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ABSTRACT

In this study, we reconstruct the Miocene to Quaternary shortening history across the Qiultag 

anticline, a complex fault-bend fold located in southern Tianshan. We studied the Yaha and Kuche A
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sections, where we combined surface structural measurements and seismic imaging to model the 

stratigraphic horizons. The history of folding was reconstructed based on magnetostratigraphic 

analyses and eight cosmogenic burial ages in Kuche. Pleistocene deformation rates were also 

quantified in Yaha based on a deformed fluvial terrace that we dated to ~67 ka using a cosmogenic 

depth profile. Our results suggest that the fold grew at a mean slip rate of 0.9-1.3 mm/a in both 

sections but accelerated to ~2.5 mm/a during the Pleistocene in Kuche. These results support a 

migration of the deformation toward the basin during the Pleistocene and suggest that most of the 

present deformation of the Tianshan is accommodated across the external structures of the range.

INTRODUCTION 

The Tianshan range is one of the most active intracontinental orogenic belts (e.g. Reigber et al., 

2001). Its geological history (e.g. Dumitru et al., 2001; Windley et al., 1990), which included a 

Cenozoic reactivation of inherited structures in response to the India-Asia collision, has resulted in 

a complex present day topography. Documenting how crustal shortening is accommodated within 

these reliefs is a critical step toward gaining a better understanding of how the Tianshan range is 

growing and how total deformation due to the collision with India is distributed across the Asian 

continent. This is particularly true along the two piedmonts of the Tianshan, which accommodate 

most of the deformation across the range  (Charreau et al., 2017; Thompson et al., 2002) and for 

which more quantitative studies along individual faults are still needed. Here, we focus our 

analyses on the Qiulitag anticline in the piedmont of the southern eastern Tianshan, and analyze 

the Kuche and Yaha sections, where the geometry and structures of the fold have been 

documented from remarkable outcrops and two seismic profiles (Fig. 1) (Hubert-Ferrari et al., 

2007; Sun et al., 2009) and whose depositional ages have already been constrained from 

magnetostratigraphic analyses (Charreau et al., 2009, 2006; Sun et al., 2009). 

THE QIULITAG ANTICLINE

The Qiulitag anticline is a 225 km long fault-bend fold, 5-7 km in width and presenting up to 

~1000 m of relief (Hubert-Ferrari et al., 2007). The two seismic lines conducted across the Kuche 

and Yaha sections reveal a relatively similar structure, composed of two distinct structural levels, 

in both sections (e.g. Hubert-Ferrari et al., 2007; Sun et al., 2009). A first anticline with low-angle 

limbs lies on an 8-10 km deep thrust ramp. This anticline is overlain by a second wedging system A
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that developed on shallower decollement levels (5-6 km) producing the anticline seen at the 

surface (e.g. Hubert-Ferrari et al., 2007) (Fig 1). In both sections, the Yakeng anticline, located in 

the southern part of Qiulitag, is linked at depth to this upper wedging structure by a common 

detachment (Figs. 1b, c and d).

In Kuche, two faults belonging to this upper system have broken through the surface in the core of 

the anticline, steepening the strata up to the vertical and even slightly overturning the fold to the 

north. In Yaha, the fold exhibits a box shape at the surface that developed on a low angle 

northward thrust ramp breaking through the southern limb of the fold (Figs. 1 and 2). Several well-

preserved flat surfaces of one fluvial terrace can be traced relatively continuously over ~1.5 km 

across the southern limb of the Qiulitag fold (Fig. 2).

In Kuche, we focus our analyses on the southern limb of the fold (Fig. 1) where a 3780-m-thick 

magnetostratigraphic section has provided depositional ages of ~13 Ma up to ~3Ma (Fig. 2) (Sun 

et al., 2009). Above this section, the sediments are mainly composed of the coarse Xiyu 

conglomerates (Fig. 2) (e.g. Charreau et al., 2009) and remain poorly dated. In Yaha, the 

depositional ages of the sediments have also been constrained by magnetostratigraphy but here, in 

the northern limb of the fold, the ages range from ~13Ma to 1.5Ma (Fig. 1d) (Charreau et al., 

2009, 2006).   

