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Visualizing the 'Content of Differential Equations (CDT-16)

Many scientific models, from Newton's second law to Hodgkin and Huxley's axon model, involve differential equations. This type of model focuses on the tendency of the involved variables to change, expressed as derivatives, therefore representing an infinitesimal formulation around an operation point. Yet, despite their seeming simplicity, differential equations can hold a universe of potentially complex dynamical behaviors. It would be a major scientific advancement to be able to see what is inside differential equations. In case we restrict our attention to low orders and/or consider few equations, direction fields provide a valuable resource for visualizing all possible dynamic properties of a given ordinary differential equation or system of ordinary differential equations. This didactic text provides an introduction to this interesting approach. We start by presenting some basic principles of differential equations and then illustrate the application of direction fields to study several interesting models, including population dynamics as well as systems of ordinary differential equations corresponding to the simple and dissipative pendulum, and Lotka-Volterra's population model.

'The next great era of awakening of human intellect may well produce a method of understanding the qualitative content of equations.'

Introduction

Differential equations underlie many mathematical models in science (e.g. [START_REF] Heinz | Mathematical Modeling[END_REF][START_REF] Da | Modeling: The human approach to science[END_REF][START_REF] Kreyszig | Advanced Engineering Mathematics[END_REF][START_REF] Saff | Fundamentals of Differential Equations[END_REF]), from Newton's second law to Hodgkin and Huxley's neuronal model, not forgetting Schrdinger's equation. This type of approach, as compared to -for instance -integral ore delay equations, has been frequently adopted because it represents a local formulation, in the sense of describing the instant tendency of certain variables to change. This tends to simplify both experiments and analytic modeling. The development of a differential model typically requires only an infinitesimal (in practice a small) neighborhood around an operation point to be taken into account.

Despite the seeming simplicity of many differential equations, they often imply surprisingly complex dynamical behaviour, such as Hodgkin and Huxley's neuronal model and Schrdinger's equation. This often happens with non-linear and/or coupled differential equations, which can even lead to chaos and fractal attractors. Thus, a good deal of the importance and effectiveness of developing scientific models based on differential equations stems from these two interesting properties: compactness of representation and ability to describe substantially complex dynamics.

Figure 1: The direction field of the system of differential equations ẋ = -x and ẏ = -y (blue arrows) and some possible solutions or trajectories (orange) starting from the respective points marked by asterisks.

However, it is very difficult to infer all the dynamic, qualitative properties of a differential equation just by looking at them. Often, one has to resource to intricate mathematical methods in order to better understand the potentially implied dynamics. Even so, complete understanding can present a real challenge in some cases such as in the Hodgkin-Huxley coupled equations. This fact is probably the main motivation for Feynman's observation quoted at the beginning of this text.

Fortunately, there is a direct, simple and graphically pleasing approach that can be employed in order to visualize all the possible dynamical properties of some differential equations or systems of differential equations. This method, which is often called direction filed (or slope field ), involves obtaining graphical representations of the derivative slopes in the domain of the considered differential equation (e.g. [START_REF] Devaney | Differential Equations[END_REF][START_REF] Dobrushkin | Applied Differential Equations: The Primary Course[END_REF][START_REF] Saff | Fundamentals of Differential Equations[END_REF]).

What is particularly nice about this approach is that it can contemplate most (those comprised in the visualized domain) possible solutions, as determined by respective initial conditions. Then, just by looking at these diagrams, it is possible to infer the possible dynamical behavior of the equations with respect to diverse starting points, allowing the identification of equilibrium points (and their type), as well as increases, decays, and oscillations. Figure 1 illustrates a simple directional field corresponding to the ordinary differential equation Unfortunately, since it relies on human visualizations (which is limited to few dimensions) the direction field approach applicability is limited to ordinary differential equations of low order, typically 1 or 2. Even so, this methodology can greatly help us to understand specific differential equations, constituting and interesting additional tool to researchers.

This work initiates by presenting some basic concepts in ordinary differential equations and follows by describing the direction field approach in terms of several examples derived from population dynamics and physics. Observe that we henceforth assume ordinary differential equations of low order.

