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Two reciprocity theorems are important for both fundamental understanding of the solar cell operation 
and applications to device evaluation: 1) the carrier-transport reciprocity connecting the dark-carrier 
injection with the short-circuit photocarrier collection and 2) the optoelectronic reciprocity connecting the 
electroluminescence with the photovoltaic quantum efficiency at short circuit. These theorems, however, fail 
in devices with thick depletion regions such as p-i-n junction solar cells. By properly linearizing the carrier 
transport equation in such devices, we report that the dark-carrier injection is related to the photocarrier 
collection efficiency at the operating voltage, not at short circuit as suggested in the original theorem. This 
leads to the general form of the optoelectronic reciprocity relation connecting the electroluminescence with 
the voltage-dependent quantum efficiency, providing correct interpretation of the optoelectronic properties 
of p-i-n junction devices. We also discuss the validity of the well-known relation between the open-circuit 
voltage and the external luminescence efficiency. The impact of illumination intensity and device parameters 
on the validity of the reciprocity theorems is quantitatively investigated. 

I. INTRODUCTION

The optoelectronic reciprocity relation [1] has been 
proposed as a theorem which relates the electroluminescence 
(EL) and the photovoltaic external quantum efficiency (EQE) 
at short circuit in p-n junction diodes. With the use of the 
theorem, several new techniques for evaluating the electrical 
properties of solar cells based on the optical measurement 
become available, including the indirect measurement of the 
subcell voltage of multi-junction solar cells [2-4] and the 
spatial mapping of the local voltage and other electrical 
properties [5-10]. The derivation of this reciprocity between 
the EL (carrier injection followed by photon emission) and 
the EQE (photon absorption followed by carrier collection) is 
based on two relations: the reciprocity of photon 
emission/absorption and the reciprocity of carrier 
injection/collection. The photonic reciprocity has been 
originally proved by the detailed balance principle and the ray 
optic approach [1], and has been recently discussed with more 
rigorous physics considering the coupling between the 
photonic and electronic states [11]. 

On the other hand, the carrier-transport reciprocity, or 
sometimes called the Donolato theorem, has been first 
discussed in Ref. [12], describing the symmetry between the 
injection efficiency of minority carriers under applied voltage 

and the collection efficiency of photogenerated carriers under 
short-circuit condition. Despite many further attempts to 
generalize the carrier-transport reciprocity [13-17], all of 
them have focused on the carrier dynamics in the quasi-
neutral region while neglecting the depletion region, where 
the carrier dynamics is comparatively complicated. This 
approach is acceptable in most p-n junction solar cells in 
which the depletion region is thin compared to other active 
layers. 

However, the exclusion of the depletion region is not an 
appropriate approach for describing p-i-n junction solar cells, 
in which the intrinsic region (i-region) is inserted in between 
the n- and p-regions to extend the depletion region. The p-i-n 
configuration is usually employed for materials with poor 
carrier diffusion lengths, such as amorphous and 
microcrystalline silicon [18,19], complicated alloys [20,21], 
and quantum structures [22]. The photocarriers are driven by 
the internal electric field inside the depletion region in 
addition to the diffusion process, enhancing the carrier 
collection efficiency and thus the output photocurrent. Since 
most photogeneration and recombination take place in the 
depletion region, the carrier-transport reciprocity becomes 
invalid in p-i-n junction solar cells, and consequently results 
in the failure of the optoelectronic reciprocity relation. The 
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invalidity of the theorem in p-i-n junction solar cells has been 
addressed in the original paper [1], and subsequently 
confirmed by the numerical simulation [23,24]. When 
evaluating p-i-n junction solar cells using the optical 
measurement [25], a careful interpretation of the 
optoelectronic reciprocity relation is needed to extract the 
correct information of the device electrical properties. 

In this paper, we propose the generalized form of the 
reciprocity relations which is applicable in both p-n and p-i-n 
junction solar cells and discuss their validity in details. In Sec. 
II, the original reciprocity relations and the underlying 
assumptions are briefly discussed. In Sec. III, we show that, 
even in devices with a thick depletion region, it is possible to 
linearize the carrier-transport equation by considering well-
suited regions, which provides a new aspect of dark-carrier 
injection and photocarrier collection. In Sec. IV, we derive 
the generalized form of the optoelectronic reciprocity relation 
connecting EL and EQE. Readers who are interested in the 
application on the EL analysis may focus on this section. The 
requirement of the illumination intensity and the device 
parameters to keep the reciprocity relations valid is discussed 
in Sec. V and our findings are summarized in Sec. VI. 