METHODS

Cosmogenic dating

To better constrain the depositional ages of the sediments in the upper conglomeratic part of the 

Kuche section, we use 26Al/10Be cosmogenic burial dating (e.g. Granger and Muzikar, 2001). We 

collected eight samples of quartzite cobbles and pebbles along the Kuche river, at well-shielded 

sites to minimize their recent exposure to cosmic rays (Fig. 2). We processed and analyzed 

together 20 to 30 individual cobbles and pebbles per sampling site. Moreover, to estimate the 

initial 26Al/10Be ratio potentially inherited from a previous cycle of erosion/deposition, we also 

analysed one sample of sand collected in the present riverbed upstream of the section studied. 

The abandonment age of the alluvial surface left in the Yaha section was inferred from a 4-m-

depth cosmogenic profile  (e.g. Gosse and Phillips, 2001) composed of 5 samples of sand at depth 

and three cobbles collected on the surface (Fig. 2).

Burial ages were calculated from the measured 10Be and 26Al concentrations and the mean 

elevation of the present drainage basin using the Matlab® code of Blard et al. (Blard et al., 2019). A
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To derive exposure ages from the depth profile, we followed a Monte Carlo inversion procedure 

that tests thousands of parameter combinations to find the best fitting solution by minimizing the 

difference between the model and the data (Fig. F1)(Saint-Carlier et al., 2016). 

More details are given in the supplementary information.

Slip rates

We documented the long-term (1-13 Ma) slip history recorded across the fold by modeling the 

stratigraphic horizons (Fig. A1). Based on the depth geometry of the fold, constrained by seismic 

imaging (Fig. B1 and Hubert-Ferrari et al., 2007), we predicted the evolution of bedding at the 

surface assuming only pre-growth strata layers. Any discrepancy between the predicted values and 

the dip measured at the surface may reveal the presence of syn-tectonic growth strata (Fig. 3) 

(Charreau et al., 2008). This technique, provides only a minimum age for the fold initiation as 

older syntectonic layers may not have been taken into account due to erosion (Figs. C1 and D1). 

Using a simple geometric formulation of the displacement assuming growth by a curved hinge 

kink-band migration (Suppe et al., 1997), the geometry of any syntectonic layer deposited across 

the axial surfaces during folding can then be modeled and fitted to the observed dip at the surface 

(Charreau et al., 2008). In both sections, we modeled a set of 5-10 syntectonic horizons (Figs. 3 

and 4) and constrained their ages based on their horizontal positions along the present river with 

respect to the magnetostratigraphic correlations (Charreau et al., 2009, 2006; Sun et al., 2009) or, 

in the upper part of the Kuche section, by extrapolating the mean sediment accumulation rates 

derived from our burial ages. 

In Yaha, we also quantified the amount of the recent (<1Ma) slip accommodated in the southern 

limb by measuring the deformation recorded by the abandoned fluvial terrace (Figs. 2 and D1). 

RESULTS

Cosmogenic dating

The concentrations of 10Be and 26Al measured in the burial-age samples (Table 1a) yield 26Al/10Be 

ratios ranging from 0.5±0.5 to 2.9±1.7, from which we derive burial ages of 5.4±2.0 Ma to 1.9±1.1 

Ma assuming an initial ratio of 6.5 (Table 1a and Fig. F1). If we take the 26Al/10Be ratio of 3.7±0.5 

measured in the present river bed sediments to be the initial ratio and assume it to be 

representative of the inheritance for the whole section, then the corrected burial ages obtained 

range from 4.1±2.3Ma to 0.6±1.4 Ma (Table 1a). Despite large uncertainties, the corrected A
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cosmogenic burial ages are relatively consistent with the magnetostratigraphic correlation of Sun 

et al. (2009) (Fig. 2). Though the mean ages obtained for KU3 and KU7 are older than the 

underlying samples, they remain consistent with their ages if we consider their large uncertainties. 

Together with the magnetostratigraphic data from the top of the Sun section (Sun et al., 2009), 

these new burial ages constrain the sediment accumulation rates to 315±10 m/Ma. Table 1b details 

the cosmogenic results obtained for samples collected across the depth profile studied in the Yaha 

section. This profile exhibits the classic exponential decrease in 10Be concentration and its 

inversion constrains the abandonment age of the terrace to 68.3 +4.9/-10.3ka (Fig. 2b and G1).

Slip history

In Yaha, the strong change in bedding dip observed at ~8km is inconsistent with the expected 

angle if only pre-growth strata are considered (Fig. 3). The strata located north of this zone are 

therefore likely syntectonic, suggesting that the folding started by ~5 Ma at the latest. According 

to our modeling, the fold has accommodated at minimum a total slip of ~4.8 km since ~5 Ma, 

meaning that the fold grew at a mean slip rate of ≲1 mm/a. However, this bedding change occurs 

in less than 150m, which would be too rapid to correspond to the width of the hinge zone 1 (Fig. 

