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A Bayesian approach for uncertainty
quantification in elliptic Cauchy problem

Renaud Ferrier and Mohamed Larbi Kadri and Pierre Gosselet and Hermann G.
Matthies

AbstractWestudy theCauchy problem in the framework of static linear elasticity and
its resolution via the Steklov-Poincaré approach. In the linear Gaussian framework,
the straightforward application of Bayes theory leads to formulas allowing to deduce
the uncertainty on the identified field from the noise level. We use a truncated
Ritz decomposition of the Steklov-Poincaré operator, which reduces the number of
degrees of freedom and significantly lowers the computational cost.

1 Introduction

The boundary data completion problem, or Cauchy problem, that consists, in the
framework of static linear elasticity, in computing the unknown loads applied on a
boundary of a domain from the knowledge of a measured displacement on another
boundary with known prescribed forces, plays an important role in many non-
destructive control applications like crack detection [13] or electrocardiography
[21].
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Under compatibility conditions, the Cauchy problem on elliptic equations has a
unique solution. However, it is well-known to be an ill-posed problem in the sense
of stability [10]. See the review paper [1] for an optimal logarithmic stability result,
and [3] for a spectral analysis of the problem. As a consequence, the solution is
very sensitive to the variations in the input. Bayes’ theory provides a very suitable
framework to quantify uncertainty of the solution.

A large variety of methods have been proposed to deal with this inverse problem.
One can cite the optimal control method [17] that consists in minimizing a least-
square gap, the iterated regularization method [7] introduces an original regulariza-
tion procedure, the error in constitutive relationmethod [2] consists in minimizing an
energy-like functional, the Dirichlet-to-Neumann method [15] which is a fixed-point
method. Some authors proposed to take advantage of the link between harmonic and
holomorphic functions [6], others proposed the quasi reversibility method [5], that
consists in increasing the order of the PDE. Trefftz methods [16] have also been used
to solve the Cauchy problem.

However, as far as the authors know, the literature on the Cauchy problem in
stochastic framework is not very widespread. One can note that a Bayesian approach,
based onMonte-Carlo sampling has been proposed in [12], and a studywith uncertain
material parameters has been conducted in [8].

In this work, we use the Steklov-Poincaré method, presented in [4] to solve the
Cauchy problem. We propose to invert the linear Steklov-Poincaré system via a
Bayesian approach in order to gain access to the uncertainty of the solution. As the
problem is linear, in the Gaussian framework one canwrite formulas that require only
to perform one sample for each unknown degree of freedom. However, as we try to
identify a field, the number of these degrees of freedom could be, once the problem
is discretized, arbitrarily large. As a consequence, the Bayesian inversion may be
out of reach. To cure this, we use a truncated Ritz basis of the Steklov-Poincaré
operator, as done in [9], in which the problem is diagonal, small and independent to
the discretization.

In Section 2, we present the Cauchy problem and the Steklov-Poincaré method.
Section 3 is dedicated to the presentation of the chosen Bayesian approach. In Sec-
tion 4, the truncated Ritz decomposition is introduced. In Section 5, a numerical
example with a consequent number of degrees of freedom is addressed. The conclu-
sion and perspective of this work are given in Section 6.

2 The Steklov-Poincaré approach for the Cauchy problem

2.1 Forward and Cauchy problems in linear elasticity

Let Ω be an open domain of Rd (d = 2 or 3 is the dimension of the physical space).
Γd (d for Dirichlet) and Γn (n for Neumann) are two disjoint and complementary
parts of ∂Ω (see figure 1a).
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(a) Direct problem (b) Cauchy problem

Fig. 1: Definition of the domain and its boundaries

We study the equation of static elasticity, on a linear material and under the
hypothesis of small perturbations. The main unknown of a direct elasticity problem
is the vector field of displacement u ∈ H1(Ω). In the equations below, g