 

II. ORIGINAL RECIPROCITY RELATIONS 

In a p-n junction device, the EL and the photovoltaic EQE 
at normal emission/incidence, as shown in Figs. 1(a)-(b), are 
connected by the optoelectronic reciprocity relation [1], 

( )( ) (sc)
bbEL , EQE ( )( ) ( ) 1 ,p n qV kTV eε ε ε−Φ Φ= −  (1) 

where ε is the photon energy, bb ( )εΦ  is the blackbody 
radiation flux spectrum, V is the external applied voltage, q is 
the elementary charge, and kT is the thermal energy. The 
superscript (sc) is the notation for the short-circuit condition. 
The optoelectronic reciprocity above has been derived using 
the carrier-transport reciprocity, which connects the 
collection efficiency (sc)

cf  of carriers photogenerated at a 
given point rg under short-circuit condition—the situation 
with only optical perturbation—with the injection efficiency 
fi of excess minority carriers δ nminor from the junction rj, i.e. 
the depletion edge, to the point rg under applied voltage V 
without illumination—the situation with only electrical 
perturbation [12-17], 
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FIG. 1. Reciprocity relation connecting the electroluminescence (carrier 
injection/photon emission) and photovoltaic EQE (photon absorption/ 
photocarrier collection). The dynamics of electrons in the p-region is shown 
in the figure, whereas the hole dynamics in the n-region is in a similar manner. 
rg denotes the point of photogeneration, rj the depletion edge, and Sn=p the 
surface where n = p (see Fig. 2). (a)-(b) Original theorem for p-n junction 
solar cells considering EQE at short circuit. (c)-(d) Proposed generalized 
theorem considering EQE at operating voltage.  

 

 
FIG. 2. Device schematic and region notations of a solar cell with a thick 
depletion region.  

 
where 0 ( ) n gr is the minority carrier density at thermal 
equilibrium. Although it has been mentioned in some 
literatures [16,17] that the impact of the drift transport by the 
electric field is included in the above relation, it does not 
account for the electric field that depends on the applied 
voltage, i.e. the electric field in the depletion region, as will 
be discussed in this study. 
 

III. GENERALIZED TRANPORT RECIPROCITY 

The carrier-transport reciprocity in Eq. (2) has been 
derived by focusing on only the quasi-neutral region, where 
the density of one type of carriers, the majority carriers, is 
practically determined by the doping profile and there is only 
the dynamics of the minority carriers that has to be considered. 
On the other hand, an essential difference in the depletion 
region is that it is necessary to consider both the electron 
density n and the hole density p. Here, we investigate carrier 
transport dynamics in a device with a thick depletion region 
shown in Fig. 2, where the depletion region can be either an 
undoped i-region or a space-charge region of a depleted p- or 
n-region. To provide a clear picture and quantitative 
discussion on the theoretical analysis below, which is 
generalized to devices with arbitrary shapes, a simple p-i-n 
junction solar cell (Table I) was simulated using the PVcell 
1D device simulator [26] as a demonstration (Figs. 3-8). 

 
 



TABLE I.  Material parameters for numerical simulation of the p-i-n 
junction solar cell in Figs. 3-8 

Parameters Symbols Values 
n- and p-region thickness lp, ln 100 nm 

i-region thickness li 500 nm 
Bandgap Eg 1.4 eV 

Carrier mobility µn, µp 0.1 cm2/Vs 
SRH lifetime τn, τp 100 ns 

Radiative recombination coefficient B 10-10 cm3s-1 
Auger recombination coefficient Cn, Cp 10-30 cm6s-1 
Surface recombination velocities vs,n, vs,p 0 

Intrinsic carrier density ni 107 cm-3 
Temperature T 300 K 

 
Three types of recombination R are considered: the 

Shockley-Read-Hall (SRH) recombination, the band-to-band 
radiative recombination, and the Auger recombination. The 
SRH recombination rate is given by [27] 

( ) ( )
2

SRH ,i

p t n t

np n
R

n n p pτ τ
−

=
+ + +

 (3) 

where ni is the intrinsic carrier density, nt and pt are the carrier 
densities when the Fermi level aligns at the trap states, and τn 
and τp  are the SRH lifetimes. The n and p subscripts 
correspond to the parameters for electrons and holes, 
respectively, and these notations will be used thereafter. In 
the depletion region, either doped or non-doped, charge 
carriers are built up in the steady state and can be divided into 
the region that n>p, i.e. the electron-rich region (Vn>p in Fig. 
2), and the region that p>n, i.e. the hole-rich region (Vp>n) 
[28]. (Therefore, strictly speaking, the word “depletion region” 
is not the correct word use. We keep using this word as it is 
the standard word for indicating the region between the two 
quasi-neutral regions.) As can be seen in Fig. 3(c) showing 
the carrier distribution of a p-i-n junction solar cell described 
in Fig. 3(a) and Table I, the both carrier densities vary 
exponentially in the depth direction of the depletion region. 
The region where the values of p and n are in the same order 
of magnitude is very thin, allowing the approximation n >> p 
and p >> n in the regions Vn>p and Vp>n, respectively. 
Furthermore, for deep-level defects, nt and pt are small and 
can be neglected. In this way, RSRH at the position r can be 
approximated by 
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which is confirmed in Fig. 3(d). The radiative recombination 
is given by 

 
FIG. 3. Simulation of (a) band structure, (b) quasi-Fermi levels, (c) carrier 
distribution, and (d) SRH recombination rate with the open symbols showing 
the approximation with Eq. (4). A p-i-n junction solar cell with the 
parameters summarized in Table I at 0.5 V is simulated as a demonstration.  

