [6] and will allow us here to compute smooth and dense

orientation fields that follow the extracted orientation infor-
mation. We show here how those fields, which capture the
geometrical features of the image, can be taken advantage of
for orientation driven image processing, namely contour ex-
traction and selective smoothing.

Section 2 briefly presents the AMLE operator for angle
data. Application to the extraction of subjective contour via
minimal path implemented by Fast Marching is presented in
section 3 and selective smoothing of image presenting strong
geometrical properties via Line Integral Convolution is de-
scribed in section 4.

2. EXTENSION OPERATOR ON ANGLE

2.1. Extracting Relevant Points
The first step is to extract a sparse edgel field from the image.
The direction of the geometrical structure that passes through
a point is given by the vector orthogonal to the gradient, pos-
sibly smoothed. Numerous edge point extraction algorithms
exist. In the experiments presented here we used the Canny-
Deriche filter [4], thresholded so as to keep only the strongest
edges.

2.2. Axiomatic of Orientation Interpolation

In [5] an axiomatic approach similar to [6] was developed to
find sound interpolation operator by laying out the properties
it should follow. It leads to the Absolutely Minimizing Lip-
schitz Extension (AMLE), a well studied operator for which
existence and unicity results are known. ([6] and reference
therein). In particular it satisfies a maximality principle which
guarantee that the solution is oscillation free.

Let Ω ⊂ R
2. Let S1 be parametrized by angles in [0, 2π[.

Let D ⊂ Ω be a set of curves and/or points and θ0 : D → S1.
Then θ : Ω → S1 is the AMLE of θ0 in Ω if:

{

D2θ(Dθ, Dθ) = 0 in Ω,

θ|D = θ0 on D,
(1)

i.e. if the second derivative in the direction of the gradient
is null. The mathematical theory only hold if the data θ0 is



not surjective, i.e. if it take value in S1 minus one point. If
it is not the case, singularities are bound to appear, which the
operator, looking for Lipschitz solutions, cannot handle. The
AMLE is a laminar flow orientation operator, not a turbulent
flow one. In practice we are interested in geometric struc-
tures, which give rise to regular orientation field. Thus this
necessary condition will be locally fulfilled.

This equation has been implemented using the associated
evolution problem combined to a finite difference scheme.
Due to the specificity of angular data and the iterative nature
of such a scheme, a multiresolution procedure was used to
initialise the numerical resolution [5]. Typical computational
time is about a minute for 512x512 images on Pentium IV
2.5Ghz, and the interpolation process is parameter-less .

In Figure 1(a) the computed field is shown for the Lena
image. The extracted points are in black, and the field ob-
tained by extending their associated orientations is visualised
via its flow line using LIC [7]. It follows when possible the
geometry of the image. As stated, for topological reason,
singularities are unavoidable. Thus in absence of clear con-
straints or if they conflict with each other, chaotic zones akin
to turbulence flows are created.

3. EXTRACTING CURVES FROM ORIENTATION
FIELD AS GEODESICS

We now are provided with a smooth orientation field θ, ex-
tending some extracted data. Let us assume that those ini-
tial orientations extracted in section 2.1 can be considered as
edgels, i.e. they are tangent to an edge; it is the case in the ex-
periments shown in Fig. 1(a) as they originate from a Canny-
Deriche filter. The dense orientation field θ is then expected to
be tangent to the full edge which the initial edgels are part of.
The edges could then be extracted as the integral curves Γx of
θ, defined as ∂Γx(λ)

∂λ
= u, Γx(0) = x, with u = (cos θ, sin θ)

and λ an euclidean parametrisation of Γx.
Unfortunately, in practice orientation field θ does not fol-

lows exactly the edges, and will only be close to being tangent
to the edges. Thus the curves of interest cannot be extracted
as integral lines, but we just know they will be close to being
integral lines. Hence given two points we aim at determining
the line as tangent as possible to θ that join them. This leads
to formulating the problem of extracting edges as the compu-
tation of geodesics. Such a formulation is well known in the
computer vision field [8, 9].

Using minimal path formulation [9], given two point M0

and M1 and vector field u the extraction of the looked after
curve ΓM0,M1

is stated as minimizing a given metric F (u, Γ).
Let us set EF (u,Γ)(M0, M1) =

∫ M1

M0

F (u, Γ). The curve
ΓM0,M1

is defined by

ΓM0,M1
= arg min

Γ̃∈C(M0,M1)
EF (u,Γ̃)(M0, M1), (2)

with C(M0, M1) the set of continuous curves from M0 to M1.

To solve for it, we compute

EM0
(x) = min

Γ̃∈C(M0,x)
EF (u,Γ̃)(M0, x), x ∈ Ω.

EM0
(x) is a convex function whose only minimum is in M0,

thus it leads to ΓM0,M1
by a simple gradient descent on EM0

from M1 to M0.
To actually compute EM0

, the Fast Marching algorithm
[10] is used. It is based on a front propagation of equation

∂C

∂t
(C(λ, t)) =

1

F (u, ΓM0,C(λ,t))
n(C(λ, t)), (3)

with C the front, initially an infinitesimal circle around M0, λ
an euclidean parametrization of C and n the outward normal
to the front. EM0

(x) is then defined as the arrival time of the
front at each point. Thus at any given time, minimal paths
have been computed from M0 to all the points already vis-
ited by the front at that time, they can then be used to further
propagate it.

