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Abstract

Generalizing previous results obtained for the spectrum of the Dirichlet

and Neumann realizations in a bounded domain of a Schrödinger operator

with a purely imaginary potential −h
2∆ + iV in the semiclassical limit

h → 0 we address the same problem in exterior domains. In particular we

obtain the left margin of the spectrum, and the emptiness of the essential part

of the spectrum under some additional assumptions.

1 Introduction

Let Ω = Kc, where K is a compact set with smooth boundary in R
d with d ≥ 1.

Consider the operator
AD

h = −h2∆+ i V , (1.1a)

defined on
D(AD

h ) = {u ∈ H2(Ω) ∩H1
0 (Ω) , V u ∈ L2(Ω)} , (1.1b)

or
AN

h = −h2∆+ i V , (1.2a)

defined on

D(AN
h ) = {u ∈ H2(Ω) , V u ∈ L2(Ω) , ∂νu = 0 on ∂Ω} , (1.2b)

where V is a C∞-potential in Ω, ν is pointing outwards of Ω.
The quadratic forms respectively read

u 7→ qDV (u) := h2 ‖∇u‖2Ω + i

∫

Ω

V (x)|u(x)|2 dx , (1.3)
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where the form domain is

VD(Ω) = {u ∈ H1
0 (Ω) , |V |

1
2u ∈ L2(Ω)} ,

and

u 7→ qNV (u) := h2 ‖∇u‖2Ω + i

∫

Ω

V (x)|u(x)|2 dx , (1.4)

where the form domain is

VN (Ω) = {u ∈ H1(Ω) , |V | 12u ∈ L2(Ω)} .

Although the forms are not necessarily coercive when V changes sign, a natural
definition, via an extended Lax-Milgram theorem, can be given for AD

h or AN
h under

the condition that there exists C > 0 such that

|∇V (x)| ≤ C
√

V (x)2 + 1 , ∀x ∈ Ω . (1.5)

We refer to [3, 12, 2] for this point and the characterization of the domain of A#
h ,

where the notation # is used for D (Dirichlet) or N (Neumann).
Note that (1.5) is satisfied for V (x) = x1 (Bloch-Torrey equation) which is our

main motivating example (see [10]).
In this last case and when K = ∅, it has been demonstrated that the spectrum is
empty [1, 14]. Our aim is now to analyze, when K is not empty, the two following
properties

• the emptiness of the essential spectrum, although the resolvent is not compact
when d ≥ 2 ,

• the non emptiness of the spectrum and the extension of the semi-classical
result of Almog-Grebenkov-Helffer [2] concerning the bottom of the real part
of the spectrum.

Since the case d = 1 was analyzed in [12, 14], we will assume from now on that

d ≥ 2 . (1.6)

The study of the spectrum of the operator (1.1) in bounded domains began in
[1] where a lower bound on the left margin of the spectrum has been obtained. In
[14] the same lower bound has been obtained using a different technique allowing for
resolvent estimates (and consequently semigroup estimates), that are not available
in [1]. In [4] an upper bound for the spectrum has been obtained under some rather
restrictive assumptions on V . In [2] these assumptions were removed and an upper
bound (and a lower bound) for the left margin of the spectrum has been obtained
not only for (1.1) but also for (1.2) as well as for the Robin realization and for
the transmission problem, continuing and relying on some one-dimensional result
obtained in [12] and on the formal derivation of the relevant quasimodes obtained
in [11].

The rest of this contribution is arranged as follows: in the next section we list
our main results. Section 3 is devoted to the emptiness of the essential spectrum of
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(1.2) under some conditions on the potential. In some case we confine the essential
spectrum to a certain part of the complex plain whereas in other cases we show that
it is empty. The methods in Section 3 are equally applicable to (1.1) as well as to
the Robin realization and to the transmission problem. In Section 4 we derive the
left margin of the spectrum in the semi-classical limit, by using the same method
as in [2]. In Section 5 we present some numerical results, and in the last section we
emphasize some points which were not addressed within the analysis.

2 Main results

2.1 Analysis of the essential spectrum.

It is clear that there is no essential spectrum when V → +∞ as
|x| → +∞ but we are motivated by the typical example V (x) = x1 with d ≥ 2 , in
which case V can tend to −∞ as well. To treat this example, we need, in addition
t (1.5), the following assumption:

Assumption 2.1. There exists R > 0 such that K ⊂ B(0, R) and a potential V0
satisfying

1. There exists C > 0 such that, for ∀x ∈ R
d ,

∑

|α|=2

|∂αxV0(x)| ≤ C |∇V0|2/3 , (2.1)

2. There exists c > 0 such that, for ∀x ∈ Rd ,

0 < c ≤ |∇V0(x)| , (2.2)

and such that V = V0 outside of B(0, R).

