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CAMBRIAN TRIANGULATIONS AND THEIR TROPICAL REALIZATIONS

VINCENT PILAUD

Abstract. This paper develops a Cambrian extension of the work of C. Ceballos, A. Padrol and
C. Sarmiento on ν-Tamari lattices and their tropical realizations. For any signature ε ∈ {±}n,
we consider a family of ε-trees in bijection with the triangulations of the ε-polygon. These ε-trees
define a flag regular triangulation T ε of the subpolytope conv {(ei• , ej◦ ) | 0 ≤ i• < j◦ ≤ n+ 1}
of the product of simplices 4{0•,...,n•} × 4{1◦,...,(n+1)◦}. The oriented dual graph of the
triangulation T ε is the Hasse diagram of the (type A) ε-Cambrian lattice of N. Reading. For
any I• ⊆ {0•, . . . , n•} and J◦ ⊆ {1◦, . . . , (n + 1)◦}, we consider the restriction T ε

I•,J◦
of the

triangulation T ε to the face 4I•×4J◦ . Its dual graph is naturally interpreted as the increasing
flip graph on certain (ε, I•, J◦)-trees, which is shown to be a lattice generalizing in particular
the ν-Tamari lattices in the Cambrian setting. Finally, we present an alternative geometric
realization of T ε

I•,J◦
as a polyhedral complex induced by a tropical hyperplane arrangement.

1. Introduction

The Tamari lattice is a fundamental structure on Catalan objects such as triangulations of a
convex polygon, binary trees, or Dyck paths. It is defined as the reflexive and transitive closure
of the graph of slope increasing flips on triangulations, of right rotations on binary trees, or of
subpath translations on Dyck paths. Introduced by D. Tamari in [Tam51], it has been largely
studied and extended in several directions, see [MHPS12] and the references therein for surveys on
its various connections. Two particularly relevant generalizations of the Tamari lattice are needed
for the purposes of this paper.

On the one hand, N. Reading [Rea06] observed that, although the graph of flips between trian-
gulations does not depend on the positions of the vertices of the convex polygon, the orientation
of the flip graph does. The different orientations can be encoded combinatorially by a signa-
ture ε ∈ {±}n. This signature defines a ε-polygon, and the graph of slope increasing flips between
triangulations of this ε-polygon gives the ε-Cambrian lattice. This generalization has been essential
in further combinatorial, geometric and algebraic developments of Coxeter Catalan combinatorics,
in particular:
(i) it underlined the importance of lattice congruences of the weak order and brought lattice

theoretic tools to the development of Catalan combinatorics [Rea04, Rea16b, Rea16a],
(ii) it opened the door to the study of Cambrian lattices [Rea06] for arbitrary finite Coxeter

groups, in connection to the theory of finite type cluster algebras of S. Fomin and A. Zelevin-
sky [FZ02, FZ03],

(iii) it was essential for the construction of associahedra, cyclohedra and generalized associahedra
by C. Hohlweg, C. Lange and H. Thomas [HL07, HLT11],

(iv) it paved the ground to the construction of Cambrian and permutree Hopf algebras [CP17,
PP18], providing unified descriptions of the classical Hopf algebras of C. Malvenuto and
C. Reutenauer on permutations [MR95] and J.-L. Loday and M. Ronco on binary trees [LR98].

On the other hand, L.-F. Préville-Ratelle and X. Viennot introduced ν-Tamari lattices in [PRV17].
The ν-Tamari lattice is a lattice structure on all Dyck paths that are located above a given Dyck
path ν. As it turns out, the classical Tamari lattice is partitioned by smaller ν-Tamari lattices
corresponding to the different possible canopies of the binary trees [PRV17]. The ν-Tamari lattices
also exhibit various combinatorial, geometric and algebraic connections:
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the project “Austria/France Scientific & Technological Cooperation” (BMWFW Project No. FR 10/2018 and PHC
Amadeus 2018 Project No. 39444WJ).
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(i) they were introduced with motivations coming from rational Catalan combinatorics in con-
nection to combinatorial interpretations of dimension formulas in trivariate and higher mul-
tivariate diagonal harmonics [Ber13, BPR12],

(ii) their intervals are enumerated by simple formulas also counting non-separable planar maps
[Cha07, BB09, BMFPR11, FPR17],

(iii) they correspond to certain face restrictions of a classical triangulation of a product of two sim-
plices [CPS18], and therefore admit realizations as polyhedral complexes defined by tropical
hyperplane arrangements, as will be described in details below,

(iv) they play an essential role in the Hopf algebra on pipe dreams recently developed in [BCP18].

The objectives of this paper are to explore connections between (type A) Cambrian lattices and
ν-Tamari lattices, and to define a relevant notion of ν-Cambrian lattices with potential geometric
and algebraic connections. One possible approach would be to define ν-Cambrian lattices as the
intervals of the Cambrian lattices corresponding to the Cambrian trees with canopy encoded by
the path ν. This perspective defines interesting lattices and even extends to arbitrary finite Cox-
eter groups, but it completely overpasses the geometric interpretation of C. Ceballos, A. Padrol
and C. Sarmiento [CPS18] in terms of triangulations of products of simplices and tropical hy-
perplane arrangements. Instead, we extend the work of [CPS18] to define ν-Cambrian lattices
as increasing flip graphs of certain bipartite trees corresponding to certain face restrictions of a
certain triangulation of a product of simplices.

To be more precise, let us briefly review the construction of [CPS18] which provides the
prototype of our construction. It starts from a family of non-crossing alternating trees in bi-
jection with the triangulations of the (n + 2)-gon. These trees define a flag regular triangu-
lation T of the subpolytope U := conv {(ei• , ej◦) | 0 ≤ i• < j◦ ≤ n+ 1} of the product of sim-
plices 4{0•,...,n•} ×4{1◦,...,(n+1)◦}. The dual graph of this triangulation T is the Hasse diagram
of the Tamari lattice. Note that this interpretation of the Tamari lattice as the dual graph of the
non-crossing triangulation is ubiquitous in the literature as discussed in [CPS18, Sect. 1.4]. For any
subsets I• ⊆ {0•, . . . , n•} and J◦ ⊆ {1◦, . . . , (n + 1)◦}, they consider the restriction TI•,J◦ of the
triangulation T to the face 4I• ×4J◦ . The simplices of TI•,J◦ correspond to certain non-crossing
alternating (I•, J◦)-trees which are in bijection with Dyck paths above a fixed path ν(I•, J◦).
Moreover, the dual graph of TI•,J◦ is the flip graph on (I•, J◦)-trees, isomorphic to the Hasse
diagram of the ν(I•, J◦)-Tamari poset of [PRV17]. This poset actually embeds as an interval of
the classical Tamari lattice and is therefore itself a lattice. This interpretation provides three
geometric realizations of the ν(I•, J◦)-Tamari lattice [CPS18, Thm. 1.1]: as the dual of the regular
triangulation TI•,J◦ , as the dual of a coherent mixed subdivision of a generalized permutahedron,
and as the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.

In this paper, we extend this approach in the (type A) Cambrian setting. For any signa-
ture ε ∈ {±}n, we consider a family of ε-trees in bijection with the triangulations of the ε-polygon.
These ε-trees define a flag regular triangulation T ε of U whose dual graph is the Hasse diagram
of the (type A) ε-Cambrian lattice of N. Reading [Rea06]. We thus call this triangulation T ε the
ε-Cambrian triangulation of U . In contrast to the classical Tamari case (obtained when ε = −n),
we are not aware that this triangulation of U was considered earlier in the literature and the
proof of its regularity is a little more subtle in the Cambrian case. For any I• ⊆ {0•, . . . , n•}
and J◦ ⊆ {1◦, . . . , (n + 1)◦}, we then consider the restriction T ε

I•,J◦
of the triangulation T ε to

the face 4I• ×4J◦ . Its simplices correspond to certain (ε, I•, J◦)-trees and its dual graph is the
increasing flip graph on these (ε, I•, J◦)-trees. Our main combinatorial result is that this increas-
ing flip graph is still an interval of the ε-Cambrian lattice in general. The proof is however more
involved than in the classical case (ε = −n) since this interval does not anymore correspond to a
canopy class in general. Finally, we mimic the method of [CPS18, Sect. 5] to obtain an alternative
geometric realization of T ε

I•,J◦
as a polyhedral complex induced by a tropical hyperplane arrange-

ment. We finally note that we only consider here the type A Cambrian lattices, and we leave open
the problem to extend our approach to the type B Cambrian lattices. This could probably be
treated similarly as was already observed for the classical type B Tamari lattice in [CPS18].