0
∈ H−1(Ω) is

a force density, f
0
∈ H−1/2(Γn) is a surface traction and u0 ∈ H1/2(Γd) is an imposed

displacement. A direct elasticity problem can be written under the following form:

find u ∈ H1(Ω) such that:


div(σ(u)) + g

0
= 0 in Ω

u = ud on Γd
σ(u) · n = f

n
on Γn

(1)

Where the Cauchy stress tensor σ is related to the linearized strain ε by the consti-
tutive equation, characterized by the Hooke tensorH , as follows:

σ(•) = H : ε(•)

ε(•) =
1
2

(
grad(•) + grad(•)T

) (2)

The Cauchy inverse problem, on the other hand, involves another partitioning of
∂Ω in two complementary parts Γr (r for redundant) and Γm (m for missing, see
figure 1b), it can be formulated as follows:

find u ∈ H1(Ω) such that :


div(σ(u)) + g

0
= 0 in Ω

u = ur on Γr
σ(u) · n = f

r
on Γr

(3)
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Remark In practice, there can also be some parts of ∂Ω where simple Dirichlet
or Neumann data are given. For simplicity reason, it was chosen, in this article,
not to have such boundaries. They would not change the principle of the proposed
method. �

2.2 The Steklov-Poincaré method

Let us define the Steklov operators Sd and Sn, and the right-hand sides bd and bn
as follows:

Sd : u ∈ H1/2(Γm)

7→ Sdu = σ(v) · n|Γm ∈ H−1/2(Γm),


div(σ(v)) = 0 in Ω

v = 0 on Γr
v = u on Γm

Sn : u ∈ H1/2(Γm)

7→ Snu = σ(v) · n|Γm ∈ H−1/2(Γm),


div(σ(v)) = 0 in Ω
σ(v) · n = 0 on Γr

v = u on Γm

bd = −σ(v) · n|Γm ∈ H−1/2(Γm),


div(σ(v)) + g

0
= 0 in Ω

v = ûr on Γr
v = 0 on Γm

bn = −σ(v) · n|Γm ∈ H−1/2(Γm),


div(σ(v)) + g

0
= 0 in Ω

σ(v) · n = f̂
r
on Γr

v = 0 on Γm

(4)

We can see that um is the trace of the solution of the Cauchy problem (3) on Γm
if and only if it respects the following equation:

(Sd − Sn) um = bd − bn (5)

This implicit system is then solved with help of a Krylov solver. At each iteration,
it is required to apply Sd and Sn which corresponds to solving two direct problems.
With this formulation, the ill-posedness of the Cauchy problem is translated in the
compactness of the operator Sd − Sn (see [4]).

Once the trace um is found, the resolution of a Dirichlet problem is enough to
compute the solution in the entire domain Ω.

Remark This method is named primal Steklov-Poincaré method because the un-
known is a displacement field. It is often preconditioned by the operator S−1

d
which

makes the method an accelerated version of the KMF approach [14].
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A dual method, that consists in finding the Neumann condition f
m
that ensures

the equality of displacements has been proposed in [13]. Numerical studies, for
example in [9], tend to make us think that this dual method is slightly more accurate
than the primal one (especially for the determination of the flux on Γm). Everything
that is developed here with the primal method can straightforwardly be transposed
to the dual one. �

2.3 Conjugate gradient and Ritz values computation

Once a discretization method has been chosen, like in our case the finite element
method, the system (5) can be written as:(

Sm,d − Sm,n

)
um = bd − bn (6)

Sm,d and Sm,n are Schur complements, the discrete counterparts to Steklov-Poincaré
operators; they are Dirichlet-to-Neumann operators on Γm with respectively null
displacement or null traction imposed on Γr . In our analysis, we will also make
use of Sr,d and Sr,n, Dirichlet-to-Neumann operators on Γr with respectively null
displacement or null traction imposed on Γm, and Crm the rectangular matrix which
gives the traction resulting on Γm from an imposed displacement on Γr with null
displacement imposed on Γm. We have:{

bd = −CT
rmûr

bn = −CT
rmS−1

r,d f̂r
(7)