A necessary condition for V at the boundary of B(0, R) is that ∂νV = 0 at some
point of the boundary. If not, any C1 extension V0 of V inside B(0, R) has a critical
point in B(0, R).
Under Assumption 2.1, we have:

Theorem 2.2. For # ∈ {D,N}, and under Assumption 2.1, for any Λ ∈ R, there
exists h0 > 0 such that for h ∈ (0, h0] the operator A#

h has no essential spectrum in

{z ∈ C |Re z ≤ Λh
2
3}.

We now introduce the stronger condition (which is Assumption 2.1 with V0 =
jx1):

Assumption 2.3. The potential V is given in Rd \K by

V (x) = j x1 + Ṽ ,

where Ṽ ∈ C1(Rd) and satisfies Ṽ → 0 as |x| → +∞.
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Theorem 2.4. Under Assumption 2.3, the operator A#
h has no essential spectrum.

In other words the spectrum of the operator A#
h is either empty, or discrete.

This spectral property of the operator A#
h contrasts with a continuous spectrum of

the Laplace operator in the exterior of a compact set. Adding a purely imaginary
potential V to the Laplace operator drastically changes its spectral properties. As
a consequence, the limiting behavior of the operator −∆+ igV as g → 0 is singular
and violates conventional perturbation approaches that are commonly used in phys-
ical literature to deal with this problem (see discussion in [10]). This finding has
thus important consequences for the theory of diffusion nuclear magnetic resonance
(NMR). In particular, the currently accepted perturbative analysis paradigm has to
be fundamentally revised.

Remark 2.5. It is not clear at all whether the spectrum of −∆+i jx1 remains empty
if we add to it a potential V such that (−∆+ijx1)

−1V is compact (for example V with
compact support). In fact, one may construct a real valued V ∈ C1 with compact
support, such that σ(−d2/dx2+ i(x+V )) 6= ∅. However, if we consider the operator
A = −∆+ ix1 + iV (x′) acting on Rd, where x′ ∈ Rd−1 so that x = (x1, x

′). Since A
is separable in x1 and x′ we may write

e−tA = e−t(−∂2x1+ix1) ⊗ e−t(−∆x′+iV (x′)) ,

Consequently (see also [2, Section 4]) we have

‖e−tA‖ ≤ Ce−t3/12 .

It follows that σ(A) = ∅. If consider the Dirichlet or Neumann realization of A in
Ω, then we may use we may use the same procedure detailed in the proof of Theorem
2.4 to conclude that σess(A#) = ∅.

I have dropped the appendix, but kept the statement that it can be done. We
can go one step further and drop the entire statement, but I suggest that we still
keep something in that spirit.

Remark 2.6. Let
V = a x21 + Ṽ ,

where Ṽ ∈ C1 satisfies Ṽ −−−−−→
|x|→+∞

0 and a > 0.

Then (with h = 1)

σess(A#
1 ) =

⋃

r≥0
n∈N

{eiπ/4a1/2(2n− 1) + r} .

The proof is very similar to the proof of Theorem 2.4 and is therefore skipped.
Note that, in the limit a → 0+, σess(A#

1 ) tends to the sector 0 ≤ arg z ≤ π/4. This
is, once again, not in accordance with the guess that the essential spectrum tends
to R+ = σess(−∆).
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2.2 Semi-classical analysis of the bottom of the spectrum.

We begin by recalling the assumptions made in [14, 4, 2] (sometimes in a stronger
form) while obtaining a bound on the left margin of the spectrum ofA#

h in a bounded
domain. In contrast, we consider here a domain which lie in the exterior of a bounded
boundary ∂Ω in Rd for d ≥ 2.
First, we assume

Assumption 2.7. |∇V (x)| never vanishes in Ω.

Note that together with Assumption 2.1 this implies that V satisfies (2.1) and
(2.2) in Ω.