CAMBRIAN TRIANGULATIONS AND THEIR TROPICAL REALIZATIONS 3

2. (ε, I•, J◦)-trees and the (ε, I•, J◦)-complex

This section defines two polygons and certain families of trees associated to a signature ε ∈ {±}n.

2.1. Two ε-polygons. We consider three decorated copies of the natural numbers: the squares N�,
the blacks N• and the whites N◦. For n ∈ N, we use the standard notation [n] := {1, . . . , n} and
define [[n] := {0, . . . , n}, [n]] := {1, . . . , n+ 1} and [[n]] := {0, . . . , n+1}. We write [n�], [n•], [n◦] and
so on for the decorated versions of these intervals. Fix a signature ε ∈ {±}n. We consider two
convex polygons associated to the signature ε as follows:

• a (n+2)-gon Pε
� with square vertices labeled by [[n�]] from left to right and where vertex i�

is above the segment (0�, (n+ 1)�) if εi = + and below it if εi = −.
• a (2n+ 2)-gon Pε

•−◦ with black or white vertices, obtained from Pε
� by replacing the square

vertex 0� (resp. (n+1)�) by the black vertex 0• (resp. white vertex (n+1)◦), and splitting
each other square vertex i� into a pair of white and black vertices i◦ and i• (such that the
vertices of Pε

•−◦ are alternatively colored black and white). The black (resp. white) vertices
of Pε

•−◦ are labeled by [[n•] (resp. [n◦]]) from left to right. We will only consider diagonals of
the form (i•, j◦) with i• < j◦, so that we do not draw the edges (i◦, i•) of this ε-polygon.

Examples of these polygons are represented in Figure 1 for the signature ε = −++−+−−+.

1◦1•

2◦2• 3◦
3• 5◦5•

8◦8•

4◦4• 6◦6• 7◦
7•

9◦0•0 9

1

2 3 5

4 6 7

8

Figure 1. The polygons Pε
� (left) and Pε

•−◦ (right) for the signature ε = −++−+−−+.

2.2. (ε, I•, J◦)-trees. All throughout the paper, we consider I• ⊆ [[n•] and J◦ ⊆ [n◦]] and we
always assume that min(I•) < min(J◦) and max(I•) < max(J◦). Consider the graph Gε

I•,J◦
with

vertices I• ∪ J◦ and edges {(i•, j◦) | i• ∈ I•, j◦ ∈ J◦, i• < j◦}. Note that this graph is geometric:
its vertices are considered as vertices of Pε

•−◦ and its edges are considered as straight edges in Pε
•−◦.

A subgraph of Gε
I•,J◦

is non-crossing if no two of its edges cross in their interior.

Proposition 1. Any maximal non-crossing subgraph of Gε
I•,J◦

is a spanning tree of Gε
I•,J◦

.

Proof. The proof works by induction on |I•|+ |J◦|. The result is immediate when |I•| = |J◦| = 1.
Assume now for instance that |I•| > 1 (the case |I•| = 1 and |J◦| > 1 is similar). Let i• := max(I•)
and j◦ := min

(
{j◦ ∈ J◦ | i• < j◦ and εi = εj} ∪ {max(J◦)}

)
. Note that our choice of j◦ ensures

that (i•, j◦) is a boundary edge of conv(I• ∪ J◦). Moreover, any edge of Gε
I•,J◦

incident to i• is of
the form (i•, j

′
◦) for i• < j′◦ while any edge of Gε

I•,J◦
incident to j◦ is of the form (i′•, j◦) for i′• ≤ i•

(by maximality of i•). Therefore, all edges of Gε
I•,J◦

r {(i•, j◦)} incident to i• cross all edges
of Gε

I•,J◦
r {(i•, j◦)} incident to j◦. Consider now a maximal non-crossing subgraph t of Gε

I•,J◦
.

Then t contains the edge (i•, j◦) (since t is maximal) and either i• or j◦ is a leaf in t (since t is
non-crossing). Assume for example that i• is a leaf and let I ′• := I• r {i•}. Then tr {(i•, j◦)} is a
maximal non-crossing subgraph of Gε

I′•,J◦
(the maximality is ensured from the fact that (i•, j◦) is

a boundary edge of conv(I• ∪ J◦)). By induction, tr {(i•, j◦)} is thus a spanning tree of Gε
I′•,J◦

,
so that t is a spanning tree of Gε

I•,J◦
. �

In accordance to Proposition 1, we define a (ε, I•, J◦)-forest to be a non-crossing subgraph
of Gε

I•,J◦
, and a (ε, I•, J◦)-tree to be a maximal (ε, I•, J◦)-forest. Note that a (ε, I•, J◦)-tree

has |I•|+ |J◦| − 1 edges. Examples can be found in Figure 2.
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1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

6◦ 6◦

Figure 2. A (ε, I•, J◦)-forest (left) and a (ε, I•, J◦)-tree (right) for ε = −++−+−−+,
I• = [[8•] r {2•, 7•} and J◦ = [8◦]] r {4◦, 7◦, 8◦}.

2.3. The (ε, I•, J◦)-complex. We call (ε, I•, J◦)-complex Cε
I•,J◦

the clique complex of the graph
of non-crossing edges of Gε

I•,J◦
. In other words, its ground set is the edge set of Gε

I•,J◦
, its faces

are the (ε, I•, J◦)-forests, and its facets are the (ε, I•, J◦)-trees.
We say that an edge (i•, j◦) of Gε

I•,J◦
is irrelevant if it is not crossed by any other edge of Gε

I•,J◦

(i.e. , there is no i′• ∈ I• and j′◦ ∈ J◦ separated by (i•, j◦) and such that i′• < j′◦). In particular,
all edges of Gε

I•,J◦
on the boundary of conv(I• ∪ J◦) are irrelevant. Note that all (ε, I•, J◦)-trees

contain all irrelevant edges of Gε
I•,J◦

, so that the (ε, I•, J◦)-complex Cε
I•,J◦

is a pyramid over the
irrelevant edges of Gε

I•,J◦
.

Although the next statement will directly follow from Proposition 26, we state and prove it
here to develop our understanding on the (ε, I•, J◦)-complex. Recall that a simplicial complex is
a pseudomanifold when it is pure (all its maximal faces have the same dimension) and thin (any
codimension 1 face is contained in at most two facets).

Proposition 2. The (ε, I•, J◦)-complex Cε
I•,J◦

is a pseudomanifold.

Proof. The (ε, I•, J◦)-complex Cε
I•,J◦

is pure of dimension |I•|+ |J◦|−1 since all its maximal faces
are spanning trees of Gε

I•,J◦
. To show that it is thin, assume by contradiction that a codimension 1

face f is contained in at least three facets t := f∪{(i•, j◦)}, t′ := f∪{(i′•, j′◦)}, and t′′ := f∪{(i′′• , j′′◦ )}.
By maximality of t, t′, t′′, the edges (i•, j◦), (i′•, j

′
◦) and (i′′• , j

′′
◦ ) are pairwise crossing and all in

the same cell of conv(I• ∪ J◦) r f (i.e. the same connected component of the complement of the
edges of f in conv(I• ∪ J◦)). Therefore, i•, i′•, i′′• are all smaller than j◦, j

′
◦, j
′′
◦ and we obtain

that either (i•, j
′
◦) or (i•, j

′′
◦ ) (or both) does not belong to t and does not cross any edge of t,

contradicting the maximality of t. �

We say that two (ε, I•, J◦)-trees t and t′ are adjacent, or related by a flip, if they share all
but one edge, i.e. if there is (i•, j◦) ∈ t and (i′•, j

′
◦) ∈ t′ such that t r {(i•, j◦)} = t′ r {(i′•, j′◦)}.