 

( )2
rad  ,iR B np n= −  (5) 

where B is the radiative recombination coefficient. Even 
though the Auger recombination can be large in the quasi-
neutral region of some materials, it is generally small and can 
be omitted in the depletion region where the carrier density is 
comparatively low. Nevertheless, to generalize the formula 
which holds in both the quasi-neutral and the depletion 
regions, we incorporate the Auger recombination process, 
which can be expressed using the coefficient Cn and Cp [29] 
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The approximation in the last line uses that fact that the 
carrier distribution varies abruptly in the depletion region, 
similarly to the approximation in Eq. (4). 

Electron current density Jn flowing in the semiconductor 
can be expressed in terms of drift and diffusion currents, 

,n nq n qD nµ= + ∇nJ E  (7) 



where µn is the electron mobility, nnD kT qµ=  is the 
electron diffusion coefficient, and E is the electric field. For 
materials with non-uniform electron affinity, bandgap, or 
density of states, the effect of the non-uniformity can be 
included in E as the effective field [30]. In the absence of 
illumination, we obtain the carrier transport equation from the 
current continuity and the recombination in Eqs. (4)-(6): 
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Here, µ, τ, B, C, and ni can be non-uniform as a function of 
position r.  

It is practical to assume that the carrier recombination R 
has a negligibly small impact on the distribution of the 
majority carriers, whose density is comparatively large, 
whereas its impact on the minority-carrier distribution is still 
important. The validity of this assumption will be discussed 
in Sec. V B. In this way, as electrons are the majority carriers 
in the region Vn>p, Eq. (8) can be rewritten by 
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or 
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by considering that the current can be expressed by the 
gradient of the quasi-Fermi levels εFn through 

n Fnnµ ε= ∇nJ  [30]. Similarly, we can write 
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for the hole current continuity. The relations 0Fnε∇ =  and 
0Fpε∇ =  are conditions that make the upper line of Eq. (10) 

and the lower line of Eq. (11) satisfied. That is, 

.
 ( ) constant for V

( ) constant for V   
Fn n p

Fp p n

ε

ε
>

>

= ∈
 = ∈

r r

r r
 (12) 

This implies that the majority-carrier quasi-Fermi levels are 
flat not only in the quasi-neutral region, but also in the 
depletion region. The constancy of the quasi-Fermi levels of 
the majority carriers in the depletion region is confirmed by 
the simulation in Fig. 3(b).  

Equation (12) tells us that the quasi-Fermi level splitting 

F Fn Fpε ε ε∆ = −  at the position rn=p in the interface area 
Sn=p (see Fig. 2) between the regions Vn>p and Vp>n, where 
n p= , is given by the applied voltage V: 
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[See Fig. 3(b)]. By reminding the relation between the carrier 
densities and the quasi-Fermi level splitting 2 F kT

i enp n ε∆= , 
the electron and hole densities at this position are given by 

2() ) .( V
n p i

q kTn en p n= ≡ = =n= p n= pr r  (14) 

By introducing the variables 

2 1 1,F k
i
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we can reexpress the electron photocurrent density at 
Vp n>∈r  as 
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{Note that 0Fpε∇ =  at Vp n>∈r  [Eq. (12)]} and rewrite 
Eq. (10) for Vp n>∈r  as 
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Under applied voltage V, we define the operator 
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Using this operator, we can say that in the device at voltage 
V under dark condition [see Fig. 1(c)], the spatial profile of 
the parameter ( )u r , denoted by , ( )D Vu r , has to satisfy 

, ( ) 0  for V  .D p nVu >  = ∈ n,VL r r  (19) 



In the next step, we consider the situation where carriers are 
additionally photogenerated at point rg inside Vp>n with the 
delta-function-like generation rate of ( ) ( )G gδ= − gr r r , 
while the applied voltage V is kept the same [see Fig. 1(d)]. 
Provided that the carrier generation is low enough that the 
majority-carrier density (p in Vp>n and n in Vn>p) is unaffected 
(the validity is discussed in Sec. V A), ( )u r  with the 
photogeneration at the applied voltage V, denoted by 

, ( , )L Vu gr r , has to satisfy 

, .( , ) (   for  , V)  L p nV gu q δ >  = ∈  −n,V g g gL r r r r r r  (20) 

As suggested in Ref. [17], the Green’s identity is useful 
to analyze the boundary of the carrier transport equation. To 
investigate the Green’s identity for the operator Ln,V, let’s 
consider the integral of , , , ,[ ] [ ]D V L V L V D Vu u u u−n,V n,VL L  
over the region Vp>n (see the Supplemental Material [31] for 
more details of the derivation): 
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Here, Jn,L,V and Jn,D,V are the electron current densities at 

voltage V with and without illumination, respectively. The 

last line of Eq. (21) uses the result from Eq. (13) that Fε∆ , 

thus u, is constant in the surface Sn=p for the given external 

voltage V, provided that both carrier densities n and p at rn=p 

are not affected by the illumination (see Sec. V A).  