Let ∂Ω⊥ denote the subset of ∂Ω where ∇V is orthogonal to ∂Ω :

∂Ω⊥ = {x ∈ ∂Ω# : ∇V (x) = (∇V (x) · ~ν(x)) ~ν(x)} , (2.3)

where ~ν(x) denotes the outward normal on ∂Ω at x .
We now recall from [2] the definition of the one-dimensional complex Airy operators.
To this end we let D#, for # ∈ {D,N}, be defined in the following manner

{

D
# = {u ∈ H2

loc(R+) | u(0) = 0} # = D

D
# = {u ∈ H2

loc(R+) | u′(0) = 0} # = N .
(2.4)

Then, we define the operator

L#(j) = − d2

dx2
+ i j x ,

whose domain is given by

D(L#(j)) = H2(R+) ∩ L2(R+; |x|2dx) ∩D
# , (2.5)

and set
λ#(j) = inf Re σ(L#(j)) . (2.6)

Next, let
Λ#

m = inf
x∈∂Ω⊥

λ#(|∇V (x)|) . (2.7)

In all cases we denote by S# the set

S# := {x ∈ ∂Ω⊥ : λ#(|∇V (x)|) = Λ#
m } . (2.8)

When # ∈ {D,N} it can be verified by a dilation argument that, when j > 0 ,

λ#(j) = λ#(1) j2/3 . (2.9)

Hence
Λ#

m = λ#(jm) , with jm := inf
x∈∂Ω⊥

(|∇V (x)|) , (2.10)

and S# is actually independent of #:

S# = S := {x ∈ ∂Ω⊥ : |∇V (x)| = jm } . (2.11)

We next make the following additional assumption:
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Assumption 2.8. At each point x of S#,

α(x) = detD2V∂(x) 6= 0 , (2.12)

where V∂ denotes the restriction of V to ∂Ω , and D2V∂ denotes its Hessian matrix.

It can be easily verified that (2.12) implies that S# is finite. Equivalently we
may write

α(x) = Πd−1
i=1αi(x) 6= 0 , (2.13a)

where α1, . . . , αd−1 are the eigenvalues of the Hessian matrix D2V∂(x):

{αi}d−1
i=1 = σ(D2V∂) , (2.13b)

where each eigenvalue is counted according to its multiplicity.
Our main result is

Theorem 2.9. Under Assumptions 2.1, 2.7 and 2.8, we have

lim
h→0

1

h2/3
inf

{

Re σ(AD
h )

}

= ΛD
m , ΛD

m =
|a1|
2

j2/3m , (2.14)

where a1 < 0 is the rightmost zero of the Airy function Ai . Moreover, for every
ε > 0 , there exist hε > 0 and Cε > 0 such that

∀h ∈ (0, hε), sup
γ≤ΛD

m

ν∈R

‖(AD
h − (γ − ε)h2/3 − iν)−1‖ ≤ Cε

h2/3
. (2.15)

In its first part, this result is essentially a reformulation of the result stated by
the first author in [1]. Note that the second part provides, with the aid of the
Gearhart-Prüss theorem, an effective bound (with respect to both t and h) of the
decay of the associated semi-group as t→ +∞ . The theorem holds in particular in
the case V (x) = x1 where Ω is the complementary of a disc (and hence ST consists
of two points). Note that jm = 1 in this case.

Remark 2.10. A similar result can be proved for the Neumann case where (2.14)
is replaced by

lim
h→0

1

h2/3
inf

{

Re σ(AN
h )

}

= ΛN
m , ΛN

m =
|a′1|
2

j2/3m , (2.16)

where a′1 < 0 is the rightmost zero of Ai ′, and (2.15) is replaced by

∀h ∈ (0, hε), sup
γ≤ΛN

m

ν∈R

‖(AN
h − (γ − ε)h2/3 − iν)−1‖ ≤ Cε

h2/3
. (2.17)

One can also treat the Robin case or the transmission case (see [2]).

In the case of the Dirichlet problem, this theorem was obtained in [4, Theorem
1.1] for the interior problem and under the stronger assumption that, at each point
x of SD, the Hessian of V∂ := V/∂Ω# is positive definite if ∂νV (x) < 0 or negative
definite if ∂νV (x) > 0 , with ∂νV := ν · ∇V . This was extended in [2] to the interior
problem without the sign condition of the Hessian. Here we prove this theorem for
the exterior problem.
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3 Determination of the essential spectrum

3.1 Weyl’s theorem for non self-adjoint operators

For an operator which is closed but not self-adjoint, there are many possible defini-
tions for the essential spectrum. We refer the reader to the discussion in [13] or [19]
for some particular examples. In the present work, we adopt the following definition

Definition 3.1. Let A be a closed operator. We will say that λ ∈ σess(A) if one of
the following conditions is not satisfied:

1. The multiplicity α(A− λ) of λ is finite.

2. The range R(A− λ) of (A− λ) is closed.

3. The codimension β(A− λ) of R(A− λ) is finite.

4. λ is an isolated point of the spectrum.