Basic Concepts of Differential Equations and Differential Modelling

Differential equations are often related to functions of time, space, as well as other variables that, frequently, corresponds to some real-world quantity. For instance, in case of the population of a given place, we could be interested in considering its values along time, giving rise to the function x(t). Now, the tendency (or speed ) of this variable to change can be conveniently expressed as

dx dt = ẋ = x = g(x, t) (1) 
where g(x, t) is a function of x and/or the time t. In the particular case g(x, t) = g(x) (i.e. independent of the time t), the differential equation is said to be autonomous. The time t is said to be a free or independent variable, and x can be said to be a dependent variable. In case the differential equation involves only one free variable, it is said to be an ordinary differential equation, or ODE for short. The order of an ODE is defined by the highest involved derivative.

In differential modeling, focus is placed on deriving a possible candidate for g(x, t), e.g. by performing experiments and/or applying other known concepts and equations. For instance, in case of the above mentioned population model, one can postulate that the tendency of x(t) to grow is proportional to its current value x, which immediately leads to

dx dt = ax (2) 
for some a ∈ , a > 0. Observe that this is an example of autonomous ODE.

In some cases, such as in the above example, it is possible to solve analytically the differential equation. In this case, we have:

dx dt = ax =⇒ dx = axdt =⇒ 1 x dx = adt =⇒ =⇒ ln(x) = at + b =⇒ x = e at+b =⇒ x = ce at (3)
with b being a real constant, and c = e b . Observe that, since no specific initial conditions (e.g. the value of x at some specific time t 0 ), we cannot determine the constant c.

Once the solution is obtained, it is interesting to interprete its implications. In this case, we have that the population would grow in an exceedingly fast and unbounded way, i.e. exponentially. It is interesting to observe that the hypothesis summarized in Equation 2 was indeed considered at a time, being related to the Malthusian theory of population growth. According to this theory, people would grow much faster than food, implying in big trouble for humanity.

It is often interesting to consider special cases in which the involved variable will remain constant, implying ẋ = 0. If we plug this into Equation 2, we immediately obtain x = 0. This value is said to be an equilibrium point of the differential equation.

An improved, bounded model, was developed subsequently, namely the logistic population model, developed by P. Verhulst.

dx dt = ax 1 - x N (4) 
Interestingly, this equation has two equilibrium points corresponding to x = 0 and x = N . As we will discuss further in this text, this model provides better adherence to city population growth than the Malthus's approach.

Population problems involving two distinct, interacting populations or species have also been studied in the literature, including the interesting Lotka-Volterra system of ODEs:

ẋ = αx -βxy ẏ = -γy + δxy (5)
Here, x(t) and y(t) express the two considered populations along time ('prey' and 'predator', respectively), and α, β, δ, and γ are real constants. Observe that the variable y influences x negatively, while an increase of x tends have a positive effect on y. Such interrelationships appear as couplings in the system equations, hence we say that the system is coupled in that case. Because of the products xy, this system of ODE is non-linear.

This system will have its equilibrium at the point x = γ/δ and y = α/β.

Interestingly, higher order ODEs can be rewritten as systems of ODEs of order 1. In particular, if the original ODE has order P , we will need a system with P ordinary differential equations of order 1. For instance, consider the following second order differential equation, related to the simple, harmonic pendulum (e.g. [START_REF] Da | Circuits, oscillations, and the kuramoto model as visualized by phasors. Researchgate[END_REF][START_REF] Da | The Laplace transform in a nutshell[END_REF]):

ẍ = -ax (6) 
we make u1 = ẋ, and u2 = ẍ, from which follows that ẋ = u 2 which, combined with the original Equation 6 yields u1 = u 2 u2 = -au 1 [START_REF] Da | Circuits, oscillations, and the kuramoto model as visualized by phasors. Researchgate[END_REF] Observe that, in principle, an ODE of order M leads to a system of M first order ODEs.