The Jn,L,V − Jn,D,V term corresponds to the increment of 
current density induced by the illumination at the fixed 
voltage V, or in other words, the photocurrent density. By 
noting that the electron photocurrent density vector Jn,L,V − 
Jn,D,V has the opposite direction of the normal vector dS from 
Vp>n, thus ( ) 0d− ⋅ <Sn,L,V n,D,VJ J , we can say that the 
term 

( ) hS p ( , )
p n

d I V
=

− − ⋅ =∫ Sn,L,V n,D,V gJ J r  (22) 

is the electron photocurrent that is photogenerated at the point 
Vp n>∈gr  and can be subsequently extracted out of the hole-

rich region Vp>n. By substituting Eqs. (13), (15), (19), (20), 
and (22) in the first and the last lines of Eq. (21), we obtain 

the relation 

,
p

( , )
h( 1) ( , )( 1),F D V kT qV kTqg e I V eε∆ − = −gr

gr  (23) 

where ∆εF,D(rg, V) is the quasi-fermi level splitting at the 
position rg under dark condition for the applied voltage V. By 
following the similar derivation in Eqs. (15)-(23) for 

Vn p>∈gr , it is straightforward to show that the same relation 
holds as well if carriers are photogenerated in Vn>p and thus 
the validity of Eq. (23) can be extended to the 
photogeneration at any positions r inside the device, 
including the depletion region. 

By rearranging Eq. (23) to 
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we obtain an interesting relation between the photocurrent of 
a device with illumination [Fig. 1(c)] on the left side of the 
equation and the quasi-Fermi level splitting of the same 
device without illumination [Fig. 1(d)] on the right side. The 
left side of Eq. (24) is the ratio of collected photocurrent at 
voltage V to the photogeneration rate at point rg, which can 
be defined as the local carrier collection efficiency 

ph( , ) ( , )cf V I V qg≡g gr r  (25) 

On the other hand, the right side of Eq. (24) describes how 
well the quasi-Fermi level splitting ∆εF under carrier injection 
penetrates from Sn=p, where ∆εF

 = qV, into the region Vp>n or 
Vn>p [see Fig. 3(b)]. Since the right side of Eq. (24) is the 
generalized form of the original injection efficiency in Eq. (2), 
which has been defined as the penetration of the excess 
minority carrier from the depletion region, it can be 
considered as the generalized local carrier injection 
efficiency 
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In the quasi-neutral region, where the majority-carrier density 
is considered constant, ,

minor 01 1F D kTe n nε∆ − = −  

minor 0n nδ= holds and fi in Eq. (26) gives fi defined by Eq. 
(2). In other words, fi given by Eq. (26) is a more general form 
which can describe the behavior in all regions.  

From Eqs. (24)-(26), we obtain the generalized carrier-
transport reciprocity 

( , ) ( , )c if V f V=g gr r  (27) 

 



 
FIG. 4.  (a) Band structures and (quasi-)Fermi levels at 0 and 0.5 V. The 
electron quasi-Fermi level εFn at 0.5 V shown in this scale almost overlaps 
with the Fermi levels εF at 0 V and is not shown here. (b) Comparison of 
carrier distribution at 0 V and 0.5 V.  

 
 
connecting the local dark-carrier injection efficiency with the 
local photocarrier collection efficiency. Although it has been 
addressed [1,23,24,32] that, in solar cells with thick depletion 
regions, the invalidity of the majority/minority-carrier 
concept in the depletion region may cause the non-linearity 
in the transport equation and violate the transport reciprocity 
relation, we have shown that it is possible to divide the 
depletion region into the electron-rich and hole-rich regions 
and linearize the carrier transport equation as a linear 
differential equation of u, resulting in the validity of the 
reciprocity relation. 

The significant difference from the original carrier-
transport reciprocity is that the photocarrier collection 
efficiency fc should not be considered at the short-circuit 
condition [ (sc) ( )cf gr  in Eq. (2)], but should be defined at the 
operation voltage V [ ( , )cf Vgr  in Eq. (25)]. This is due to the 
fact that the governing transport equation in Eqs. (10)-(11) at 
the applied voltage V ≠ 0 is not the same as that at V = 0. Even 
though Eq. (12) suggests that the quasi-Fermi levels are 
almost flat in the corresponding majority-carrier regions 
regardless of the applied voltage [see Fig. 3(b) and Fig. 4(a)], 
it is shown in Fig. 4(b) that the electron density n in Vn>p and 
the hole density p in Vp>n have voltage dependence. Changing 
the applied voltage V alters the electrostatic potential profile 
as well as the distance of the bandedges from the quasi-Fermi 
levels, i.e. C FnE ε−  for the conduction band EC and 

FV pE ε−  for the valence band EV, which in turn alters the 
majority-carrier density. This results in the inequality 
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(28) 

for V ≠ 0, which violates the main assumption =(sc)
n,VnL L  

in the derivation of the original theorem [12-17]. This 
inequality limits the use of the original theorem [Eq. (2)] on 
solar cells with thick depletion regions to only small voltage 
near zero. 

The invalidity of the use of the short-circuit carrier 
collection efficiency can be alternatively explained in terms 
of the voltage-dependent electric field. At short-circuit 
condition, the drift-diffusion-based transport equation in Eq. 
(9) is expressed by 

0 ( ) ,n nq n qD n qRµ= −∇ ⋅ + ∇ +(sc)E  (29) 

where E(sc) is the electric field profile at V = 0. As the electric 
field in the depletion region decreases with increasing 
forward bias voltage V, carriers follow different carrier 
transport equations for V = 0 and V ≠ 0, leading to the failure 
of the simple linear relation between the dynamics of 
photogenerated carriers at V = 0 and electrically injected 
carriers at V > 0. 