The system (6) was used in [9], where a conjugate gradient algorithm was set
up with post-processing of the Ritz values and vectors. The algorithm is reminded
in Algorithm 1, note that the formulas for Ritz elements are suitable for multiple
right-hand side problems.
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Algorithm 1: Conjugate Gradient with Ritz computation for the M-
preconditioned system Ax = b

x0 given ;
r0 = b − Ax0;
z0 =M−1r0, p0 = z0 // φ−1 = 0
for i = 0, 1, . . . ,m (convergence) do

qi = Api ;
δi = (pT

i qi ), γi = (zTi ri ), αi = δ
−1
i γi // ẑi = (−1)iziγ−1/2

xi+1 = xi + piαi ;
ri+1 = ri − qiαi ;
zi+1 =M−1ri+1;
for j = 0 . . . i do

φi, j = (qT
j zi+1), βi, j = δ−1

j φi, j

// Ti+1, i+1 = γ
−1/2
i (δi + β

T
i−1, i−1δi−1βi−1, i−1)γ

−1/2
i

end
pi+1 = zi+1 −

∑
j p jβi, j // (i>0) Ti+1, i = TT

i, i+1 = γ
−1/2
i−1 δi−1γ

−1
i−1γ

1/2
i

end
(θi )i<m = eigenvalues of T // T is symmetric bloc tridiagonal
U = eigenvectors of T;
Return : Solution xm+1, Ritz Values (θi ), Ritz Vectors Vm = ẐmU;

3 Bayesian inference for the Cauchy problem

3.1 Bayes’ theory and its application in the linear Gaussian case

For an extensive review about Bayesian inversion, the reader may refer to [18]. The
basic principles are recalled in this section.

Let us suppose that the vectors x and b are linked by the linear systemAx = b. Let
x̃ and b̃ be two real vector-valued random variables. According to Bayes’ theorem,
it is possible to compute p(x̃ = x|b̃ = b), the probability that the variable x̃ have the
value x, knowing that b̃ takes the value b, as follows:

p(x̃ = x|b̃ = b) =
p(b̃ = b|x̃ = x)p(x̃ = x)

p(b̃ = b)
(8)

In the framework of inverse problems, the probability distribution of x̃ is the
unknown and b is the measurement. We define the following probability functions:

• p(x̃ = x): the a priori probability, without any information from the measurement,
that the variable x̃ takes the value x. This term ensures the regularizing property
of the method;

• p(b̃ = b): the probability that the variable b̃ takes the measured value b (see the
remark 3);
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• p(b̃ = b|x̃ = x): the probability that the variable b̃ takes the measured value b,
knowing that the variable x̃ takes the value x. This is function of the accuracy of
the measurement;

• p(x̃ = x|b̃ = b): the probability that the random variable x̃ is equal to x, knowing
that the measure is b.

Remark In practice, as p(b̃ = b) does not depend on x, it is possible to determine it
as the normalization constant ensuring that

∫
Rd
p(x̃ = x|b̃ = b)dx = 1. �

In the case where the problem is linear and where the a priori probabilities are
Gaussian, we introduce Cb, the covariance matrix of the random variable b̃ and C0

x ,
the a priori covariance matrix of the random variable x̃. One has:

p(x̃ = x) =
1

(2π)m/2
√

det(C0
x )

exp
(
−

1
2
(x − x0)

T
[
C0

x
]−1
(x − x0)

)
p(b̃ = b|x̃ = x) =

1
(2π)n/2

√
det(Cb)

exp
(
−

1
2
(b − Ax)TC−1

b (b − Ax)
) (9)

It is then possible to analytically determine the a posteriori probability with the
following formula (where Cte is a scalar normalization constant):

p(x̃ = x|b̃ = b) = Cte · exp
(
−

1
2

(
xT (ATC−1

b A +
[
C0

x
]−1
)x

−2(xT0
[
C0

x
]−1
+ bTC−1

b A)x + xT0
[
C0

x
]−1 x0 + bTC−1

b b
)) (10)