For bounded selfadjoint operators A and B, Weyl’s theorem states that if
A− B = W is a compact operator, then σess(A) = σess(B).
Once the requirement for self-adjointness is dropped, a similar result can be ob-
tained, though not without difficulties (see [13]). We thus recall the following theo-
rem from [19, corollary 2.2] (see also [5, corollary 11.2.3 ]).

Theorem 3.2. Let A be a bounded operator and B = A +W . If W is compact,
then

σess(B) = σess(A) .

In the present contribution we obtain the essential spectrum of (A#
h + 1)−1,

which is clearly a bounded operator in view of the accretiveness of A#
h . We follow

arguments disseminated in [16] (see also [18]), that are rather standard in the self-
adjoint case. The idea is to compare two bounded operators in L(L2(Rd)). The
proof is divided into two steps.

3.2 The pure Bloch-Torrey case in R
d

We consider the case where V (x) = V0(x) and V0 is given by

V0(x) := j x1

with j 6= 0 (assuming h = 1) and will apply the result of Subsection 3.1. The first
operator is, in L(L2(Rd))

A = (A0 + 1)−1 ,

where
A0 = −∆+ i V0 .

Because d ≥ 2, A is not compact but nevertheless we have

Lemma 3.3.

σ(A) = {0} . (3.1)
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Proof

To prove that σ(A) ⊆ {0} we use the property that

λ ∈ σ(−∆+ i V0(x) + 1) iff λ−1 ∈ σ(A) \ {0}

and similarly

λ ∈ σess(−∆+ i V0(x) + 1) iff λ−1 ∈ σess(A) \ {0} .

However, it has been established in [1, 2] that the spectrum of (−∆ + i V0 + 1) is
empty and hence σ(A) ⊆ {0}.
To prove that 0 ∈ σ(A) we consider first the one-dimensional operator

L = −∂2x1
+ i V0(x1) ,

defined on D(L) = H2(R) ∩ L2(R; x2dx).
Since (L + 1)−1 is compact, it follows that there exists {fk}+∞

k=1 ⊂ L2(R) such that

‖fk‖2 = 1 and φk
def
= (L+ 1)−1fk → 0.

Let ψ ∈ C∞
0 (Rd−1) satisfy ‖ψ‖2 = 1 and further gk(x) = fk(x1)ψ(x

′)− φk(x1)∆x′ψ.
It can be easily verified that

Agk = φkψ → 0 , with ‖gk‖2 → 1 .

Hence, 0 ∈ σ(A) and the lemma is proved.

For a given regular set K with non empty interior, consider in L2(Rd) (which is
identified with L2(K̇)⊕ L2(Ω) where K̇ is the interior of K) the operator

B := 0⊕ (AN
Ω,V0

+ 1)−1 .

Again we have,
λ ∈ σ(AN

Ω,V0
+ 1) iff λ−1 ∈ σ(B) \ {0} ,

and similarly
λ ∈ σess(AN

Ω,V0
+ 1) iff λ−1 ∈ σess(B) \ {0} ,

Hence it remains to prove:

Proposition 3.4.

σess(B) = σess(A) .

By Weyl’s theorem, it is enough to prove.

Proposition 3.5. A− B is a compact operator.

Proof. We follow the proof in [16, p. 578-579 ] (with suitable changes due to the non
self-adjointness of A and B). To this end, we introduce the intermediate operator

C := (AD
K̇,V0

+ 1)−1 ⊕ (AN
Ω,V0

+ 1)−1 , (3.2)

where AD
K̇,V0

is the Dirichlet realization of (−∆+ iV (x)) in K̇.

It is clear that C −B is compact, hence it is now enough to obtain the compactness
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of the operator C −A.
For f, g ∈ L2(Rd), let

u = Af , v = C∗g .

We then define

u+ = u/Ω , u− = u/K̇ , v+ = v/Ω , v− = v/K̇ .

Note that
v− = ((AD

K̇,V0
+ 1)∗)−1g− = (AD

K̇,−V0
+ 1)−1g− ,

and
v+ = ((AN

Ω,V0
+ 1)∗)−1g+ = (AN

Ω,−V0
+ 1)−1g+ .

We now write

〈(A− C)f, g〉 = 〈u,
(

(AD
K̇,V0

+ 1)⊕ (AN
Ω,V0

+ 1)
)∗

v〉 − 〈(A0 + 1)u , v〉
= 〈u+, (−∆)v+〉L2(Ω) + 〈u−, (−∆)v−〉L2(K̇)

−〈(−∆)u+, v+〉L2(Ω) − 〈(−∆)u−, v−〉L2(K̇) .