In addition, the expression for the local dark-carrier 
injection in the original transport reciprocity relation, the 
right-hand side of Eq. (2), is not applicable to solar cells 
containing thick depletion regions since it has been derived 
based on the assumption minor ( , )n V =gr 0 ( ) F kTn e ε∆

gr . This 
assumption is applicable only if the majority-carrier density 
remains unchanged from the thermal equilibrium, which 
holds in the highly-doped quasi-neutral regions but not in the 
depletion region [Fig. 4(b)]. Instead, the local carrier injection 
efficiency expressed by the penetration of the quasi-Fermi 
level splitting, Eq. (26), is the general form which can be used 
in both the quasi-neutral and the depletion regions. Hence, it 
is more straightforward to interpret the carrier-transport 
reciprocity as the relation between the photocarrier collection 
efficiency fc and the uniformity of the dark quasi-Fermi level 
splitting ,F Dε∆ : solar cells with efficient collection of 
photocarriers under illumination will have the spatially 
uniform ,F Dε∆  under the carrier injection mode, and in the 
opposite way, the inefficient photocarrier collection directly 
corresponds to the low ,F Dε∆  under carrier injection. 

The carrier-transport reciprocity is confirmed by the 1D 
simulation of the p-i-n device described in Table I. Fig. 5(a) 
shows the injection efficiency fi to the n-region at the depth zg 
= 30 nm and the collection efficiency fc of carriers 



photogenerated in a thin layer at the same depth, simulated 
using Eq. (25) and Eq. (26), respectively. Fig. 5(b) is similar 
but is simulated at the depth zg = 500 nm, which is inside the 
i-region. It can be seen that the voltage-dependent collection 
efficiency fc, not the collection efficiency (sc)

cf  at short 
circuit, agrees well with the value of dark injection, 
confirming the proposed transport reciprocity relation in Eq. 
(27). 
 

IV. GENERALIZED OPTOELECTRONIC 
RECIPROCITY 

When the device at applied voltage V is illuminated with 
the monochromatic light with photon energy ε, by using the 
probability ( ), ,a dVεr r  that the incident photon is 
absorbed in the volume element dr at r, EQE can be obtained 
by integrating the photocurrent induced from each point over 
the entire volume Vdevice, 

( )
deviceV

.E ,QE( , ) , , ( )cV a V f V dε ε= ∫ r r r  (30) 

On the other hand, in the absence of illumination, the net 
photon flux ( , ),z dVφ εr r  of photon energy ε that is emitted 
from the volume element dr of the absorber and is able to 
escape from the device surface without being reabsorbed can 
be expressed using the generalized Kirchhoff’s law [33], 
which has been further generalized for materials with the 
field-dependent absorption [11], 

( ) ( ), ( , )
bb( , ) ( ) 1 .  (, ), 31, F D V kT

z V ed a V dεφ ε ε ε ∆Φ= −rr r r r  

The total electroluminescence ΦEL from the absorber 
surfacecan be obtained by integrating the photon flux 

( , ),z dVφ εr r  contributed from each volume element, 
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where the generalized transport reciprocity in Eq. (27) is used 
to obtain the second line and EQE in Eq. (30) to obtain the 
last line. Equation (32) represents the general form of the 
optoelectronic reciprocity which links the EL with the 
photovoltaic EQE [see Figs. 1(c)-(d)]. By following the 
similar derivation in Ref. [1], the optoelectronic reciprocity 
relation in Eq. (32) can be extended to the 
electroluminescence )

EL
(tilt )( , ,Vε θΦ  emitted at the tilt angle 

θ,  with EQE( , )Vε  substituted with (tilt)EQE ( , , )Vε θ   

 
FIG. 5.  Simulated local dark-carrier injection and photocarrier collection 
efficiencies of the p-i-n junction solar cell in (a) the n-region at the depth zg 
= 30 nm and (b) the i-region at zg = 500 nm. Circle symbols show the 
injection efficiency obtained from the simulated quasi-Fermi level of the 
device without illumination and Eq. (26). Lines represent the voltage-
dependent collection efficiency fc of carriers photogenerated in a thin layer 
at the corresponding depth zg with the photogeneration rate of 1010 cm-2s-1, 
obtained from the simulated photocurrent and Eq. (25). (sc)

cf  corresponds 
to fc at short circuit. Simplified device schematics indicate the positions of 
photogeneration.   

 
measured at the light incident angle θ. We would like to 
emphasize, as it might be easily misinterpreted due to the 
term ( 1)kV Tqe − , that there is no assumption for the formula 
of EL that the quasi-Fermi level splitting ,F Dε∆  must equal 
to qV in the entire device. The non-uniformity of the quasi-
Fermi level splitting ,F Dε∆  has been included in the 
EQE( , )Vε term. 