It can be remarked that the maximum of likelihood of x 7→ p(x̃ = x|b̃ = b), can
be computed as the mean of the a posteriori probability density and satisfies:

arg max
x

p(x̃ = x|b̃ = b) = Eb(x̃) = arg min
x

(
xT (ATC−1

b A +
[
C0

x
]−1
)x

−2(xT0
[
C0

x
]−1
+ bTC−1

b A)x + xT0
[
C0

x
]−1 x0 + bTC−1

b b
) (11)

This value, that will be noted xpost is thus the solution to the following linear
problem:

(ATC−1
b A +

[
C0

x
]−1
)xpost =

[
C0

x
]−1 x0 + ATC−1

b b (12)

In this case, the mean of the a posteriori probability density is the solution of a pre-
conditioned and regularized mean-square system. The particularity of the Bayesian
approach is that we also have access to the covariance matrix, denoted Cx,post , that
contains, in the Gaussian case, all the information about the probability density
function :

C−1
x,post = ATC−1

b A +
[
C0

x
]−1 (13)

It can be remarked that this resolution is equivalent to the Kalman filtering in the
linear Gaussian case, and with only one observation. Kalman filtering consists in
defining a gain K and computing the mean and the a posteriori correlation matrix
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as follows: 
K = C0

x AT
(
AC0

x AT + Cb

)−1

xpost = x0 +K(b − Ax0)

Cx,post = (I −KA)C0
x

(14)

one can show that xpost andCpost satisfy the relations (12) and (13). Thisway to com-
pute the correlation is more reliable than the previous one because it does not request
to perform inversions of correlation matrices, that are possibly ill-conditionned.

3.2 Application to the Cauchy problem

In the case of the Cauchy problem, we focus on the Steklov-Poincaré system (6). The
first step consists in propagating the uncertainties from f̂r and ûr to bd and bn. We
define the correlation matrices associated to these quantities Cf̂r , Cûr , Cbd

and Cbn .
By direct propagation of the uncertainties, one gets:{

Cbd
= CT

rmCûr Crm

Cbn = CT
rmS−1

r,nCf̂r S−1
r,nCrm

(15)

One can remark that the computation of Cbd
and Cbn necessitates to assemble

Crm and CT
rmS−1

r,n, which is equivalent to solving one direct problem for each degree
of freedom on Γm. This operation is extremely costly in term of CPU time.

The covariance matrix of the right-hand side bd − bn is the sum of both con-
tributions : Cbd−bn = Cbd

+ Cbn . The a priori mean of the unknown, u0
m and its

covariance matrix,C0
um

are then introduced. From all these pieces of information, we
seek to determine the a posteriori mean, denoted by um and its covariance matrix,
Cum .

The Kalman formula (14) gives:

K = C0
um

(
Sm,d − Sm,n

)( (
Sm,d − Sm,n

)
C0

um

(
Sm,d − Sm,n

)
+ Cbd−bn

)−1

um = u0
m +K

(
bd − bn −

(
Sm,d − Sm,n

)
u0
m

)
Cum = C0

um
−K

(
Sm,d − Sm,n

)
C0

um

(16)

The characterization of the a priori uncertainty on u0
m and on the data ûr and f̂r is

a crucial point. The uncertainty on u0
m gives the interval in which the solution will be

searched for; as a consequence, one can propose to determine it from the magnitude
of a rough solution of the problem. In many applications, f̂r is in fact a null force on
a free boundary, and as a consequence, the associated uncertainty can be taken as
zero. As for ûr , its uncertainty can sometimes be estimated from the knowledge of
the precision of the measurement mean.
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The application of the above formulas to determine the probability density func-
tion of the solution necessitates to explicitly know the operator Sm,d −Sm,n. Such an
approach is possible in a case where the number of degrees of freedom is reasonably
small, but it is unusable in the case of a full field identification. Next section shows
how Ritz analysis makes it possible to apply these formulas.