See Figure 3. Note that not all edges of a (ε, I•, J◦)-tree t are flippable: for instance, irrelevant
edges of Gε

I•,J◦
(not crossed by other edges of Gε

I•,J◦
) or edges incident to leaves of t are never

flippable. The following statement characterizes the flippable edges.

Proposition 3. (1) Consider two (ε, I•, J◦)-trees t and t′ with tr {(i•, j◦)} = t′ r {(i′•, j′◦)}.
Then the edges (i•, j

′
◦) and (i′•, j◦) are contained in t and t′.

(2) An edge (i•, j◦) of a (ε, I•, J◦)-tree t is flippable if and only if there exists i′• ∈ I• and j′◦ ∈ J◦
such that i′• < j′◦ and both (i•, j

′
◦) and (i′•, j◦) belong to t.

Proof. Point (1) follows by maximality of t since any edge of Gε
I•,J◦

that crosses (i•, j
′
◦) or (i′•, j◦)

also crosses (i•, j◦) or (i′•, j
′
◦) (or both). This also shows one direction of Point (2). For the other

direction, we can observe that i′• and j′◦ are separated by (i•, j◦) (since the edges (i•, j
′
◦) and (i′•, j◦)

are non-crossing) and we assume that j◦ and j′◦ (resp. i• and i′•) are two consecutive neighbors
of i• (resp. of j◦) in t. The edge (i•, j◦) can then be flipped to the edge (i′•, j

′
◦). �
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1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

6◦

1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

6◦

Figure 3. Two (ε, I•, J◦)-trees related by a flip. Here, ε = −++−+−−+, I• = [[8•] r {2•, 7•}
and J◦ = [8◦]] r {4◦, 7◦, 8◦}.

For instance, the edge (4•, 5◦) of the (ε, I•, J◦)-tree t of Figure 2 (right) can be flipped to (1•, 9◦)
since (1•, 5◦) and (4•, 9◦) belong to t, see Figure 3. In contrast, the edges (5•, 9◦), (1•, 3◦)
and (1•, 5◦) of t are not flippable: the first is irrelevant, the second is incident to a leaf, the last is
neither irrelevant nor incident to a leaf but still does not satisfy the condition of Proposition 3 (2).

To conclude, we discuss the boundary of the (ε, I•, J◦)-complex Cε
I•,J◦

. The following lemma
characterizes the boundary faces of the (ε, I•, J◦)-complex.

Lemma 4. A (ε, I•, J◦)-forest f lies on the boundary of the (ε, I•, J◦)-complex Cε
I•,J◦

if and only
if there exists a (ε, I•, J◦)-tree t with an unflippable edge δ such that f ⊆ tr {δ}. In particular, all
(ε, I•, J◦)-forests with a missing irrelevant edge or an isolated node lie on the boundary of Cε

I•,J◦
.

Proof. By definition, the codimension 1 faces on the boundary of Cε
I•,J◦

are precisely the faces of
the form tr {δ)} where t is a (ε, I•, J◦)-tree and δ is an unflippable edge of t. The first statement
thus immediately follows. Finally, any (ε, I•, J◦)-forest f with a missing relevant edge δ (resp. an
isolated node v) can be completed into a tree t where δ is unflippable (resp. where v is a leaf)
and f ⊆ tr {δ} (resp. f ⊆ tr {v}). �

For instance, consider the (ε, I•, J•)-forest f and the (ε, I•, J•)-tree t of Figure 2. The forest f
lies on the boundary of Cε

I•,J◦
as it can be completed into tr{(6•, 9◦)} (the irrelevant edge (6◦, 9•)

is missing), tr {(1•, 3◦)} (the vertex 3◦ is isolated) or tr {(1•, 5◦)}. The (ε, I•, J◦)-forests which
are not on the boundary of the (ε, I•, J◦)-complex Cε

I•,J◦
are called internal (ε, I•, J◦)-forests.

2.4. ε-trees versus triangulations of Pε
� . We now focus on the situation where I• = [[n•]

and J◦ = [n◦]]. We write Gε for Gε
[[n•],[n◦]]

and we just call ε-trees (resp. forests, resp. complex)
the (ε, [[n•], [n◦]])-trees (resp. forests, resp. complex). The following immediate bijection between
triangulations of Pε

� and ε-trees is illustrated in Figure 4.

1◦1•

2◦2• 3◦
3• 5◦5•

8◦8•

4◦4• 6◦6• 7◦
7•

9◦0•0 9

1

2 3 5

4 6 7

8

Figure 4. A triangulation T of Pε
� (left) and the corresponding ε-tree φ(T ) (right).
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Proposition 5. The map φ defined by φ
(
(i�, j�)

)
= (i•, j◦) (for i• < j◦) is a bijection between

the diagonals of Pε
� and the edges of Gε and induces a bijection between the dissections (resp. tri-

angulations) of Pε
� and the ε-forests (resp. ε-trees). In particular, the ε-complex is a simplicial

associahedron.

Proof. The map φ is clearly bijective and sends crossing (resp. non-crossing) diagonals of Pε
� to

crossing (resp. non-crossing) edges of Gε. Therefore, it sends dissections of Pε
� to ε-forests. Finally,

it sends triangulations of Pε
� to ε-trees since a triangulation of Pε

� has 2n+ 1 diagonals (including
the boundary edges of Pε

� ) and a ε-tree has 2n+ 1 edges. �

Corollary 6. For any signature ε ∈ {±}n, there are cat(n) := 1
n+1

(
2n
n

)
many ε-trees.

2.5. Non-crossing matchings. We conclude this section with another family of non-crossing
subgraphs of Gε

I•,J◦
that will be needed later in the proof of Proposition 26. A perfect matching

of Gε
I•,J◦

is a subset M of edges of Gε
I•,J◦

such that each vertex of Gε
I•,J◦

is contained in precisely
one edge of M . The following statement is immediate.

Lemma 7. The bipartite graph Gε
I•,J◦

admits a perfect matching if and only if |I•| = |J◦| and
|I• ∩ [[k•]| ≥ |J◦ ∩ [k◦]]| for all k ∈ [n].

A matching is non-crossing if any two of its edges are non-crossing. See Figure 5.

Lemma 8. If Gε
I•,J◦

admits a perfect matching, then it has a unique non-crossing perfect matching.

Proof. We give an algorithm to construct the unique non-crossing perfect matching of Gε
I•,J◦

. We
consider a vertical pile P initially empty. We then read the vertices of I• ∪ J◦ from left to right
(i.e. in increasing order and with i◦ preceding i• if they both belong to I• ∪ J◦). At each step, we
read a new vertex k and proceed as follows:

• If k ∈ I•, we insert k on top of P if εk = + and at the bottom of P if εk = −.
• If k ∈ J◦, then we remove the element ` on top of P if εk = + and at the bottom of P

if εk = −, and connect k to `.
This algorithm clearly terminates and returns a non-crossing matching, assuming that the pile P
is never empty when an element of J◦ is found. This assumption is ensured by the condi-
tion |I• ∩ [[k•]| ≥ |J◦ ∩ [k◦]]| for all k ∈ [n]. To see that it constructs the unique non-crossing
matching, observe that when a vertex k ∈ J◦ is found, we have no other choice than connecting it
immediately to the last available vertex on top of P if εk = + and at the bottom of P if εk = −.
Indeed, any other choice would separate some vertices of P to the remaining vertices of J◦, and
thus ultimately lead to a matching with crossings. �

Remark 9. Note that Lemma 8 provides another proof that non-crossing subgraphs of Gε
I•,J◦

are
acyclic. Indeed, since Gε

I•,J◦
is bipartite, any non-crossing cycle could be decomposed into two

distinct non-crossing matchings, contradicting Lemma 8.