Equation (32) derived above has the similar expression to 
the original optoelectronic reciprocity relation in Eq. (1), but 
the voltage-dependent EQE should be used instead of the 
short-circuit EQE. This is a consequence of the voltage-
dependent carrier collection in the carrier-transport 
reciprocity [Eq. (27)] and the voltage-dependent light 
absorptance [11]. Previously, it has been addressed in Ref. 
[34] that in non-linear solar cells, the differential form of the 
electroluminescence follows the reciprocity relation 

bbEL ( ) EQE TqV kd qV kT ed =Φ Φ  with EQE represented 
the voltage-dependent EQE. We have shown in this paper that 
the carrier transport in the depletion region is linear at fixed 
voltage and the absolute electroluminescence ELΦ  itself 
also follows the optoelectronic reciprocity relation with the 
voltage-dependent EQE. 

This finding suggests that when applying the reciprocity 
relation to analyze the electrical properties of solar cells from 



optical measurement, for instance extracting the subcell 
voltage of multi-junction solar cells and mapping the voltage 
distribution from emitted EL [2-10], the voltage-dependent 
EQE data are required for correct data analysis. The original 
reciprocity relation expressed by Eq. (1) may be used only in 
solar cells with EQE independent of voltage such as p-n 
junction solar cells with sufficiently high doping 
concentration. 
 

V. VALIDITY DISCUSSION 

A. Limitation of illumination intensity 

One main assumption in the derivation above is the low 
illumination intensity such that the majority-carrier density 
remains unchanged. It is important to quantitatively estimate 
such limit as it is directly related to the limitation of the 
illumination intensity in the EQE measurement. If the electric 
field in the depletion region is sufficiently high, the transport 
of photogenerated carriers is dominated by the drift transport. 
For the photogeneration in Vp>n, the electron photocurrent 
density Jph,n and the electron density increment ∆n due to 
illumination are related by [28] 

.nq nµ= ∆ph ,n EJ  (33) 

The similar relation of the hole photocurrent density Jph,p and 
the hole density increment ∆p for the photogeneration in Vn>p 
can also be obtained.  

Remind that the electron and hole densities at 
Sn p=∈n= pr  given by 2 T

n p i
qV kn n e= =  [Eq. (14)] are 

the minimum values of the majority-carrier density in both 
the regions Vp>n and Vn>p. The condition for keeping the 
majority-carrier distribution unaffected by the induced 
photocarriers ∆n is estimated by 

ph,  or  or
2

 ( ) ,n p n i
qV kT

n ppJ q n e Eµ ⊥
=

⊥ <n= pr  (34) 

where ph,  or ( )n pJ ⊥
n= pr  is the electron or hole photocurrent 

density normal to the surface Sn=p and n pE⊥
=  is the electric 

field normal to Sn=p. It can be interpreted from Eq. (34) that 
in materials where µn > µp, the theorem validity is more 
tolerant to photogeneration in Vp<n than photogeneration in 
Vn>p as electron photocurrent density ph,nJ ⊥  induces smaller 
steady-state charge density ∆n.  

For planar devices, the output photocurrent density Jph is 
given by ph ph, ph,( ) ( )n pJ J J⊥ ⊥+= n= p n= pr r  and the electric 
field En=p is normal to Sn=p. Then, 

2
ph min( , )qV

i n p p
kT

nJ nq E e µ µ=<  (35) 

 
FIG. 6.  (a) Failure of the carrier-transport reciprocity at high illumination 
intensity and high applied voltage for the photogeneration at zg = 500 nm. (b) 
Electron density n and hole density p at 0.5 V under different photogeneration 
rates. The distributions of n at the photogeneration rate of 1010 cm-2s-1, and p 
at 1010 and 1014 cm-2s-1 mostly overlap with the distributions under dark 
condition. The photogeneration rate as high as 1018 cm-2s-1, roughly 
equivalent to 5-sun intensity, affects n in the electron-rich region and p in the 
hole-rich region. (c) Electric field En=p at zn=p.   

 
is a sufficient condition to make Eq. (34) simultaneously 
holds for both the electron and hole photocurrents, ensuring 
the validity of the transport reciprocity. In the EQE 
measurement, this is equivalent to the condition for the 
illuminated photon flux 

( )
2

illu,EQE
i

.
EQE( )

m n( , )
,

qV k
n

T
i p n pn

V
E e µ µ

ε
ε

=Φ <  (36) 

For the p-i-n junction solar cell in Table I, Eq. (35) gives the 
photocurrent limit at V = 0 V [ 22 kV/cmn pE = =  as shown 
in Fig. 6(c)] to be 3.5 nA/cm2 and at V = 0.5 V 
( 12 kV/cmn pE = = ) to be 30 µA/cm2, which are equivalent 
to the carrier fluxes of 2×1010 cm-2s-1 and 2×1014 cm-2s-1, 
respectively. These values well agree with Fig. 6(a) showing 
that the photogeneration rate of 1×1014 cm-2s-1 is too high for 
the validity of the reciprocity relation at 0 V, and 1×1018 cm-

2s-1 is too high for both 0 V and 0.5 V. The carrier distribution 
under illumination at 0.5 V shown in Fig. 6(b) illustrates that 
this is due to the remarkable impact of high photogeneration 
rate on the majority-carrier distribution: the generation rate of 
1018 cm-2s-1, but not 1014 cm-2s-1, affects the distribution of the 



majority-carrier density at 0.5 V. See also the Supplemental  

 
FIG. 7.  (a) Position and width notations for the one-dimensional device 
discussed in Sec. V B. (b) Quasi-Fermi levels and (c) carrier distribution in 
the p-i-n device described by Table I at applied voltage of 0.9 V.   