4 Reduction by Ritz modes

Let us suppose that a Ritz analysis has been done on the system, leading to the basis
of Ritz vectors V, as explained in Part 4. Let um = Vx̃ and ỹ = VT (bd − bn). We
have:

VT (
Sm,d − Sm,n

)
V = Θ diagonal, VTMV = I, Θx̃ = ỹ (17)

The exact same analysis as in Section 3 is made on this reduced system. One has
first to propagate the uncertainties on f̂r and ûr to ỹ and the uncertainties on u0

m to
x̃. The corresponding covariance matrices are denoted by Cỹ and C0

x̃ .
Cyd
= VTCT

rmCûr CrmV
Cyn = VTCT

rmS−1
r,nCf̂r S−1

r,nCrmV
Cỹ = Cyd

+ Cyn

C0
x̃ = VTMC0

um
MV

(18)

The computation of CrmV and S−1
r,nCrmV is much less complex than previously.

Assembling CrmV requires solving problems on which Dirichlet conditions of value
Vi are applied on Γm and a zero Dirichlet condition is imposed on Γr . The assembly
of S−1

r,nCrmV requires solving problems onwhichDirichlet conditions of valueVi are
imposed on Γm and a zero Neumann condition is imposed on Γr . Each computation
requires solving as many direct problems as the number of Ritz modes in the chosen
basis.

What is more, one can remark that these direct problems are the same as those
that permit to evaluate Sm,d and Sm,n (except that the field is recovered on the
boundary Γr ). As a consequence, it is possible to compute CrmV and S−1

r,nCrmV at
very small cost during the iterations of the conjugate gradient (see Algorithm 1).
One needs to store the corresponding vectors after each evaluation of Sm,dpi and
Sm,npi . One uses the fact that for i > 0, Crmzi = Crmpi +

∑
j Crmpj βi−1, j (same

thing for S−1
r,nCrmzi). CrmZ and S−1

r,nCrmZ are then transformed the same way as
Z in order to build the required operators. The vectors that compose MV can also
be built during the iterations of the conjugate gradient on the same model as V by
writing r̂i = (−1)iriγ−1/2 and MV = R̂U in Algorithm 1.

This leads to:
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K = C0

x̃Θ
(
ΘC0

x̃Θ + Cỹ

)−1

x̃ = x̃0 +K
(
ỹ − Θx̃0

)
Cx̃ = C0

x̃ −KΘC0
x̃

(19)

All the operators implied in these relations have the same size as the truncated
Ritz basis. Consequently, all the operations have a very small cost.

Finally, one propagates the uncertainties on x̃ to um thanks to the approximation
Cum ' VCx̃VT (at this stage, a part of the uncertainty is neglected because of the
truncation of the Ritz basis) and um = Vx̃. For the determination of the force fm, we
can define it as fdm = Sm,dum−bd or fnm = Sm,num−bn (they are supposed to be equal
if um is equal to the reference solution). If bn is supposed to be noiseless, the second
expression is probably better, and thus Cfm = Sm,nVCx̃VTSm,n. As previously, the
determination of Sm,nV requires solving as many direct problems as the number of
vectors in the truncated Ritz basis, and as previously, this matrix can be assembled
during the conjugate gradient iterations by storing the vector Sm,npi and doing a
few operations on it. However, the application of Sm,n can be interpreted in this
context as a derivation operation, that is well-known for being ill-conditioned. If
one considers that the solution um is noisy, the flux fm is then likely to be even
noisier. For that reason, its determination should preferably be done with another
regularization procedure, which gets out of the scope of this article. For that reason,
in the numerical part, only the determination of um is studied.

The procedure is summed up in Algorithm 2.