1•

2◦ 3◦3• 5•
8◦8•

4◦4• 6◦ 7◦7•

9◦

8◦

7◦

9◦ 0•

1•

2• 3◦3• 5◦

4• 6◦6•

0•

Figure 5. The unique non-crossing matching of Gε
I•,J◦

for two distinct instances of I• and J◦.
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3. The (ε, I•, J◦)-lattice

In this section, we orient flips between (ε, I•, J◦)-trees as follows.

Lemma 10. Consider two adjacent (ε, I•, J◦)-trees t and t′ with tr{(i•, j◦)} = t′r{(i′•, j′◦)}. We
say that the flip from t to t′ is slope increasing (or simply increasing) when the following equivalent
conditions hold:

(1) the slope of (i•, j◦) is smaller than the slope of (i′•, j
′
◦),

(2) i′• lies below (resp. j′◦ lies above) the line passing through i• and j◦,
(3) the path j′◦i•j◦i′• in t forms an Z(resp. the path i•j′◦i′•j◦ in t′ forms a Z).

Otherwise, the flip is called slope decreasing (or simply decreasing).

We leave the immediate proof of this observation to the reader. For example, the flip of Figure 3
is slope increasing from left to right. In this section, we show that the (ε, I•, J◦)-increasing flip
graph is always an interval of the ε-Cambrian lattice of N. Reading [Rea06].

3.1. The (ε, I•, J◦)-increasing flip graph. We call (ε, I•, J◦)-increasing flip graph and denote
by Fε

I•,J◦
the oriented graph whose vertices are the (ε, I•, J◦)-trees and whose arcs are increasing

flips between them. An example is represented in Figure 7. This section is devoted to some natural
properties of this graph, which will be used in the next section to show that the increasing flip
graph is the Hasse diagram of a lattice.

Note already that Fε
I•,J◦

really depends on (I•, J◦), not only on the relative order of the black
and white vertices around conv(I• ∪ J◦). As an illustration, when I• = [[n•] and J◦ = [n◦]], the
black and white vertices are just alternating along Pε

•−◦, but we will see in Lemma 16 that Fε
[[n•],[n◦]]

is the Hasse diagram of the ε-Cambrian lattice which really depends on ε.
We start with some symmetries on (ε, I•, J◦)-increasing flip graphs which will save us later

work. For a signature ε ∈ {±}n, denote by ε and ε the signatures of {±}n defined by εk := −εk
and εk := εn+1−k for all k ∈ [n]. For I• ⊆ [[n•] and J◦ ⊆ [n◦]], define I• := {(n+ 1− i)◦ | i• ∈ I•}
and J◦ := {(n+ 1− j)• | j◦ ∈ J◦}.

Lemma 11. The (ε , I•, J◦)- and (ε , J◦ , I• )-increasing flip graphs are both isomorphic to the
opposite of the (ε, I•, J◦)-increasing flip graph.

Proof. The horizontal and vertical reflections both exchange the flip directions. �

Let tminεI•,J◦ (resp. tmaxεI•,J◦) denote the set of edges δ of Gε
I•,J◦

such that there is no edge
of Gε

I•,J◦
crossing δ with a smaller (resp. bigger) slope than δ. See Figure 6 for an example.

Lemma 12. The sets tminεI•,J◦ and tmaxεI•,J◦ are (ε, I•, J◦)-trees

Proof. We prove the statement for tminεI•,J◦ , the statement for tmaxεI•,J◦ follows by symmetry.
The set tminεI•,J◦ is clearly non-crossing since among any two crossing edges of Gε

I•,J◦
, only the

1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

6◦

1◦1•

2◦ 3◦3• 5◦5•
8•

4• 6•

9◦0•

6◦

Figure 6. The minimal (left) and maximal (right) (ε, I•, J◦)-trees. Here, ε = −++−+−−+,
I• = [[8•] r {2•, 7•} and J◦ = [8◦]] r {4◦, 7◦, 8◦}.
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1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

Figure 7. The (ε, I•, J◦)-lattice on (ε, I•, J◦)-trees. Increasing flips are oriented upwards. Here,
ε = −++−+−−+, I• = [[8•] r {3•, 6•} and J◦ = {3◦, 6◦, 9◦}. Compare to Figures 9 and 10.
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one of smallest slope can belong to tminεI•,J◦ . To see that it is inclusion maximal, consider an
edge (i•, j◦) not in tminεI•,J◦ . Consider the edge (i′•, j

′
◦) with the minimal slope among all edges

of Gε
I•,J◦

that cross (i•, j◦). If (i′•, j
′
◦) is not in tminεI•,J◦ , it is crossed by an edge (i′′• , j

′′
◦ ) with

smaller slope. Then either (i′′• , j
′′
◦ ), or (i′•, j

′′
◦ ), or (i′′• , j

′
◦) still crosses (i•, j◦) and contradicts the

minimality of (i′•, j
′
◦). We conclude that (i•, j◦) is crossed by an edge of tminεI•,J◦ . �

Proposition 13. The (ε, I•, J◦)-increasing flip graph Fε
I•,J◦

is acyclic with a unique source tminεI•,J◦
and a unique sink tmaxεI•,J◦ .

Proof. The (ε, I•, J◦)-increasing flip graph Fε
I•,J◦

is clearly acyclic since an increasing flip increases
the sum of the slopes of the edges of the (ε, I•, J◦)-tree.

All flips in tminεI•,J◦ are increasing by definition, so that tminεI•,J◦ is indeed a source. Con-
versely, any (ε, I•, J◦)-tree t distinct from tminεI•,J◦ has a decreasing flip. Indeed, we claim that
for any edge (i•, j◦) ∈ tminεI•,J◦ r t, the edge (i′•, j

′
◦) with maximal slope among the edges of t that

cross (i•, j◦) is flippable and its flip is decreasing. To see it, observe first that there exists i′′• ∈ I•
strictly above the line (i′•, j

′
◦) such that (i′′• , j

′
◦) belongs to t and i′′• ≤ max(i•, i

′
•) . Indeed, take

either i• or the black endpoint of the edge of t crossing (i•, j
′
◦) closest to j′◦. Similarly, there

exists j′′◦ ∈ J◦ strictly below the line (i′•, j
′
◦) such that (i′•, j

′′
◦ ) belongs to t and j′′◦ ≥ min(j◦, j

′
◦).

Since i′′• < j′′◦ and (i′′• , j
′
◦) and (i′•, j

′′
◦ ) both belong to t, the edge (i′•, j

′
◦) is flippable by Propo-

sition 3 (2), and since i′′• is above (i′•, j
′
◦) while j′′◦ is below (i′•, j

′
◦), the flip is decreasing by

Lemma 10 (2). We conclude that tminεI•,J◦ is the unique source of the (ε, I•, J◦)-increasing flip
graph. The proof is symmetric for tmaxεI•,J◦ . �

We conclude with a property of the links of the (ε, I•, J◦)-complex. This property was recently
coined non-revisiting chain property in [BM18] in the context of graph associahedra.

Proposition 14. The set of (ε, I•, J◦)-trees containing any given (ε, I•, J◦)-forest forms an inter-
val of the (ε, I•, J◦)-increasing flip graph Fε

I•,J◦
.