 
Material [31] for the behavior of the carrier distributions as 
well as the quasi-Fermi levels under other device conditions. 

 

B. Requirement of electric field and mobility 

Another assumption for the validity of the reciprocity 
relations is that the quasi-Fermi level of the majority carriers 
should be flat under carrier injection [Eq. (12)]. Here, we 
investigate the spatial variation of the electron quasi-Fermi 
level εFn in the electron-rich region by including the 
recombination term in the upper line of Eq. (10). To 
investigate such impact in a quantitative manner, we simplify 
the discussion to a one-dimensional device with uniform 
material properties of µn, τn, τp , B, Cn, Cp, and ni, and no 
surface recombination. The 1D transport equation for 
electrons in the electron-rich region ( n n pz z z =≤ <  in Fig. 7, 
where zn is the position of the electron contact and zn=p is the 
position where n = p) gives 

2
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1 .   (37)
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As Eq. (37) cannot be easily solved analytically, we employ 
some approximations to estimate a rough tendency of εFn. For 
the first-order approximation, we first express n and p by n(0) 
and p(0) assuming the flat quasi-Fermi levels (0)

Fnε  , and then 
solve for the first-order solution (1)

Fnε  . Even though this 

approach cannot give the exact solution of εFn(z), it provides 
a rough estimation of how the device parameters, such as 
mobilities, lifetimes, and electric field, affect the uniformity 
of the majority-carrier quasi-Fermi levels. 

For non-degenerate carriers, the spatial distribution of n(0) 
follows (0) (0)l )(n C F Cnn kT E kTE ε∝ − − ∝ −   for the flat 
quasi-Fermi level. For the electric field n pE =   locally 
uniform near zn=p, it is a fair estimation to say 

( )(0) ( ) n p n p
n

z
p

qE z kTn z n e = =

=
− −≈  (38) 

in the vicinity of zn=p. By using Eq. (14) and 
2(0) ( 20) 2 ( 1)qV kT qV kT
i i in p n n e n e− = − ≈   for large V, we 

can integrate Eq. (37) from zn to z near zn=p and obtain 
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where Jn0 is the electron current density at the electron contact 
zn and Ln is the width of the quasi-neutral n-region [see Fig. 
7(a)]. The expression for n(0) is approximated by Eq. (38) for 
the first integral (SRH recombination) as the integrand is 
large only near zn=p, and approximated by the electron density 
ND at the undepleted n-region for the third integral (Auger 
recombination) due to the considerably large n in the quasi-
neutral region. In a device without surface recombination, the 
electron current must vanish at the hole contact zp and Jn0 is 
given by to the total recombination throughout the device: 
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where NA and Lp are the hole density and the width of the  

 
FIG. 8.  Electron quasi-Fermi level drop Fnδε   at zn=p under carrier 
injection mode estimated from Eq. (41) as compared to Fnδε  numerically 
calculated from the device simulation.    

 
quasi-neutral p-region, respectively, and L is the device total 
thickness. Note that Jn0 is not a function of position z. Then, 
integrating (1)

Fn dzdε   using Eqs. (39)-(40) gives the 
deviation of (1)

Fnε  
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(41) 

where   pL′ is width of the depletion region that has p > n. Due 
to the 1 n  term, the integrant is particularly large for z near 
zn=p and the expressions in Eqs. (38) and (39) are used. The 
deviation (1)

Fpδε  for the hole quasi-Fermi level in the hole-
rich region can be expressed in the same way by 
interchanging the subscripts n and p.  

Figure 8 demonstrates Fnδε   at zn=p for the device 
parameters in Table I under carrier injection mode, for that 
approximated from Eq. (41) and the exact solution solved by 
the device simulator employed so far. Even though Eq. (41) 
results in finite approximation error, which is due to the 
assumptions made during the derivation, the estimation of 

Fnδε  by Eq. (41) provided a good approximation within a 
factor of 2 and can be used as a convenient tool for further 
understanding of the behavior of Fnδε . 

Since the constant quasi-Fermi levels of the majority 
carriers [Eq. (12)] is the requisite condition for the carrier-
transport and the optoelectronic reciprocity relations, both 

δεFn and δεFp should be sufficiently small compared to kT to 
keep the relations valid, that is, 
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 (42) 

Particularly in a symmetric device (all parameters have the 
same values for the subscripts n and p), the estimated 
requirement for the electric field when the SRH process is 
dominant is 

3 2n pE kT qµτ= >  (43) 

and when the radiative or Auger process is dominant is 

( ) 21
2 .n p D i

qV kT
nE BL CN L n e µ= > +  (44) 

The device described by Table I is dominated by the SRH 
process and Eq. (43) gives the required electric field of 2 
kV/cm, which is consistent with the large deviation of the 
injection efficiency fi from the collection efficiency fc in Fig. 
6(a) when the electric field n pE =  [Fig. 6(c)] approaches 2 
kV/cm at 0.9 V. This is confirmed by a significant drop of the 
quasi-Fermi levels of majority carriers at zn=p for V = 0.9 V 
shown in Fig. 7(b) and Fig. 8. Equations (42)-(44) can also be 
interpreted as the lower limit of the carrier mobility µ in order 
to keep the reciprocity relations valid for given device 
structure and operating voltage. For instance, the same device 
requires a mobility at least 23 (2 )n pkT q Eτ ⊥

= = 160 cm2/Vs to 
validate the relations at 1 V, at which the electric field n pE⊥

=  
is as low as 51 V/cm. This finding is in a good agreement with 
the simulation results in Ref. [32] suggesting that the 
reciprocity relations become invalid at high applied voltage, 
where the electric field becomes weak, and become invalid in 
the entire voltage range in devices with extremely low carrier 
mobility. 