Direction Fields of ODEs

An important property of an ODE such as that in Equation 1 is that ẋ = g(x, t) can be immediately understood as providing the derivative of the solution x(t) at time t. More specifically, the value g(x, t) gives the slope of the derivative at each point (t, x), as illustrated in Figure 2. Therefore, g(x, t) allows us to associate a vector field ψ(x, t) = (g(x, t)∆t, ∆t) to each point (x, t), for some ∆t ∈ . Observe that direction fields can be obtained for specific, spatially delimited regions of the respective domain of interest. Also, for simplicity's sake, we will normalize all direction fields in this work so that the slopes are represented by vectors of unit magnitude (normalized).

Let's start by obtaining the direction field for the differential equation in Equation 2 for a = 1, which is shown in Figure 3. Since this ODE is autonomous, the orientations along each of the columns respective to t values will be identical one another. Observe also that we will not incorporate arrow heads in the slopes of direction fields representing sin-gle ODEs, as the direction of progression of the solutions (trajectories) are explicitly defined by the axis associated to the free variable t.

The ability to represent the possible qualitative dynamical behavior of this equation is evident from Figure 3. Here, we have that trajectories starting at x > 0 will grow intensely (expoenentially) in an unbound way. Trajectories starting at x < 0 will decrease steadily. Trajectories starting at x = 0 will remain null, as this corresponds to an equilibrium point. Because any small deviation from x = 0 will imply in steady increase or decrease, this equilibrium point is unstable. So, we have that the direction field provides an immediate, complete description of the dynamics of this equation within the considered domain of interest.

Figure 4 illustrates the direction field obtained from Equation 4 considering a = N = 1. A substantially more intricate organization of slopes is observed, as compared to that obtained in Figure 3. The two equilibrium points can be easily identified, corresponding to the null-slope lines obtained for x = 0 and x = 1. Because trajectories along the equilibrium x = 1 will tend to return to this value after small perturbations, we can say this equilibrium point is stable. The equilibrium point for x = 0 can immediately be verified to be unstable.

The stable equilibrium for x = 1 corresponds to the (normalized) population the modeled city will achieve after a substantial period of time, with perturbations oscillations such as those caused by diseases or emigration/immigration tending to be leveled along time. Interestingly, an impressive adherence with real-world cities have been observed in several cases.

Direction Field of ODE Systems

The direction field approach can be immediately adapted to visualize the dynamics implied by autonomous systems of two first-order ODEs. The basic idea is not to include the free variable t in the representation (or, one can imagine the t axis projecting from the plan of this text). In this way, it is possible to assign the two axes typically involved in the direction field methodology to each of the variables corresponding to the two ODE equations, respectively. One shortcoming of this approach is that it is not possible to deal with non-autonomous equations.

Observe that now we resource to arrow heads in order to indicate the direction of the derivatives, as the line segments no longer correspond to the slope of the solution, but to the tendency of variation or speed (a vector) of solutions at each point of the considered domain.

Figure 5 depicts the direction field obtained for Lotka-Volterra Equation 5, assuming α = β = δ = γ = 1. The relatively simple possible dynamics implied by this ODE system is evident from this figure: periodical trajectories are defined around the equilibrium point. Notice that it would probably be less immediate to conclude this behaviour by analysing the original ODE system. Regarding the interpretation of this result from the population point of view, we have that the two species, x and y will oscillate in such a way that when one of them is large, the other tends to be small, and so on. This would mean that an increase of predators tend to reduce the prey population, subsequently implying in a reduction of predators and increase of preys, and so on. The populations will remain constant when starting at the equilibrium point (x = 1, y = 1). It should be observe that the classification of equilibrium points in differential equations involving several dependent variables is more elaborated than that for single dependent variable, not being covered in the present text.

Let's now proceed to the ODE system in Equation 7, which is related to the motion of a simple pendulum without dissipation. The respective direction field is depicted in Figure 6. We assumed a = 1, -1 ≤ x ≤ 1 and -1 ≤ y ≤ 1. As we can immediately infer from the obtained direction field, an even simpler dynamical behavior is obtained in this case, as compared to the previous Lotka-Volterra results. We again identify periodical solutions, which are now perfectly circular, implying in sine and cosine solutions for x(t) and y(t). A single equilibrium point is obtained at (0, 0).