Proof. Consider a (ε, I•, J◦)-forest f. Denote by C1, . . . , Cp the cells of f (i.e. the closures of the
connected components of the complement of f in conv(I• ∪ J◦)). For k ∈ [p], define Ik• := I• ∩ Ck

and Jk
◦ := J◦ ∩ Ck. Then the subgraph of the (ε, I•, J◦)-increasing flip graph Fε

I•,J◦
induced by

the (ε, I•, J◦)-trees containing f is isomorphic to the Cartesian product Fε
I1
• ,J

1
◦
× · · · × Fε

Ip
• ,J

p
◦
. We

claim that it actually coincides with the interval of the (ε, I•, J◦)-increasing flip graph Fε
I•,J◦

between f ∪ tminεI1
• ,J

1
◦
∪ · · · ∪ tminεIp

• ,J
p
◦
and f ∪ tmaxεI1

• ,J
1
◦
∪ · · · ∪ tmaxε

Ip
• ,J

p
◦
. For this, we just need

to prove that there is no chain of increasing flips that flips out an edge δ and later flips back in δ.
Consider two adjacent (ε, I•, J◦)-trees t and t′ with tr {(i•, j◦)} = t′ r {(i′•, j′◦)} such that the

flip from t to t′ is increasing. We claim that any edge δ of Gε
I•,J◦

crossing an edge γ of t with
bigger slope also crosses an edge γ′ of t′ with bigger slope. Indeed, if γ 6= (i•, j◦), then γ still
belongs to t′ and γ′ = γ suits. If γ = (i•, j◦), then δ 6= (i′•, j

′
◦) since the slope of δ is smaller

than that of γ = (i•, j◦) which is in turn smaller than that of (i′•, j
′
◦). Therefore, δ must cross

two boundary edges of the square i•i′•j◦j′◦. Since δ crosses (i•, j◦), it thus crosses either (i′•, j
′
◦),

or (i•, j
′
◦), or (i′•, j◦), or the three of them (in which case we choose γ′ = (i′•, j

′
◦)). Note that these

three edges belong to t′ by Proposition 3 (1). Moreover, the slope of δ is still smaller than the
slope of γ′.

Consider now a sequence t1, . . . , tp of (ε, I•, J◦)-trees related by increasing flips. Assume that
an edge δ is flipped out from tk to tk+1. Then δ crosses an edge of tk+1 with bigger slope, and
thus by induction it crosses an edge of t` with bigger slope for any ` > k. Therefore, δ cannot be
flipped back in by an increasing flip. �

3.2. The (ε, I•, J◦)-lattice. The goal of this section is to prove the following statement.

Theorem 15. The (ε, I•, J◦)-increasing flip graph Fε
I•,J◦

is the Hasse diagram of a lattice, called
(ε, I•, J◦)-lattice and denoted by Lε

I•,J◦
.

We start by considering the case when I• = [[n•] and J◦ = [n◦]]. Recall that two triangulations T
and T ′ of Pε

� are related by an increasing flip if there exist diagonals δ ∈ T and δ′ ∈ T ′ such
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that T r {δ} = T ′ r {δ′} and the slope of δ is smaller than the slope of δ′. It is known that the
transitive closure of the increasing flip graph is a lattice, called the ε-Cambrian lattice [Rea06].

Lemma 16. The bijection φ or Proposition 5 between triangulations of Pε
� and ε-trees preserves

increasing flips. Therefore, the transitive closure of the increasing flip graph on ε-trees is isomor-
phic to the ε-Cambrian lattice.

In the classical Tamari case when ε = −n, the (I•, J◦)-lattice is isomorphic to the ν(I•, J◦)-
Tamari lattice of [PRV17] for some Dyck path ν(I•, J◦) described in details in [CPS18, Sect. 3].
Moreover, it is always an interval of the Tamari lattice. We will prove Theorem 15 via the following
generalization of this statement.

Theorem 17. The (ε, I•, J◦)-lattice Lε
I•,J◦

is an interval of the ε-Cambrian lattice.

In fact, computational experiments indicate the following generalization of Theorem 17.

Conjecture 18. For any I• ⊆ I ′• and J◦ ⊆ J ′◦, the (ε, I•, J◦)-lattice Lε
I•,J◦

is an interval of the
(ε, I ′•, J

′
◦)-lattice Lε

I′•,J
′
◦
.

Although we are not able to prove Conjecture 18 in full generality, we will prove Theorem 17
using the following three special cases of Conjecture 18.

Lemma 19. For any K ⊆ [n], the (ε, [[n•]rK•, [n◦]]rK◦)-lattice is an interval of the ε-Cambrian
lattice.

Proof. For any vertex k ∈ K, let δ(k) be the edge of Gε joining the vertex of [[n•] preceding k to the
vertex of [n◦]]rK◦ following k on the boundary of Pε

•−◦. For instance, if K = {1, 3, 5, 7} in Figure 1,
we obtain δ(1) = 0•4◦, δ(3) = 2•8◦, δ(5) = 3•8◦ and δ(7) = 6•9◦. The (ε, [[n•] rK•, [n◦]] rK◦)-
increasing flip graph is clearly isomorphic to the subgraph of the (ε, [[n•], [n◦]])-increasing flip
graph induced by the (ε, [[n•], [n◦]])-trees containing {δ(k) | k ∈ K}. Indeed, the edge δ(k) chops
off vertex k as it ensures that the only edges incident to k◦ and k• are boundary edges and edges
of the form δ(k′) for other k′ ∈ K. Therefore, the (ε, [[n•]rK•, [n◦]]rK◦)-lattice is an interval of
the ε-Cambrian lattice by Proposition 14 and Lemma 16. �

Lemma 20. For any boundary edge (i•, j◦) of conv(I•∪J◦) with i• 6= min(I•) (resp. j◦ 6= max(J◦)),
the (ε, I• r {i•}, J◦)-lattice (resp. (ε, I•, J◦ r {j◦})-lattice) is an interval of the (ε, I•, J◦)-lattice.

Proof. By Lemma 11, it is enough to prove that (ε, I•, J◦ r {j◦})-lattice is an interval of the
(ε, I•, J◦)-lattice when j◦ is distinct from max(J◦) and lies on the lower hull of conv(I• ∪ J◦).
The (ε, I•, J◦ r {j◦})-increasing flip graph is clearly isomorphic to the subgraph of the (ε, I•, J◦)-
increasing flip graph induced by (ε, I•, J◦)-trees with a leaf at j◦, or equivalently with an edge (i•, k◦)
with k◦ > j◦. Let `◦ be the vertex of J◦ following j◦ along the boundary of conv(I• ∪ J◦) (which
exists since j◦ 6= max(J◦)). Let tmin denote the minimal (ε, I•, J◦)-tree containing (i•, `◦) (which
exists by Proposition 14). We claim that the set of (ε, I•, J◦)-trees containing an edge (i•, k◦)
with k◦ > j◦ is precisely the interval above tmin in the (ε, I•, J◦)-increasing flip graph. We pro-
ceed in two steps, showing both inclusions:

• Observe first that any (ε, I•, J◦)-tree above tmin contains an edge (i•, k◦) with k◦ > j◦.
Indeed, this property holds for tmin (as it contains the edge (i•, `◦)), and it is preserved
by an increasing flip (using Proposition 3 (1)).
• Conversely, consider a (ε, I•, J◦)-tree t containing an edge (i•, k◦) with k◦ > j◦. Let X be

the half space bounded by (i•, k◦) containing `◦, and consider Ī• := I• ∩X, J̄◦ = J◦ ∩X,
and t̄ = t ∩X. Note that the minimal (ε, Ī•, J̄◦)-tree tminεĪ•,J̄◦ contains (i•, `◦). There-
fore, using a sequence of decreasing flips from t̄ to tminεĪ•,J̄◦ , we can transform t into a
(ε, I•, J◦)-tree t′ containing (i•, `◦). Finally, there is a sequence of decreasing flips from t′

to tmin since tmin is the minimal (ε, I•, J◦)-tree containing (i•, `◦). �

Lemma 21. For any i < j < k such that (i•, j◦) and (j•, k◦) are boundary edges of conv(I• ∪J◦),
the (ε, I•r{i•}, J◦r{j◦})- and (ε, I•r{j•}, J◦r{k◦})-lattices are intervals of the (ε, I•, J◦)-lattice.
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1◦1•

2◦2• 3◦
5◦5•

8◦8•

4◦4• 6◦6• 7◦

9◦0•

1◦

2◦2• 3◦
5◦5•

8◦8•

4• 6◦6• 7◦

9◦0•

Figure 8. The bijection of the proof of Lemma 21. Here, ε = −++−+−−+, I• = [[8•] r {1•, 7•},
J◦ = [8◦]] r {4◦}, i = 1, j = 4, and k = 6.