As v− satisfies a Dirichlet condition on Γ = ∂K = ∂Ω and v+ satisfies a Neumann
condition we obtain via integration by parts

〈(A− C)f, g〉 =
∫

Γ

(

u− ∂νv− − ∂νu+ v+
)

ds . (3.3)

To complete the proof we notice that by Sobolev embedding and the boundedness

of the trace operators we have for some compact K̃ such that K ⊂ ˙̃K and some
constants CK̃ , C

′
K̃

|〈(A− C)f, g〉| ≤ CK̃

(

‖u+‖H3/2( ˙̃K\K)
+ ‖u−‖H3/2(K̇)

) (

‖v+‖H2( ˙̃K\K)
+ ‖v−‖H2(K̇)

)

≤ C ′
K̃
‖u‖

H3/2( ˙̃K)
‖g‖2 .

Hence,
‖(A− C)f‖2 ≤ C ′

K̃
‖Af‖

H3/2( ˙̃K)
. (3.4)

Let {fk}∞k=1 ⊂ L2(Rd) satisfy ‖fk‖ ≤ 1 for all k ∈ N. By the boundedness of

A in L(L2(Rd), H2(Rd)) the sequence ‖Afk‖ is bounded in H2( ˙̃K). By Rellich’s

theorem, the injection of H2( ˙̃K) in H
3
2 ( ˙̃K) is compact. Hence there exists a subse-

quence {fkm}∞m=1 such that {Afkm}∞m=1 is a Cauchy sequence in H3/2( ˙̃K). By (3.4)
{(A−C)fkm}∞m=1 is a Cauchy sequence in L2(Rd) and hence convergent. This com-
pletes the proof of Proposition 3.5 and hence also of Proposition 3.4.

Proof of Theorem 2.4. To prove Theorem 2.4 under Assumption 2.3 for the case
Ṽ 6≡ 0 we write, for some λ ∈ C with Reλ < 0

(−∆+ i(V0 + Ṽ )− λ)−1 = (−∆+ iV0 − λ)−1[1− iṼ (−∆+ i(V0 + Ṽ )− λ)−1] .
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Since both (−∆+i(V0+Ṽ )−λ)−1 : L2(Ω) → H2(Ω) and (−∆+iV0−λ)−1 : L2(Ω) →
H2(Ω) are bounded, and since Ṽ : H2(Ω) → L2(Ω) is compact (as a matter of fact
Ṽ : H1(Ω) → L2(Ω) is compact as well), it follows by Theorem 3.2 that the essential
spectrum of (−∆ + i(V0 + Ṽ ) − λ)−1 is an empty set. This completes the proof of
Theorem 2.4 for the case # = N .

To prove Theorem 2.4 for the case # = D we may follow the same procedure
as in Proposition 3.5 to obtain a slightly different compact trace operator, or apply
the following simple argument: Let R be sufficiently large so that K ⊂ B(0, R). Let
AD

B(0,R)\K denote the Dirichlet realization of A in B(0, R) \K. By Proposition 3.5,

the operators (AN
Rd\B(0,R)

+1)−1⊕(AD
B(0,R)\K+1)−1 and (AD

Ω+1)−1, both in L(L2(Ω)),
differ by a compact operator. Hence, as

σess
(

(AN
Rd\B(0,R) + 1)−1 ⊕ (AD

B(0,R)\K + 1)−1
)

= ∅ ,

we obtain that σess
(

(AD
Ω + 1)−1

)

= ∅ as well.

Remark 3.6. An essentially identical proof permits the comparison of the essential
spectrum of the two exterior problems (−∆+iV1)

♯ in Ω1 = Rd\K1 (with # ∈ {D,N})
and (−∆+iV2)

♭ in Ω2 = Rd\K2 (with ♭ ∈ {D,N}) under the condition that V1 = V2
outside a large open ball containing K1 and K2.

Proof of Theorem 2.2. Since the proof relies on semi-classical analysis, we reintro-
duce the parameter h (we no longer assume h = 1). Under Assumption 2.1 there
exists R > 0 such that K ⊂ B(0, R) and a potential V0 satisfying Assumptions (2.1)
and (2.2) in Rd and such that V ≡ V0 in Rd \B(0, R). By Remark 3.6 we need only
consider the case when K = ∅, with V satisfying (2.1) and (2.2) in Rd .

We use the same framework as in [14, 2]. We cover Rd by balls B(aj, h
ρ) of size

hρ (1
3
< ρ < 2

3
) and consider an associated partition of unity χj,h such that

• ∑

j∈Ji(h)
χj,h(x)

2 = 1 ,

• suppχj,h ⊂ B(aj(h), h
ρ) ,

• For |α| ≤ 2,
∑

j |∂αχj,h(x)|2 ≤ Cα h
−2|α|̺ .