 

C. SRH via shallow defects 

The SRH recombination rate in Eq. (4) assumes the deep-
level defects. For shallow-level defects, for instance near the 
conduction band, nt becomes large and the recombination rate 
in Eq. (3) becomes 



( )2
SRH .i p tR np n nτ= −  (45) 

This has the same expression as the radiative recombination 
in Eq. (5) and can similarly be included in the above 
derivation, provided that the illumination is weak enough that 
shallow-level defects are not changed to the deep-level type 
upon illumination. 

 

D. Application to various types of solar cells 

Since the derivation above includes the field-dependent 
carrier transport in the depletion region, the proposed 
reciprocity relations are applicable to p-i-n junction solar 
cells with the i-region having field either uniform or non-
uniform, or having field-dependent material parameters such 
as mobility, lifetime, and density of states. They can also be 
used to describe the behavior of p-i-n quantum structure solar 
cells, provided that the carrier mobility in such structures can 
be defined [35]. Counting for the voltage dependency of EQE 
also extends the validity of the optoelectronic reciprocity to 
absorbers with voltage-dependent absorptance [36,37], which 
is not valid in the original theorem. Moreover in p-n junction 
solar cells, particularly in low-doped devices, it is well 
recognized that applying forward bias decreases the depletion 
width and thus widens the quasi-neutral region. The variation 
of the depletion width, which has not been taken into account 
so far, appears as the voltage dependence of carrier collection 
as well as EQE and can be treated by our modified formulae. 

 

E. Open-circuit voltage 

It is worth noting about the relation of the open-circuit 
voltage Voc with the external luminescence efficiency ηext, 
which has been discussed in p-n junction solar cells by 
assuming the superposition of the short-circuit current and the 
dark diode current and is expressed by [1,23,38] 

( ) (rad)
oc oc extln ,p n kTV V

q
η− = +  (46) 

where (rad)
ocV   is the ideal open-circuit voltage in the 

radiative limit. For devices with voltage-dependent carrier 
collection such as p-i-n junction solar cells, the non-constant 
photocurrent at forward bias results in the failure of the 
simple superposition between the short-circuit and dark 
currents. Instead, Voc of such devices should be expressed by 
[32] 

(rad) oc
oc oc ext

oc

( )
ln ln ,

( )
c

i

F VkT kTV V
q q F V

η= + +  (47) 

where ( )cF V   and ( )iF V   are the spatial averages of the 
local collection efficiency ( , )cf Vr  and injection efficiency 

( , )if Vr  , respectively. For the illumination intensity and 
device parameters that satisfy Eqs. (35) and (42), the carrier-
transport reciprocity, ( , ) ( , )c if V f V=r r   and thus 

( ) ( )c iF V F V= , holds. Then we obtain 

(rad)
oc oc extln ,kTV V

q
η= +  (48) 

which is the same expression for p-n junction solar cells [Eq. 
(46)]. The generalized carrier-transport reciprocity results in 
the open-circuit voltage Voc unaffected by the characteristics 
of voltage-dependent carrier collection, which is in a good 
agreement with the simulation result in Ref. [32] reporting the 
validity of Eq. (48) in depleted organic solar cells having 
voltage-dependent photocurrent, and with the experimental 
result in Ref. [39] showing the satisfactorily high Voc in p-i-n 
quantum well solar cells in spite of their poor photocarrier 
collection under forward bias. 
 

VI. CONCLUSION 

In this study, we have investigated the validity of the 
reciprocity relations in solar cells with thick depletion regions. 
The voltage dependence of the photocarrier collection 
efficiency and the EQE in such devices results in the failure 
of the two reciprocity theorems, the carrier-transport 
reciprocity relating the dark-carrier injection and short-circuit 
photocarrier collection, and the optoelectronic reciprocity, 
which is the consequence of the previous relation, relating the 
EL with the short-circuit EQE. The analysis of carrier 
dynamics in the depletion region suggests that the original 
transport reciprocity theorem should be modified: the 
photocarrier collection efficiency should be defined at the 
operating voltage, not at short circuit. As a consequence, we 
obtain the general form of the optoelectronic reciprocity 
which connects the EL with the EQE at the operating voltage, 
extending its application, e.g. the EL diagnosis in solar cells, 
to solar cells with voltage-dependent EQE. This finding 
extends the validity of another well-known relation between 
the open-circuit voltage and the external luminescence 
efficiency to devices with voltage-dependent photocurrent. 
The acceptable ranges of the illumination intensity, the 
depletion-region field, and the carrier mobility to assure the 
validity of the theorems have been discussed and are 
analytically expressed in terms of the material parameters. 
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