3) even if syntectonic strata are considered. Regardless of the fold mechanism, this rapid change 

requires that the fold was initiated before ~5 Ma but must have grown relatively slowly (<0.1 

mm/a?) at first in order to explain the relatively parallel strata within the hinge zone. According to 

our fold model, after ~4 Ma the fold grew at a higher mean slip rate of 1.3 ± 0.2 mm/a. Since ~2.3 

Ma in our model, a total of ~1700 m of shortening has been accommodated across the fold, 

suggesting a lower slip rate of ~0.7 mm/a during the Quaternary. The vertical offset measured 

across the 67 kyr old fluvial terrace is 15±3 m (Fig. 2) which corresponds to a slip (S) of 42±11 m 

and an associated lower slip rate of 0.6±0.2 mm/a. Similarly, the 52±3 m of offset measured above 

the northern most axial surface with respect to the present river bed would yield 56±2 m of slip 

(S') and a rate of 0.8±0.1 mm/a (Figs. 2 and D1). This value must only be considered as a 

maximum because we neglect possible incision of the river in our calculation. These slip values 

derived from the deformed terraces in the southern limb of the fold can be added to the 0.7 mm/a 

found across the northern limb to yield a total of 1.3-1.5 mm/a accommodated across the Qiulitag 

anticline in Yaha during the Pleistocene.

In Kuche, bedding dips measured at the surface continuously decrease from ~80° to <5° 

southwards while the expected angle for pre-growth strata should remain steady south of 10.5 km A
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consistent with the monocline zone identified at depth (Fig. 4). This likely indicates the presence 

of syntectonic layers, meaning that the fold initiated at least ~4 Myr ago (Fig. 4). Assuming that 

all strata since that time are syntectonic, the fold grew continuously and relatively steadily until 

~0.8 Ma, at a mean slip rate of 0.9±0.2 mm/a. Since ~0.8 Ma, a total of ~1950m of slip has been 

accommodated across the fold in our model, suggesting at first order a higher slip rate, which 

could be of ~2.5 mm/a during this period.

DISCUSSION

Our modeling relies on the assumptions that the fold grew by a curved hinge kink-band migration 

in both sections and that only the upper structures were recently active. According to Hubert-

Ferrari et al. (2007), the general morphology of the Qiulitag ridge is consistent with fault-bend 

folding and growth by kink-band migration and is mainly associated with the shallower anticline 

that we modeled. However, this morphology reflects only the recent history of folding and we 

cannot exclude earlier growth by limb rotation while the fold was being initiated on the 

detachment. Nevertheless, in assuming that, before the topographic emergence of the fold, 

the uplift balanced sedimentation, Hubert-Ferrari et al. (2007) also estimated a long-term slip 

rate of ~0.6 mm/a. Based on the existence of giant triangular facets west of the Kuche section, 

these authors also proposed that the fold emerged very recently (220–280 ka, or later) and 

estimated a recent slip rate of 4-5 mm/a. Similarly, based on topographic measurements, Wu et al. 

(2006) estimated a slip rate of more than 3 mm/a in the Kuche region. In the Yaha section, Hubert-

Ferrari et al. (2007), from a balanced cross section, estimated ~5 km of horizontal shortening 

across the fold, which is consistent with our own estimate of 4.8 km. In the same section, our 

Quaternary value of 0.7 mm/a for the northern limb is similar to our Pleistocene rate of 0.6-

0.8 mm/a for the southern limb. The results derived from our model are therefore broadly 

consistent with other independent observations in both sections, suggesting that they are 

fairly robust at least for the most recent (<5Ma) history of folding. 