Algorithm 2: Bayesian resolution on the Ritz basis
Build the Ritz basis V and the associated Ritz values Θ by means of the conjugate gradient;
Choose the optimal number of Ritz modes;
Cyd
= VT CT

rmCûr CrmV;
Cyn = VT CT

rmS−1
r,nCf̂r S−Tr,nCrmV;

Cỹ = Cyd
+Cyn // Covariance of the reduced right hand side

ỹ = VT CT
rmûr + VT CT

rmS−1
r,n f̂r // Mean of the reduced right hand side

C0
x̃ = VT MC0

um
MV // Covariance of the reduced a priori solution

x̃0 = VT Mu0
m // Mean of the reduced a priori solution

K = C0
x̃Θ

(
ΘC0

x̃Θ +Cỹ
)−1

// Kalman gain

x̃ = x̃0 +K
(
ỹ − Θx̃0) // Update of the reduced mean

Cx̃ = C0
x̃ −KΘC0

x̃ // Update of the reduced variance

Cum ' VCx̃VT ;
Cfm = Sm,nVCx̃VT Sm,n ;
um = Vx̃;
fm = Sm,nVCx̃ + VT CT

rmS−1
r,n f̂r ;

The only computationally expensive step is the computation of the Ritz values
and vectors, that is equivalent to the cost of the deterministic resolution by the
Steklov-Poincarémethod. All the other operations are either done on small operators,
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or doable at very small extra cost during the iterations of the conjugate gradient
algorithm.

Remark As for all Bayesian methods, the results obtained are very dependent of the
choice of the a priori probability density function. In the case when this function is
not available, one can imagine a variant of the method where um is determined by
the Steklov-Poincaré method and the covariance is obtained with a propagation of
the uncertainties Cx̃ = Θ

−1CỹΘ
−1, that corresponds to the formula (19) in the case

of equiprobable a priori information on Rn (with n the dimension of x̃). �

Remark The truncation of the Ritz basis is a sine qua non condition to make
the computation of the uncertainty on the solution affordable in the cases with a
high number of unknowns. However, this is done at the cost of a simplification
of the problem, and thus a loss of accuracy. Numerically, it was observed that the
uncertainty increases with the number of Ritz modes, but tends to stagnate because
the contribution of the highest order Ritz modes is erased by the regularizing effect
of the Bayesian approach. The choice of the relevant number of modes (which does
not match the one given by the discrete Picard condition [11, 9]), and the evaluation
of the resulting imprecision are important questions that are not investigated in this
study. �

5 Numerical example

We study a hollow sphere with an internal inhomogeneous pressure p = ax2+b with
a = 1 N.mm−4 and b = 10 N.mm−2. The Cauchy problem consists in determining
the displacement and pressure on the internal boundary from the observation of the
displacement on the outer Neumann-free boundary.

(a) Domain (clipped) and its mesh (b) Amplitude of displacement and deformed mesh
of Γm

Fig. 2: Domain and its mesh
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The interior radius is R1 = 8 mm and the exterior radius is R2 = 12 mm. We con-
sider a uncorrelated Gaussian noise of amplitude 20% on the data ûr . The isotropic
linear elasticity coefficients are Young modulus E = 210000 MPa and Poisson ratio
ν = 0.3. We use a tetrahedral mesh of which edges length is approximately l = 1
mm. The total number of degrees of freedom is 15 156. 6 357 of them are on Γr and
3 042 on Γm, which corresponds to the number of unknowns of the inverse problem.

We illustrate on Figure 3 the fact that the truncatedRitz decomposition is relatively
independent of themesh size. Threemeshes are studied: the first one has a size l = 1.5
mm, which results in a total number of degrees of freedom of 5 814, 3 033 of which
are on Γr and 1 503 on Γm. The second discretization is the one that will be used for
the uncertainty quantification. The third mesh has a size l = 0.75 mm, which results
in a total number of degrees of freedom of 33 612, 12 585 of which are on Γr and
5 088 on Γm. One can observe that the first Ritz values Θ, the terms of the projection
of the right hand side VT (bd − bn) and the terms of the projection of the solution x̃
are quite similar for the different mesh sizes.

The next step consists in choosing the number of Ritz modes used for the reso-
lution. In [9], a criterion similar to the discrete Picard condition [11] was proposed.
This criterion leads to use about 50 modes. However, it was numerically observed
that this number of modes leads to errors on the solution that are much higher than
the uncertainty estimation.