The proposed function F is

F (u, Γ)(y) =<
∂Γ(λ)

∂λ
(y), u⊥(y) >2,

with λ an Euclidean parametrisation of Γ, u⊥ the orthogonal
of u and < ., . > the usual scalar product of R

2. It is by defi-
nition nul if u is tangent to Γ and maximum if it is orthogonal.
A similar problem was stated in [11] but the authors proposed
a function F that did not depend on the curve but on the prop-
agating front C at the time of it’s crossing. This however led
to non intrinsic curves which depended on the front propaga-
tion process itself. This appears as an undesirable property.
This function F can be considered the only parameter for the
edge extraction.

In Figures 1(a) and 1(b), the results for real images are
displayed. On the Lena image (Fig. 1(a)), using the field
computed in section 2, we have recovered the top of the hat
and the left jaw, which both were not contrasted enough to be
extracted by our point-wise thresholded edge extraction filter.
This is a typical case of modal completion, also called illusory
contour, where the background and the edge have in part the
same color. The Figure 1(b) shows two examples of images
with low contrast: in both cases the presence of a structure
is clearly recognized while continuous contours or edges are
either very faint or not actually present. Thus the use of ori-
entation informations allow us to tackle problem on which
method purely based on image intensity would encounter dif-
ficulties.

4. SMOOTHING ALONG ORIENTATION

In [12] is described an anisotropic smoothing algorithm based
on the Line Integral Convolution (LIC) of Cabral and Lee-
dom [7]. Given an image I0 and a vector field u, if Γx is



the integral line of u going through x with λ an euclidean
parametrization of Γx, the unidimensional heat equation con-
strained on the integral curves of u,

∀x ∈ Ω
∂I(Γx(λ))

∂λ
(x) =

∂2I(Γx(λ))

∂λ2
(x), (4)

is equivalent to a trace based differential operator on the full
image. As it is well known that heat equation is equivalent to
a Gaussian convolution, (4) is in turn equivalent to

∀x ∈ Ω I(t)(x) =

∫ +∞

−∞
I0(Γx(λ))Gt(λ)dλ, (5)

with Gt the Gauss function of standard deviation
√

t: Gt(x) =
1√
4πt

exp(−x2

4t
). This is the continuous formulation of the

LIC visualization algorithm [7], which is used to visualize
the vector field in Fig. 1(a) (left image).

The main issue is that no vector field u is straightfor-
wardly available for a given image. Beside, the extraction
of such a field is in the general case not obvious, as images do
not necessarily have everywhere strong oriented geometrical
features. In [12], the local geometrical information of the im-
age was captured into a diffusion tensor based on the structure
tensor [13] which was decomposed into vectors to apply the
described LIC-based regularisation.

We have described above a method to compute dense ori-
entation fields as the extension of extracted geometrical struc-
tures. While in the general case it would be relevant only on
edges (see Sec. 3), in some particular cases it might be an
accurate description of the whole image. Images displayed in
Fig. 1(c) are accurately described by a set of linear or curvi-
linear parallel lines. For such images the AMLE orientation
field can then be used to implement the LIC-based regulariza-
tion defined by Eq. 5.

More precisely, for a given image, we proceed as follows.
Relevant points are extracted by a thresholded Canny-Deriche
filter and the corresponding orientation is computed as the or-
thogonal to the gradient. The AMLE operator is then applied
to obtain a dense orientation field which follows the geometri-
cal features of the image. A Gaussian smoothing constrained
to the integral lines as per equation 5 is then applied. Once the
initial point are extracted (see section 2.1 ), the only parameter
is the smoothing strength, which is the length of the Gaussian
kernel, or equivalently the length on the integral curve.

The image in the left part of figure 1(c) is a patch of sand.
This is a natural image with no artificial noise, and the ge-
ometry of the image underlying it’s grainy natural aspect is
reccovered. On the right is a wood texture image with Gaus-
sian noise of standard deviation 20 added. It exhibits verti-
cal cracks, which were captured in the computed orientation
field. As illustrated, the orientation based filtering leads to
an efficient restoration. Thus, when strong geometrical struc-
tures are available, the use of such orientation fields is an ele-
gant and intuitive alternative to the diffusion tensor [12].

5. CONCLUSION

Thanks to the AMLE interpolation operator we were able,
given a sparse edgel field, to build a dense orientation field
having good mathematical properties in its laminar part. If the
edgels represent geometrical data from an image, we showed
that this field is a way of recovering geometrical informa-
tions. It can be used to extract subjective contours, thus sup-
plying information where the contrast information is low, and
smooth strongly geometrical images while fully retaining their
structures. While those algorithm are almost parameter-less,
they are obviously very dependent on the edgels originally
extracted. While the method used here of thresholded Canny-
Deriche filter is efficient, more sophisticated method might
be investigated, for example by using adaptative multiscale
thresholding method or orientation based point-wise extrac-
tion algorithm.

In the presented algorithms only the orientation is taken
into account. It worked well to take advantage of the geom-
etry of the image in an orientation plane, but both methods
could benefit from a coupling with intensity or contrast based
information, to extend them to a larger class of image.
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(a) Left: in black the extracted point by Canny-Deriche on top of the integral line of the field computed by AMLE, right: the same extracted point with
the extracted curves in green (top of the hat and left jaw).

(b) Two example of curve extraction in poorly contrasted image part, left Da Vinci’s Mona Lisa scarf, right a detail of the baboon image.

(c) Left: sand patch, left original image (no noise added), right LIC-smoothed version using the orientation field computed as per Sec. 2 (not shown),
right: wood texture image, left original (with Gaussian noise σ = 20) and right LIC-smoothed.

Fig. 1.