Proof. By Lemma 11, we can focus on the (ε, I•r{i•}, J◦r{j◦})-lattice and on the case where (i•, j◦)
and (j•, k◦) are lower edges of conv(I• ∪ J◦). The result is also immediate if i• = min(I•), so we
assume otherwise. Let E be the set of edges of Gε

I•,J◦
of the form (p•, q◦) with p• < i• and q◦ > j◦.

Let (p•, q◦) be the edge of maximal slope in E.
Let I be the interval (by Proposition 14) of the (ε, I•, J◦)-increasing flip graph induced by the

(ε, I•, J◦)-trees containing (i•, k◦). Let tmax be the maximal (ε, I•, J◦)-tree of I containing the
edge (p•, q◦) (which exists by Proposition 14). We claim that the interval below tmax in I is
precisely the set of (ε, I•, J◦)-trees containing (i•, k◦) and an edge of E. The proof of this claim,
similar to that of Lemma 20 (showing both inclusions), is left to the reader.

Finally, we observe that there is a bijection ψ between the (ε, I• r {i•}, J◦ r {j◦})-trees and
the (ε, I•, J◦)-trees containing (i•, k◦) and an edge of E. Namely, a (ε, I• r {i•}, J◦ r {j◦})-tree t
is sent to the (ε, I•, J◦)-tree φ(t) obtained from t by replacing each edge of the form (j•, `◦) by the
edge (i•, `◦), and finally adding the edges (i•, j◦) and (j•, k◦). See Figure 8. This bijection clearly
preserves increasing flips, which concludes the proof. �

Proof of Theorem 17. Consider two subsets I• ⊆ [[n•] and J◦ ⊆ [n•]] such that min(I•) < min(J◦)
and max(I•) < max(J◦). We proceed in three steps:

(1) Let I ′• be the set of points i• /∈ I• such that i◦ and the next vertex along the boundary
of conv(I• ∪ J◦) belong to J◦. Similarly, let J ′◦ be the set of points j◦ /∈ J◦ such that j•
and the previous vertex along the boundary of conv(I• ∪ J◦) belong to I•. By multi-
ple applications of Lemma 20, we obtain that the (ε, I•, J◦)-lattice is an interval of the
(ε, I• ∪ I ′•, J◦ ∪ J ′◦)-lattice.

(2) After the first step, we can assume that the black and white vertices are alternating along
the boundary of conv(I• ∪ J◦). Assume that k◦ := (n + 1)◦ /∈ J◦, consider j◦ := max(J◦)
and let i• be the minimal vertex of I• along the same boundary of Pε

•−◦ as j◦. Then (i•, j◦)
and (j•, k◦) are boundary edges of conv(I• ∪ J◦ ∪ {j•, k◦}). Thus, Lemma 21 ensures that
the (ε, I•, J◦)-lattice is an interval of the (ε, I• ∪ {j•}, J◦ ∪ {(n + 1)◦})-lattice. A similar
argument shows that we can ensure that 0• ∈ I•.

(3) After the second step, we can assume that 0• ∈ I•, (n + 1)◦ ∈ J◦, and the black and
white vertices are alternating along the boundary of conv(I• ∪ J◦). Consider now the
set E of edges (i•, j◦) with i• /∈ I• and j◦ /∈ J◦, but such that (i◦, j•) is a boundary edge
of conv(I• ∪ J◦). Note that each such edge (i•, j◦) is followed by a boundary edge (j•, k◦)
of conv(I• ∪ J◦). Let I ′• and J ′◦ be the sets of left and right endpoints of the edges of E.
By multiple applications of Lemma 21, we obtain that the (ε, I•, J◦)-lattice is an interval
of the (ε, I• ∪ I ′•, J◦ ∪ J ′◦)-lattice.

(4) After the third step, we can assume that 0• ∈ I•, (n + 1)◦ ∈ J◦ and k• ∈ I• if and
only if k◦ ∈ J◦ for all k ∈ [n]. Therefore, there is K ⊆ [n] such that I• = [[n•] r K•
and J◦ = [n◦]] r K◦, and we conclude by Lemma 19 that the (ε, I•, J◦)-lattice is an
interval of the ε-Cambrian lattice. �
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Remark 22. It is tempting to attack Conjecture 18 by induction on |I ′• r I•| + |J ′◦ r J◦|. By
Lemma 11, it would be sufficient to prove that for any i• /∈ I•, the (ε, I•, J◦)-lattice is an interval
of the (ε, I• ∪ {i•}, J◦)-lattice. Lemma 20 shows this fact in the case when the vertex following i•
along the boundary of conv(I• ∪ J◦ ∪ {i•}) is in J◦. Lemma 21 treats the case when the two
vertices following i• along the boundary of conv(I• ∪ J◦ ∪ {i•}) are in I• and J◦ respectively.
However, we did not manage to prove this fact when i• is followed by two or more vertices of I•
along the boundary of conv(I• ∪ J◦ ∪ {i•}). Note however that we can prove in any case that the
(ε, I•, J◦)-lattice is a lattice quotient of an interval of the (ε, I• ∪ {i•}, J◦)-lattice.

Remark 23. In the classical Tamari case when ε = −n, the (I•, J◦)-increasing flip graph only
depends on the sequence of black and white vertices. We can therefore prove Conjecture 18 by
induction on |I ′• r I•| + |J ′◦ r J◦| using only Lemma 21. Namely, consider i• /∈ I•, and let j◦ be
the minimal element of J◦ such that i• < j◦. Therefore, there is no vertex of J◦ in between i•
and (j − 1)•. We then distinguish two cases:

• If (j − 1)• /∈ I•, then the (I•, J◦)-lattice is an interval of the (I• ∪ {(j − 1)•}, J◦)-lattice
(by Lemma 21), which is isomorphic to the (I• ∪ {i•}, J◦)-lattice.
• If (j − 1)• ∈ I•, then the (I•, J◦)-lattice is isomorphic to the (I• ∪ {i•}r {(j − 1)•}, J◦)-

lattice, which is an interval of the (I• ∪ {i•}, J◦)-lattice (by Lemma 21).
A similar argument (or an application of Lemma 11) shows that the (I•, J◦)-lattice is an interval
of the (I•, J◦ ∪ {j◦})-lattice for any j◦ /∈ J◦. We conclude that the ν(I•, J◦)-Tamari lattice is an
interval of the ν(I ′•, J

′
◦)-Tamari lattice for any I• ⊆ I ′• and J◦ ⊆ J ′◦.

Remark 24. There is yet another simple way to prove Theorem 17 in the classical Tamari
situation when ε = −n, based on the canopies of the corresponding dual binary trees.

Consider a triangulation T of Pε
� and its corresponding ε-tree t :=φ(T ). As defined in [LP18,

CP17], the dual Cambrian tree of T (or of t) is the (oriented and labeled) tree with
• one vertex labeled j for each triangle i�j�k� of T with i < j < k,
• one arc between (the vertices corresponding to) any two adjacent triangles, oriented from

the triangle below to the triangle above their common diagonal.
The canopy of T (or of t) is the sequence of signs can(T ) = can(t) ∈ {±}n−1 defined by can(T )i = −
is i is below i + 1 in the dual Cambrian tree of T , and can(T )i = + otherwise. The canopy is a
natural geometric parameter as it corresponds to the position of the cone of T in the ε-Cambrian
fan of N. Reading and D. Speyer [RS09] with respect to the hyperplanes orthogonal to the simple
roots.

For a ε-tree, there is a connection between its canopy and its leaves. Namely, if i• is a black
leaf of t, then can(t)i εi = + and similarly, if j◦ is a white leaf of t, then can(t)j−1 εj = −.
When ε = −n, the reverse implications hold so that the canopy can(t) can be read directly on the
tree t. In particular, the (I•, J◦)-trees can be identified as the −n-trees with particular conditions
on their canopy. This enables us to derive easily Theorem 17 when ε = −n. However, the reverse
implications do not always hold for general signatures. For example, the ε-tree t represented
in Figure 4 has can(t)5 ε5 = + while 5• is not a leaf of t.