As an additional example of direction field of ODE systems, let's consider the case, which is related to a simple damped pendulum (the damping being proportional, and inverse, to the angular speed):

u1 = u 2 u2 = -au 1 -bu 2 (8) 
The respective direction field is shown in Figure 7, for a = 1 and b = 0.4. As a consequence of dissipation, the solutions undergo a reduction in their magnitude, defining spiraling trajectories in the direction field. Interest-ingly, perfect equilibrium is only achieved after an infinite period of time, as a consequence of the asymptotical behaviour of the trajectories toward the equilibrium point (0, 0). 

Concluding Remarks

Differential equations are of paramount importance in scientific modeling, allowing an infinitesimal approach that tends to simplify both experiments and model development. Yet, despite their seeming simplicity, differential equations can give rise to surprisingly complex dynamical behaviors that are difficult to infer from the observation of the respective equation, or even by applying more systematic analytical methods.

In this text, we discussed how the direction (or slope) field method can be applied to visualize the 'content' of several ordinary differential equations, especially those with order smaller or equal to 2, being autonomous when of second order. Though restricted to some types of equations, this methodology can provide a convenient and direct way to identifying the implied dynamical behaviors. We have provided some examples of the direction field approach regarding some interesting differential models related to population dynamics and mechanics (simple pendulum with and without damping).

Costa's Didactic Texts -CDTs CDTs intend to be a halfway point between a formal scientific article and a dissemination text in the sense that they: (i) explain and illustrate concepts in a more informal, graphical and accessible way than the typical scientific article; and (ii) provide more in-depth mathematical developments than a more traditional dissemination work.

It is hoped that CDTs can also integrate new insights and analogies concerning the reported concepts and methods. We hope these characteristics will contribute to making CDTs interesting both to beginners as well as to more senior researchers.

Though CDTs are intended primarily for those who have some experience in the covered concepts, they can also be useful as summary of main topics and concepts to be learnt by other readers interested in the respective CDT theme. Observe that CDTs come with absolutely no warranty.

Each CDT focuses on a few interrelated concepts. Though attempting to be relatively self-contained, CDTs also aim at being relatively short. Links to related material are provided in order to complement the covered subjects.

The complete set of CDTs can be found at: https://www.researchgate.net/project/ Costas-Didactic-Texts-CDTs.
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 2 Figure 2: The function g(x, t) provides the slope at (t, x) of any possible solution implied by the ordinary differential equation ẋ = g(x, t).
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 3 Figure 3: Direction field obtained for the differential equation ẋ = x (Eq. 2, with a = 1), considering the domain -1 ≤ t ≤ 1 and -1 ≤ x ≤ 1. The slopes of possible solutions are represented by blue line segments, while some possible solutions (trajectories), starting at specific points (t = -1, x(-1)) are represented in orange. The negative portion of x has been included for generality. Observe that the trajectories never go across any arrow, as the latter are tangent to the former.

Figure 4 :

 4 Figure 4: Direction field obtained for the differential equation ẋ = x -x 2 (Eq. 2, with a = N = 1), considering the domain -1 ≤ t ≤ 1 and -1 ≤ x ≤ 2. Some possible solutions, starting at points (t = -1, x(-1)), are represented by respective trajectories in orange. The negative portion of x has been included for generality.
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 5 Figure 5: The direction field obtained for the Lotka-Volterra equation assuming α = β = δ = γ = 1. Some possible solutions, starting at respective green asterisks, are represented in orange.

Figure 6 :

 6 Figure 6: Direction field obtained for Equation 7 assuming a = 1, -1 ≤ x ≤ 1 and -1 ≤ y ≤ 1. Some possible solutions (trajectories), starting from respective initial conditions indicated by green asterisks, are shown in orange.

Figure 7 :

 7 Figure 7: Direction field obtained for Equation 8 assuming a = 1, b = 0.4, -1 ≤ x ≤ 1 and -1 ≤ y ≤ 1. The initial portions of some possible solutions (spiraling trajectories), starting from respective initial conditions indicated by green asterisks, are shown in orange.
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