These slip values can be added to the rates also recorded across the Yakeng anticline to better 

document the whole deformation accommodated across the southern Tianshan piedmont. In the 

Yaha section, the Yakeng anticline started growing at ~5.5 Ma, at a slow rate of 0.16 mm/a of slip 

until the Pleistocene. Both structures were therefore active at the same time and the total slip 

rate was ~1.2-1.4 mm/a from ~4 Ma until the Pleistocene. In the Kuche section, the long term slip 

rates across the Yakeng anticline are unknown, but, since the fold is neither tectonically nor A
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topographically well developed, they are likely low or negligible (<0.1 mm/a?). Thus, in this 

section, the deformation was mainly focused on only the Qiulitag fold. Consequently, over a long 

timescale (<3-5 Ma), a minimum of 0.8 to 1.4 mm/a of slip was accommodated in the study region 

across these two structures. However, these values neglect the deformation that was likely 

accommodated across the northern and southern limbs of the Qiulitag fold in Kuche and Yaha, 

respectively. When compared to the Mio-Pliocene sediment progradation rates of ~3.9 mm/a 

measured across the same piedmont (Charreau et al., 2009), they suggest that a significant 

part of the total deformation was also accommodated across other inner structures during 

this period.  

During the Pleistocene, the Yakeng anticline also experienced a strong increase in slip rate 

(Hubert-Ferrari et al., 2007). Indeed, 0.5 mm/a and ~1.5 mm/a of additional slip was absorbed in 

the Yakeng anticline across the Kuche and the Yaha sections (Saint-Carlier et al., 2016), yielding 

total slip rates of ~3mm/a in both sections. According to GPS measurements, 7-8 mm/a of 

shortening is accommodated across the Tianshan range at the longitude of the Kuche section (e.g. 

Reigber et al., 2001). Therefore, this strong Pleistocene increase in slip rates suggests that a 

significant proportion (40-50%) of the recent deformation of the whole Tianshan is now 

accommodated across the Qiulitage and Yakeng anticlines only and that the deformation has 

migrated from inner structures toward the external structures of the piedmonts. This acceleration, 

also observed in northern Tianshan, may suggest evolution of the orogen center toward a more 

steady topography (Charreau et al., 2018; Guerit et al., 2016). 
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Tables and figures caption

Fig. 1: a. Topographic map of the Tianshan area showing the GPS velocity and location of the 

study area; b. satellite image of the study area showing the location of the Kuche section in the A
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southern limb of the Qiulitag anticline; c. geological cross section of the Qiulitag fold along the 

Kuche river; d. geological cross section of the Qiulitag fold along the Yaha river.. 

  

Fig. 2: a. Satellite image of the Kuche river showing locations of the sampling sites for 

cosmogenic burial age determinations (KU1 to 8). The inset photo shows an example of a 

sampling site. Samples were mainly collected at the base of overhanging cliffs, inside caves, or 

inside deeply entrenched canyons to ensure negligible exposure to present-day cosmic rays. 

The samples were also collected at sites where there was >20 m thickness of sediment above 

the sampling site in order to rule out possible muon penetration. The diagram on the right 

shows the stratigraphic ages derived from our cosmogenic burial dating and the 

magnetostratigraphic correlation of Sun et al. (2009) as a function of the depth along the Kuche 

section. The mean sediment accumulation rate and its uncertainty were constrained following 

the approach developed by York et al. (2004), using a general least-squares procedure that 

allows uncertainties in the stratigraphic thickness (~50m) as well as in the ages to be taken into 

account. The last three points of Sun's section were included in the calculation assuming an age 

uncertainty of 10 ka ; b. satellite image of the Yaha river showing the location of the 

cosmogenic depth profile (gray star). A Trimble DGPS topographic device was used to acquire 

high resolution topographic measurements of the marker (red circles) and of the river bed 

(yellow circles). The inset is a Google Earth image capture of the terrace showing the location 

of the cosmogenic depth profile (gray star).  The two elevation profiles are shown on the right. 

We determined the vertical offset and its uncertainty by estimating the slopes and intercepts 

and associated uncertainties of the best-fit lines representing the surface on both side of the 

axial surface (Thompson et al., 2002). The vertical offset measured across this profile is 

interpreted as a fold scarp and is converted into a horizontal component of slip using the 

bedding dip change that can be measured along the river and on the seismic line (Figs. 2, C and 

12 of Hubert-Ferrari et al. (2007)). The sampling points for the cosmogenic depth profile are 

shown in the bottom photograph along with the measured concentrations and the results of the 

best-fit model (red curve) (see Saint-Carlier et al. (2016) and the Supplementary Information 

for further details of the inversion procedure). texp and Cinh are the inverted exposure age and 

the inherited concentration, respectively.
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Fig. 3: a. Growth strata (red lines) predicted by our model using the surface bedding dip 

adjustment method and comparison with the seismic line drawing (black lines); b. Measured 

(gray dots) and modeled (red circles) dip angles plotted against horizontal distance along the 

section. The black line indicates the expected dip if only pre-growth strata are considered; c. 