In particular, while the classical Tamari lattice can be decomposed into smaller ν-Tamari lattices
as observed in [PRV17], the ε-Cambrian lattice decomposes into intervals corresponding with ε-
trees with the same canopy, but these intervals do not correspond to the (ε, I•, J◦)-lattices.

We conclude this section with a geometric consequence of Theorem 17. Remember that the
ε-Cambrian lattice can be realized geometrically as

• the dual graph of the ε-Cambrian fan of N. Reading and D. Speyer [RS09],
• the graph of the ε-associahedron of C. Hohlweg and C. Lange [HL07].

As an interval of the ε-Cambrian lattice gives rise to a connected region of the ε-Cambrian fan,
we obtain the following geometric realization of the (ε, I•, J◦)-lattice.

Corollary 25. The (ε, I•, J◦)-increasing flip graph is realized geometrically as the dual graph of a
set cones of the ε-Cambrian fan of [RS09] corresponding to an interval of the ε-Cambrian lattice.
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4. The (ε, I•, J◦)-Cambrian triangulation

In this section, we use ε-trees to construct a flag regular triangulation T ε of the subpoly-
tope conv

{(
ei• , ej◦

) ∣∣ 0 ≤ i• < j◦ ≤ n + 1
}
of the product of simplices 4[[n•] ×4[n◦]]. Restrict-

ing T ε to the face 4I• × 4J◦ then yields a triangulation whose dual graph is the flip graph on
(ε, I•, J◦)-trees.

4.1. The ε-Cambrian triangulation. Let (ei•)i•∈I• denote the standard basis of RI• and (ej◦)j◦∈J◦
denote the standard basis of RJ◦ . We consider the Cartesian product of the two standard simplices

4I• ×4J◦ := conv
{(

ei• , ej◦
) ∣∣ i• ∈ I•, j◦ ∈ J◦}

and its subpolytope

UI•,J◦ := conv
{(

ei• , ej◦
) ∣∣ i• ∈ I•, j◦ ∈ J◦ and i• < j◦

}
.

Note that the polytopes4I•×4J◦ and UI•,J◦ are faces of the polytopes4[[n•]×4[n◦]] and U[[n•],[n◦]]

respectively.

Proposition 26. Each (ε, I•, J◦)-tree defines a simplex 4t := conv
{(

ei• , ej◦
) ∣∣ (i•, j◦) ∈ t

}
and

the collection of simplices T ε
I•,J◦

:=
{
4t

∣∣ t (ε, I•, J◦)-tree
}
is a flag triangulation of UI•,J◦ , that

we call the ε-Cambrian triangulation of UI•,J◦ .

Proof. Since a triangulation of a polytope induces a triangulation on all its faces, we only need to
prove the result for I• = [[n•] and J◦ = [n◦]]. Let U := U[[n•],[n◦]]. Observe that:

• Each 4t is a full-dimensional simplex since t is a spanning tree of Gε.
• For t 6= t′, the simplices 4t and 4t′ intersect along a face of both. Otherwise, there exists

a vector that can be written both as a positive linear combination of rays of 4t and as a
positive linear combination of rays of 4t′ . This translates into a linear dependence whose
support is a cycle C that alternates between t and t′. In other words, this provides two
distinct non-crossing matchings on the support of C, contradicting Lemma 8.
• The total volume of these simplices is the volume of U. On the one hand, since each

simplex is unimodular, Corollary 6 shows that the total normalized volume of the simplices
is cat(n). On the other hand, the normalized volume of U is known to be cat(n) as it is
triangulated by the (bottom part of the) staircase triangulation [DRS10, Sect. 6.2.3].

This proves that {4t | t ε-tree} is a triangulation of U. It is clearly flag by definition of ε-trees. �

Remark 27. Since the ε-Cambrian triangulation only depends on the crossings among the edges
of Gε, the ε -Cambrian triangulation coincides with the ε-Cambrian triangulation, while the
ε -Cambrian triangulation is the image of the ε-Cambrian triangulation by the symmetry that
simultaneously exchanges ek• with ek◦ for all k ∈ [n].

Example 28. Consider the case n = 3. Denote the vertices of U by

α = (e0• , e1◦) β = (e0• , e2◦) γ = (e0• , e3◦) δ = (e0• , e4◦)
ε = (e1• , e2◦) η = (e1• , e3◦) κ = (e1• , e4◦)

λ = (e2• , e3◦) µ = (e2• , e4◦)
ν = (e3• , e4◦)

Then the 4 ε-Cambrian triangulations and the staircase triangulation of U are given by the sim-
plices

ε −−− or +++ −−+ or ++− −+− or +−+ −++ or +−− staircase triang.
αβγδελν αβγδεµν αβγδηµν αβγδκλν αβγδκµν
αβδελµν αβγελµν αβγηλµν αβγηκλν αβγηκµν

simplices αγδεηλν αγδεκµν αβδηκµν αβδκλµν αβγηλµν
αδεηκλν αγεηκµν αβεηκµν αβεηκλν αβεηκµν
αδεκλµν αγεηλµν αβεηλµν αβεκλµν αβεηλµν

Remark 29. Note that Proposition 26 provides an alternative proof of Proposition 2.
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Remark 30. As a corollary of Proposition 26 and the unimodularity of UI•,J◦ , we obtain that
the number of (ε, I•, J◦)-trees is independent of ε. It is clear for I• = [[n•] and J◦ = [n◦]] using
the bijection of Proposition 5 but we have not found a clear combinatorial reason for general I•
and J◦.

Finally, we gather two geometric consequences of Proposition 26. The first is just a reformula-
tion of Proposition 26.

Corollary 31. The (ε, I•, J◦)-increasing flip graph is geometrically realized as the dual graph of
the triangulation T ε

I•,J◦
.

The second is an application of the Cayley trick [HRS00] to visualize triangulations of products
of simplices as mixed subdivisions of generalized permutahedra. Recall that a generalized permuta-
hedron [Pos09, PRW08] is a polytope whose normal fan coarsens the normal fan of the permutahe-
dron conv {(σ1, . . . , σn) | σ ∈ Sn}. For example, the Minkowski sum

∑
I⊆[n] yI 4I is a generalized

permutahedron for any family of non-negative real numbers (yI)I⊆[n] (where4I := conv {ei | i ∈ I}
denotes the face of the standard simplex corresponding to I). The following statement is illustrated
in Figure 9.

Corollary 32. The collection of generalized permutahedra
∑

i•∈I• 4{j◦∈J◦ | (i•,j◦)∈t}, where t
ranges over all (ε, I•, J◦)-trees, forms a coherent fine mixed subdivision of the generalized per-
mutahedron

∑
i•∈I•4{j◦∈J◦ | i•<j◦}.

4.2. Regularity. Recall that a triangulation T of a point set P is regular if there exists a lifting
function h : P → R such that T is the projection of the lower convex hull of the lifted point
set {(p, h(p)) | p ∈ P}.

Proposition 33. For any ε ∈ {±}n, I• ⊆ [[n•] and J◦ ⊆ [n◦]], the triangulation T ε
I•,J◦

is regular.

Proof. Consider two adjacent ε-trees t, t′ with t r {(i•, j◦)} = t′ r {(i′•, j′◦)}. Then the linear
dependence between the vertices of 4t and 4′t is given by

(ei• , ej◦) + (ei′• , ej′◦) = (ei• , ej′◦) + (ei′• , ej◦).

Therefore, we just need to find a lifting function h : {(i•, j◦) | i• ∈ I•, j◦ ∈ J◦, i• < j◦} → R such
that for any two crossing edges (i•, j◦) and (i′•, j

′
◦) of Gε, we have

h
(
(i•, j◦)

)
+ h
(
(i′•, j

′
◦)
)
> h

(
(i•, j

′
◦)
)

+ h
(
(i′•, j◦)

)
.

For this, consider any strictly concave increasing function f : R → R. For a diagonal ζ of Pε
� , we

denote by `(ζ) the minimum between the number of vertices of Pε
� on each side of the diagonal ζ.