Λ being given, we construct the approximate resolvent (Ah − z) (with Re z ≤ Λh
2
3 )

by

Rh :=
∑

j∈J

χj,h(Aj,h − z)−1χj,h .

We then use the uniform estimate [14]:

sup
Re z≤ωh

2
3

‖(Aj,h − z)−1‖ ≤ Cω[jh]
− 2

3 , (3.5)

where j = |∇V (aj)|, Cω is independent of j, h ∈ (0, h0] and

Aj,h := −h2∆+ i V0(aj) + i∇V0(aj) · (x− aj) (3.6)
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is the linear approximation of Ah at the point aj .
As in [14, 2], we then get

Rh ◦ (Ah − z) = I + E(h) , (3.7)

where

E(h) =
∑

j∈J

χj,h i
(

V0−V0(aj)−∇V0(aj)·(x−aj)
)

(Aj,h−z)−1χj,h−h2[∆, χj,h](Aj,h−z)−1χj,h .

The estimation of the second term in the sum can be done in precisely the same
manner as in [14]. For the first term we have by (2.1)

∥

∥χj,h

(

V0 − V0(aj)−∇V0(aj) · (x− aj)
)

(Aj,h − z)−1χj,h

∥

∥ ≤ Cωh
2ρ−2/3 .

By the above and [14]

‖E(h)‖L(L2(Rd)) = O(h2−2ρ− 2
3 ) +O(h2ρ−

2
3 ) . (3.8)

To obtain (3.8), use has been made of (2.1), (2.2) (of Assumption 2.7) which permit
the use of (3.5). The bound on |D2V0|/|∇V0|2/3 is necessary in order to estimate the
error in the linear approximation of V in the ball B(aj , h

ρ). Note that the cardinality
of Ji(h) is now infinite, but it has been established in [2] that the cardinality of the
balls B(ak, 2h

ρ) intersecting a given B(aj, h
ρ) is uniformly bounded in j, h.

By (3.8) I + E(h) is invertible for sufficiently small h. Hence, by (3.7) we have that

sup
Re z≤Λh

2
3

‖(Ah − z)−1‖ ≤ C sup
Re z≤Λh

2
3

‖Rh‖ ≤ CΛ

h2/3
,

where c0 is the lower bound on |∇V0| given in (2.2). We may now conclude that for
any Λ, the spectrum (including the essential spectrum) of Ah = −h2∆ + iV in R

d

is contained in {z ∈ C |Re z ≥ Λ[c0h]
2
3} for h small enough.

4 The left margin of the spectrum

This section is devoted to the proof of Theorem 2.9. As the proof is very similar to
the proof in a bounded domain [2], and therefore we bring only its main ingredients.

4.1 Lower bound

By lower bound, we mean

lim
h→0

1

h2/3
inf

{

Re σ(AD
h )

}

≥ Λ#
m , (4.1)

where ΛD
m is given in (2.14) and ΛN

m in (2.16). .
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We keep the notation of [2, Section 6 ]. For some 1/3 < ̺ < 2/3 and for every
h ∈ (0, h0], we choose two sets of indices Ji(h) , J∂(h) , and a set of points

{

aj(h) ∈ Ω : j ∈ Ji(h)
}

∪
{

bk(h) ∈ ∂Ω : k ∈ J∂(h)
}

, (4.2a)

such that B(aj(h), h
̺) ⊂ Ω ,

Ω̄ ⊂
⋃

j∈Ji(h)

B(aj(h), h
̺) ∪

⋃

k∈J∂(h)

B(bk(h), h
̺) , (4.2b)

and such that the closed balls B̄(aj(h), h
̺/2) , B̄(bk(h), h

̺/2) are all disjoint.

Now we construct in Rd two families of functions

(χj,h)j∈Ji(h) and (ζj,h)j∈J∂(h) , (4.2c)

and a function χR,h such that, for every x ∈ Ω̄ ,

∑

j∈Ji(h)

χj,h(x)
2 +

∑

k∈J∂(h)

ζk,h(x)
2 = 1 , (4.2d)

and such that

• Supp χj,h ⊂ B(aj(h), h
̺) for j ∈ Ji(h),

• Supp ζj,h ⊂ B(bj(h), h
̺) for j ∈ J∂ ,

• χj,h ≡ 1 (respectively ζj,h ≡ 1) on B̄(aj(h), h
̺/2) (respectively B̄(bj(h), h

̺/2)) .