Indeed, it was observed that around the optimal value of 50 modes, the error has
a quite uniform amplitude, but the more modes there are, the lower the error due to
neglected modes is and the higher the error due to noise on the data is. Consequently,
in order to quantify the error thanks to a reduced model, it is better that the error
due to the neglected modes is small with respect to the error due to the noise. For
that reason, the chosen number of modes needs to be as large as possible. It was
chosen to use 77 modes as, at this point, the increase of the components of x̃ seems
to be more regular, which let us think that it is governed by the white noise (see the
vertical bar on Figure 3b).

The chosen a priori probability has a null mean value and all the degrees of
freedomare uncorrelated. The variance is determined by the amplitude of the solution
of the problem by the deterministic Steklov-Poincaré method projected on the 50 first
Ritz modes (in conformity with the discrete Picard condition). One uses Algorithm 2
to compute the mean um and its variance matrixCum . From this variance matrix, one
extracts the diagonal terms, that correspond to the uncertainty on um. On Figure 4,
the variance on the component uz is compared to the error on this component. It can
be noticed that the variance gives indeed a relevant idea of the uncertainty level. In
order to achieve a more quantitative comparison, both are plotted on the meridian of
the sphere of equation x = 0 on Figure 5.

The same procedure has been applied on a thicker domain with R1 = 5 mm,
R2 = 15 mm and l = 2 mm. This results in much fewer degrees of freedom on
Γm (348), without significantly modifying the Ritz spectrum. The number of modes
used for the Bayesian inversion remains the same (77), and the noise is decreased to
5%. The maps of the error and estimated standard deviation are presented on Figure
6, and their comparison on the meridian is displayed on Figure 7. On this last figure,
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Fig. 3: Ritz values, projection of the right-hand side and of the solution on the Ritz
basis for different mesh size l

the errors due to two realizations of the random noise are also plotted. Note that the
computed standard deviation is not strictly the same for those two realization of the
random noise (although being very close) because this field is computed via the Ritz
modes, that slightly depend on the right hand side, that is impacted by the noise.

6 Conclusion and perspectives

In this article, a simple Bayesian approach has been applied to solve the Cauchy
problem on an elliptic PDE. As we seek to identify a continuous field, which means
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(a) Computed standard deviation (b) Error on the Bayesian identification

Fig. 4: Error and standard deviation on uz (noise = 20%)

(a) Localization of the meridian
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Fig. 5: Error and standard deviation on uz (noise = 20%) on the meridian

that the number of degrees of freedom can be arbitrarily large, a Ritz decomposition
of the involved operator has been used to work in a space that is independent of the
discretization.

The chosen approach has shown good results concerning the estimation of the
uncertainties on the solution provided two requirements are satisfied. First, the noise
level should be sufficiently high in order to make it possible to consider it to be
the dominant source of error in the resolution of the discretized system. On some
geometries, the Cauchy problem is indeed so ill-posed that the numerical truncation
noise (whose impact is much harder to quantify) is the main source of error on
the solution. The second requirement is that the number of Ritz modes should be
sufficient to ensure that the contribution of the neglected part of the spectrum to the
error on the solution is small. The determination of the minimal number of modes
to meet this requirement is still an open question.

What is more, one can remark that nothing prevents to apply the proposed proce-
dure on other inverse problems solved with a Conjugate Gradient algorithm. How-
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(a) Computed standard deviation (b) Error on the Bayesian identification

Fig. 6: Error and standard deviation on uz (thicker sphere, noise = 5%)
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Fig. 7: Error and standard deviation on uz (thicker sphere, noise = 5%) on the
meridian

ever, this study has been conducted in the linear Gaussian framework, which tends to
facilitate a lot the development of CPU efficient Bayesian methods. However, in non-
linear or non-Gaussian cases, thiswork could be extended thanks to the sampling-free
Bayesian method presented in [20] and [19], that uses a polynomial chaos expansion
to represent non-Gaussian probabilities.
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