Consider two crossing diagonals ζ and η of Pε
� . These diagonals decompose the polygon Pε

� into four
regions that we denote by A,B,C,D such that ζ separates A∪B from C∪D and |A∪B| ≤ |C∪D|,
while η separates A∪C from B∪D and |A∪C| ≤ |B∪D|. We also denote accordingly by α, β, γ, δ
the boundary edges of the square with diagonals ζ, η. Thus, we have

`(ζ) = |A|+ |B|+ 1 and `(η) = |A|+ |C|+ 1

while `(α) = |A|, `(β) ≤ |B|, `(γ) ≤ |C|, and `(δ) ≤ |A|+ |B|+ |C|+ 2.

Using the strict concavity of f for the first inequality and the increasing property of f for the
second inequality, we obtain that

f(`(ζ)) + f(`(η)) > f(`(α)) + f(`(δ)) and f(`(ζ)) + f(`(η)) > f(`(β)) + f(`(γ)).

Finally, we transport this convenient function through the bijection φ of Proposition 5 to obtain
a suitable lifting function h := f ◦ ` ◦ φ−1. �

Remark 34. In the classical Tamari case when ε = −n, the function ` in the proof of Proposi-
tion 33 can be replaced by `′

(
(i•, j◦)

)
= j◦ − i•. Note however that this simple function `′ fails

for arbitrary signatures ε ∈ {±}n.
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3◦9◦

6◦

Figure 9. The mixed subdivision realization of the (ε, I•, J◦)-lattice. Here, ε = −++−+−−+,
I• = [[8•] r {3•, 6•} and J◦ = {3◦, 6◦, 9◦}. Compare to Figures 7 and 10.

Remark 35. Propositions 26 and 33 enable us to understand 2n−1 distinct regular triangula-
tions of U := U[[n•],[n◦]]. It would be interesting to investigate if one can understand similarly
more (regular) triangulations of U. Note that not all regular triangulations of U are flag. Some
computations:

n 1 2 3 4 5
# ε-Cambrian triangulations of U 1 1 2 4 8
# regular triangulations of U 1 1 2 20 3324
# flag regular triangulations of U 1 1 2 16 848
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5. Tropical realization

In this section, we exploit the triangulation T ε to obtain a geometric realization of the (ε, I•, J◦)-
lattice as the edge graph of a polyhedral complex induced by a tropical hyperplane arrangement.
We follow the same lines as [CPS18], relying on work of M. Develin and B. Sturmfels [DS04].
Define the following geometric objects in the tropical projective space TP|J◦|−1 = RJ◦/R11:

(1) For each i• ∈ I•, consider the inverted tropical hyperplane at
(
h(i•, j◦)

)
j◦∈J◦

defined by

Hi• :=
{
x ∈ TP|J◦|−1

∣∣∣ maxj◦∈J◦
{
xj◦ − h(i•, j◦)

}
is attained twice

}
.

(2) For each edge (i•, j◦) of Gε
I•,J◦

, consider the polyhedron

g(i•, j◦) :=
{
x ∈ RJ◦

∣∣ xk◦ − xj◦ ≤ h(i•, k◦)− h(i•, j◦) for each k◦ ∈ J◦
}
∩ {xmax(J◦) = 0}.

(3) For each covering (ε, I•, J◦)-forest f, consider the polyhedron

g(f) :=
⋂

(i•,j◦)∈f

g(i•, j◦).

(4) For each (I•, J◦)-tree t, consider the point g(t) ∈ RJ◦ whose k◦ coordinate is given by

g(t)k◦ =
∑

(i•,j◦)∈p(t,k◦)

±h(i•, j◦),

where p(t, k◦) is the unique path in t from k◦ to max(J◦), and the sign of the sum-
mand h(i•, j◦) is negative if p(t, k◦) traverses (i•, j◦) from i• to j◦ and positive otherwise.

We call (ε, I•, J◦)-associahedron the polyhedral complex AssoεI•,J◦(h) given by the bounded cells
of the arrangement of tropical hyperplanes Hi• for i• ∈ I•. The following statement is identical
to that of [CPS18] and its proof is similar.

Theorem 36. The (ε, I•, J◦)-associahedron AssoεI•,J◦(h) is a polyhedral complex whose cell poset
is anti-isomorphic to the inclusion poset of interior faces of the (ε, I•, J◦)-complex. In particular,

• each internal (ε, I•, J◦)-forest f corresponds to a face g(f) of AssoεI•,J◦(h);
• each (ε, I•, J◦)-tree t corresponds to a vertex g(t) of AssoεI•,J◦(h);
• each flip corresponds to an edge of AssoεI•,J◦(h).

In particular, the edge graph of AssoεI•,J◦(h) is the flip graph on (ε, I•, J◦)-trees. In fact, when
oriented in the linear direction −

∑
j◦∈J◦r{max(J◦)} xj◦ , the edge graph of AssoεI•,J◦(h) is the in-

creasing flip graph Fε
I•,J◦

on (ε, I•, J◦)-trees.

Remark 37. It is natural to wonder when is the (I•, J◦)-associahedron a polyhedral subdivision
of a convex polytope. In the classical Tamari case ε = −n, the pairs (I•, J◦) for which this
property holds are characterized in [CPS18, Thm. 5.12], and it turns out that the support of the
(I•, J◦)-associahedron is then a classical associahedron. An interesting open problem is thus to
determine for which triples (ε, I•, J◦) is the (ε, I•, J◦)-associahedron a polyhedral subdivision of a
convex polytope, and more specifically of an ε-associahedron.

Example 38. Consider ε = −++−+−−+, I• = [[8•]r{3•, 6•} and J◦ = {3◦, 6◦, 9◦}. We consider
the lifting function h(i•, j◦) =

√
`(i�, j�) which gives

h(i•, j◦) =

0• 1• 2• 4• 5• 7• 8• 1
√

2 0 ∞ ∞ ∞ ∞ 3◦√
2 1

√
3 0

√
3 ∞ ∞ 6◦

2
√

3
√

3
√

2 1 0 0 9◦

The corresponding tropical hyperplane arrangement is represented in Figure 10. Oriented north-
east, it coincides with the increasing flip graph represented in Figure 7.
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1•

2•

5•

4•

0•

3◦

6◦

increasing
flips

Figure 10. The tropical realization of the (ε, I•, J◦)-lattice. Here, ε = −++−+−−+,
I• = [[8•] r {3•, 6•} and J◦ = {3◦, 6◦, 9◦}. Compare to Figures 7 and 9. Note that H4• and H5•

are degenerate tropical hyperplanes and that H7• is at infinity.

We have computed some coordinates of (ε, I•, J◦)-trees in Figure 11. For example,

g(tmin)3◦ = −h(2•, 6◦) + h(5•, 6◦)− h(5•, 9◦) = −1,

and g(tmin)6◦ = h(5•, 6◦)− h(5•, 9◦) =
√

3− 1.

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

1•

2• 3◦ 5•
8•

4• 6◦
7•

9◦0•

g(tmin)3◦ = −1 g(t)3◦ =
√

3−
√

2 g(tmax)3◦ =
√

2−
√

3

g(tmin)6◦ =
√

3− 1 g(t)6◦ =
√

3− 1 g(tmax)6◦ = −
√

2

Figure 11. Examples of computation of coordinates.
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To conclude, let us gather all geometric realizations of the (ε, I•, J◦)-lattice encountered in this
paper (see Corollaries 25, 31 and 32, and Theorem 36).

Theorem 39. The increasing flip graph on (ε, I•, J◦)-trees can be realized geometrically as:
(1) the dual of the collection of cones of the ε-Cambrian fan of [RS09], or of normal cones of

the ε-associahedron of [HL07], corresponding to an interval of the ε-Cambrian lattice,
(2) the dual of a flag regular triangulation of the subpolytope UI•,J◦ of a product of simplices,
(3) the dual of a coherent fine mixed subdivision of a generalized permutahedron,
(4) the edge graph of a polyhedral complex defined by a tropical hyperplane arrangement.
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