To verify that the approximate resolvent constructed in the sequel satisfies the
boundary conditions on ∂Ω, we require in addition that

∂ζk,h
∂ν

∣

∣

∣

∂Ω
= 0 (4.3)

for # = N .
Note that, for all α ∈ N

n , we can assume that there exist positive h0 and Cα, such
that, ∀h ∈ (0, h0], ∀x ∈ Ω,

|∂αχR,h|2+
∑

j

|∂αχj,h(x)|2 ≤ Cα h
−2|α|̺ and

∑

j

|∂αζj,h(x)|2 ≤ Cα h
−2|α|̺ . (4.4)

We now define the approximate resolvent as in [2]

Rh =
∑

j∈Ji(h)

χj,h(Aj,h − λ)−1χj,h +
∑

j∈J∂(h)

ηj,hRj,hηj,h , (4.5)

where Rj,h is given by [2, Eq. (6.14)], and ηj,h = 1Ωζj,h. As in (3.7) we write

Rh ◦ (Ah − z) = I + E(h) , (4.6)
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where
E(h) =

∑

j∈J χj,h(Ah −Aj,h)(Aj,h − z)−1χj,h

−h2[∆, χj,h](Aj,h − z)−1χj,h

+
∑

j∈J∂(h)
(Ah − z)ηj,hRj,hηj,h .

(4.7)

The estimate of the first sum can be now made in the same manner as in the proof
of Theorem 2.2, whereas control of the second sum can be achieved as in [2]. We
may thus conclude that for any ǫ > 0 there exists Cǫ > 0 such that for sufficiently
small h

sup
Re z≤h2/3(Λ#

m−ǫ)

‖E(h)‖ ≤ C (h2−2ρ− 2
3 + h2ρ−

2
3 ) .

Since for sufficiently small h I + E becomes invertible, we can now use (4.6) to
conclude that for any ǫ > 0 there exists Cǫ > 0 such that for sufficiently small h

sup
Re z≤h2/3(Λ#

m−ǫ)

‖(Ah − λ)−1‖ ≤ Cǫ

h2/3
.

This completes the proof of (4.1).

4.2 The proof of upper bounds

To prove that

lim
h→0

1

h2/3
inf

{

Re σ(A#
h )

}

≤ Λ#
m ,

we use the same procedure presented in [2, Section 7]. The only thing we care to
mention is that to estimate the contribution of the interior of Ω (i.e. the first sum
in (4.5) and (4.7)) we use the same approach as in the proof of Theorem 2.2. The
rest of the proof, being precisely the same as in [2, Section 7] is skipped.

5 Numerical illustration

In this section, we provide a numerical evidence for the existence of a discrete spec-
trum of the Bloch-Torrey operator AN

h = −h2∆+ ix1 in the case of the exterior of
the unit disk: Ω∞ = {x ∈ R2 : |x| > 1}. In contrast to the remaining part of this
note, this section relies on numerics and does not pretend for a mathematical rigor:
it only serves for illustration purposes.

Since a numerical construction of the operator AN
h is not easily accessible for

an unbounded domain, we consider the operator AN
h,R = −h2∆ + ix1 in a circular

annulus ΩR = {x ∈ R2 : 1 < |x| < R} with two radii 1 and R. As R → +∞ , the
bounded domain ΩR approaches to the exterior of the disk Ω∞. We set Neumann
boundary condition at the inner circle and the Dirichlet boundary condition at
the outer circle. Given that ΩR is a bounded domain, the operator AN

h,R has a
discrete spectrum (as ix1 is a bounded perturbation of the Laplace operator). The
operator Ah,R can be represented via projections onto the Laplacian eigenbasis by
an infinite-dimensional matrix −h2Λ + iB, where the diagonal matrix Λ is formed
by Laplacian eigenvalues and the elements of the matrix B are the projections of
x1 onto two Laplacian eigenfunctions (see [6, 7, 8, 11] for details). In practice, the
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matrix −h2Λ + iB is truncated and then numerically diagonalized, yielding a well-
controlled approximation of eigenvalues of the operator AN

h,R, for fixed h and R. For
convenience, the eigenvalues are ordered according their increasing real part.