temporal evolution of slip rates across the Qiulitag anticline at the Yaha section for each of the 

modeled layers. Assuming 5° for the 1σ uncertainty in each individual dip angle measurement, 

we used the Chi-square criterion to estimate the resulting uncertainty in shortening at the 67% 

(1σ) confidence level. This uncertainty accounts for measurement errors and for the natural 

roughness of bedding surfaces. Each age is assigned to a confidence interval corresponding to 

the chron defined by the magnetostratigraphic datapoints that bracket the stratigraphic location 

of the point of interest. However, for each point we assumed a symmetrical uncertainty using 

the maximum limit. Following the approach developed by York et al. (2004), the average 

shortening rate and its uncertainty were constrained using a general least-squares procedure that 

allows the uncertainties in the shortening estimates as well as in the ages to be taken into 

account. 

Fig. 4: same as Figure 3 but for the Kuche section. The red line in Figure 4b corresponds to the 

smoothed dip angles.

Table 1: a. Cosmogenic 10Be and 26Al results for burial samples. ‘Ba’ are burial ages assuming no 

previous sediment storage and an initial 26Al/10Be ratio of 6.5. ‘Bac’ are burial ages calculated 

using the 26Al/10Be ratio measured in the present-day river sand. Cosmogenic results for burial 

samples collected in the Kuche section; b. Cosmogenic results of the depth profile samples.
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Table 1a: Cosmogenic 10Be and 26Al results of burial-age samples. ‘Ba’ are burial ages calculated assuming no previous 

sediment storage and an initial 26Al/10Be ration of 6.5. ‘Bac’ are burial ages calculated using the 26Al/10Be ratio measured in the 

present river sand.

 Coordinates (°)    
Concentration (104at.g-

1)
  Burial ages (Ma)

Sample

 Lat.  Lon.  

Mass of quartz 

(g)
 

Number of 

clasts
 10Be  26Al  

10Be/26Al

 Ba  Bac

River sand 41.8744 83.0603 15.57 Sand 6.9±0.3 25.3±3.1 3.7±0.5 1.3±0.3 n.a

TS12-KU-01 41.7964 83.3226 10.612 30 1.3±0.2 0.7±0.7 0.5±0.5 5.4±2 4.1±2.3

TS12-KU-02 41.8775 83.6252 34.17 28 3.4±0.6 3.1±2.1 0.9±0.6 4.5±1.7 3.2±2

TS12-KU-03 41.8750 83.8750 75.23 28 3.3±1.2 2.1±1.7 0.6±0.5 5.1±2.1 3.8±2.4

TS12-KU-04 41.8725 83.1431 57.03364 28 2.3±0.3 3.1±2.4 1.4±1.7 3.6±1.8 2.3±2.1

TS12-KU-05 41.8708 83.0581 38.33 20 3.9±0.3 5.8±3 1.5±1.9 3.4±1.4 2.1±1.7

TS12-KU-06 41.8694 83.0573 25.99 26 2.8±0.4 6.4±2.1 2.3±2 2.4±0.9 1.1±1.2

TS12-KU-07 41.8656 83.0571 10.2769 25 2.3±0.2 3±1.6 1.3±0.7 3.8±1.6 2.5±1.9

TS12-KU-08  41.8656  83.0571  26.26  26  1.9±0.4  5.5±2.1  2.9±1.7  1.9±1.1  0.6±1.4

Table 1b: Cosmogenic results of the depth profile samples

     

Sample name
Depth 

(cm)

Sampling 

thickness 

(cm)

Sample type
Mass of 

quartz (g)
10Be (104at.g-1)
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TS12_YA_T1_P0a 0 5 1 cobble 10 67.3±2.3

TS12_YA_T1_P0b 0 5 7 cobbles 10.67 74.6±2.4

TS12_YA_T1_P0c 0 5 35 coarse pebbles and cobbles 9.83 71.5±2.2

mean: 71.1±3.7

TS12_YA_T1_P1 -19.5 2.5 sand and fine pebbles 10.69 56.7±2

TS12_YA_T1_P2 -46 4 sand and fine pebbles 13.01 47.1±1.5

TS12_YA_T1_P3 -120 5 sand and fine pebbles 3.73 22.4±1.4

TS12_YA_T1_P4 -210 5 sand and fine pebbles 18.57 12.9±0.5

TS12_YA_T1_P5  -400  20  sand and fine pebbles  14.27  9±0.5
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