As shown in [11], for small enough h, the quasimodes of the operator AN
h,R are

localized near the boundary of the annulus, i.e., near two circles. The quasimodes
that are localized near the inner circle are almost independent of the location of the
outer circle. Since the spectrum of the operator AN

h in the limiting (unbounded)
domain Ω∞ is discrete, some eigenvalues of AN

h,R are expected to converge to that
of AN

h as R increases.
Table 1 shows several eigenvalues of the operator AN

h,R as the outer radius R
grows. The symmetry of the domain implies that if λ is an eigenvalue, then the
complex conjugate λ̄ is also an eigenvalue. For this reason, we only present the
eigenvalues with odd indices with positive imaginary part. One can see that the
eigenvalues λ1, λ3 and λ7 are almost independent of R. These eigenvalues corre-
spond to the eigenmodes localized near the inner circle. We interpret this behavior
as the convergence of the eigenvalues to that of the operator AN

h for the limiting (un-
bounded) domain Ω∞. In contrast, the imaginary part of the eigenvalues λ5 and λ9
grows almost linearly with R, as expected from the asymptotic behavior reported in
[11]. These eigenvalues correspond to the eigenmodes localized near the outer circle
and thus diverge as the outer circle tends to infinity (R → +∞). These numerical
results illustrate the expected behavior of the spectrum. To illustrate the quality of
the numerical computation, we also present in Table 1 the approximate eigenvalues
based on their asymptotics derived in [11]:

λN(n,k)
app = i+ h2/3|a′n|eπi/3 + h(2k − 1)

e−πi/4

√
2

+ h4/3
eπi/6

2|a′n|
+O(h5/3),

λD(n,k)
app = iR + h2/3|an|e−πi/3 + h(2k − 1)

e−πi/4

√
2R

+O(h5/3),

(5.1)

where an and a′n are the zeros of the Airy function and its derivative, respectively.

Note that λ
N(n,k)
app corresponds to the inner circle of radius 1 where Neumann bound-

ary condition is prescribed, whereas λ
D(n,k)
app corresponds to the outer circle of radius

R where we impose a Dirichlet boundary condition. These approximate eigenvalues
(truncated at O(h5/3)) show an excellent agreement with the numerically computed
eigenvalues of the operator AN

h,R. This agreement confirms the accuracy of both the
numerical procedure and the asymptotic formulas (5.1).

6 Conclusion

While we have confined the discussion in this work to Dirichlet and Neumann bound-
ary conditions for simplicity, we could have also treated the Robin case or the trans-
mission case (see [2]) with Ω+ = Rd \ Ω− . Note that we do not assume that K is
connected. In the case of the Dirichlet problem, the main theorem was obtained
in [4, Theorem 1.1] under the stronger assumption that, at each point x of SD,
the Hessian of V∂ := V/∂Ω is positive definite if ∂νV (x) < 0 or negative definite if
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λn \ R 1.5 2 3
λ1 0.0250 + 1.0318i 0.0250 + 1.0317i 0.0251 + 1.0315i

λ
N(1,1)
app 0.0251 + 1.0317i 0.0251 + 1.0317i 0.0251 + 1.0317i
λ3 0.0409 + 1.0160i 0.0409 + 1.0160i 0.0410 + 1.0158i

λ
N(1,3)
app 0.0411 + 1.0157i 0.0411 + 1.0157i 0.0411 + 1.0157i
λ5 0.0501 + 1.4157i 0.0497 + 1.9162i 0.0498 + 2.9161i

λ
D(1,1)
app 0.0500 + 1.4157i 0.0496 + 1.9162i 0.0491 + 2.9167i
λ7 0.0567 + 1.0003i 0.0567 + 1.0003i 0.0560 + 1.0000i

λ
N(1,5)
app 0.0571 + 0.9997i 0.0571 + 0.9997i 0.0571 + 0.9997i
λ9 0.0635 + 1.4026i 0.0612 + 1.9048i 0.0593 + 2.9065i

λ
D(1,3)
app 0.0631 + 1.4027i 0.0609 + 1.9049i 0.0583 + 2.9075i

Table 1: Several eigenvalues of the operator AN
h,R in the circular annulus ΩR =

{x ∈ R
2 : 1 < |x| < R} computed numerically by diagonalizing the truncated

matrix representation −h2Λ+ iB, for h = 0.008 and R = 1.5, 2, 3 . For comparison,
gray shadowed lines show the approximate eigenvalues from Eqs. (5.1).

∂νV (x) > 0 , with ∂νV := ν · ∇V . This additional assumption reflects some tech-
nical difficulties in the proof, that was overcome in [2] by using tensor products of
semigroups, a point of view that was missing in [4].
This generalization allows us to obtain the asymptotics of the left margin of σ(A#

h ),
for instance, when V (x1, x2) = x1 and Ω is the exterior of a disk, where the above
assumption is not satisfied.
For this particular potential, an extension to the case when Ω is unbounded is of
significant interest in the physics literature [10].
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