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Highlights

• A multiscale micromechanical homogenization framework is proposed for fluid-filled porous materials.

• The overall elastic properties of the fluid-filled porous materials are determined in the framework.

• The effects of pore distribution and fluid pressure on the effective elastic properties are quantified.

• By considering the fluid diffusion from macro-to micro-scale pores, evolution of the effective properties is predicted

Introduction

As a type of heterogeneous materials, porous materials are usually composed of two components, a solid skeleton and pores.

Pores may be either empty or filled with fluid (i.e., gas or liquid) [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF][START_REF] Gibson | Cellular Materials in Nature and Medicine[END_REF]. The latter type is classified as fluid-filled porous materials, which are widely available in not only natural geophysical and biological systems, e.g., rock, plant, and bone, but also synthetic structures, such as hydrogels, tofu, and fluidic origami (Kim and Guyer, 2014).

Predicting the effective elastic responses of fluid-filled porous materials is a challenging problem, which has attracted considerable attention in recent years, driven by its importance in diverse contexts such as estimating the stored amount of carbon dioxide (CO2) during the injection in underground saline aquifer [START_REF] Streit | Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock[END_REF][START_REF] Leung | An overview of current status of carbon dioxide capture and storage technologies[END_REF][START_REF] Szulczewski | Theoretical analysis of how pressure buildup and CO2 migration can both constrain storage capacity in deep saline aquifers[END_REF], predicting the time-dependent response of hydraulic actuators [START_REF] Guiducci | Pressurized honeycombs as soft-actuators: a theoretical study[END_REF][START_REF] Yuk | Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[END_REF], and designing fluid-filled acoustic metamaterials [START_REF] Spadoni | Closed-cell crystalline foams: self-assembling, resonant metamaterials[END_REF][START_REF] Dorodnitsyn | Twodimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index[END_REF].

The particularity of this kind of materials is the strong coupling between the fluid pressure in the pores and the elastic deformation of the solid skeleton. This coupling induces a complex problem, as the overall elastic responses of fluid-filled porous materials are governed by the fluid pressure in the pores [START_REF] Shafiro | Materials with fluidfilled pores of various shapes: Effective elastic properties and fluid pressure polarization[END_REF][START_REF] Warner | The elasticity and failure of fluid-filled cellular solids: theory and experiment[END_REF][START_REF] Ayyagari | On the nature of pressure dependence in foams[END_REF]. To describe the coupling of pore pressure, solid deformation, and macroscale stresses, in fluid saturated porous media, linear poroelasticity was established by [START_REF] Biot | General theory of three-dimensional consolidation[END_REF] through a phenomenological approach. The thermodynamic background of this theory has since been confirmed by the mixture theory [START_REF] Coussy | From mixture theory to Biot's approach for porous media[END_REF] and the homogenization method [START_REF] Thompson | A reformation of the equations of anisotropic poroelasticity[END_REF], as well as by the micromechanical approach [START_REF] Cheng | Material coefficients of anisotropic poroelasticity[END_REF].

More recently, Biot's constitutive relations for a linearly poroelastic material were also extended to cover the cases on finite deformation [START_REF] Brown | Effective equations for fluid-structure interaction with applications to poroelasticity[END_REF]. Furthermore, if the solid skeleton is not a 4 continuum, i.e., there are some micro-scale pores in the solid matrix with a significantly smaller size than the macro-scale pores, the fluid in macro-scale pores will diffuse into the matrix (i.e., the small pores) driven by the pressure gradient between the two pore scales, resulting in the evolution of effective properties [START_REF] Berryman | The elastic coefficients of double-porosity models for fluid transport in jointed rock[END_REF][START_REF] Rohan | Multiscale modeling of a fluid saturated medium with double porosity: Relevance to the compact bone[END_REF][START_REF] Song | Shear properties of heterogeneous fluid-filled porous media with spherical inclusions[END_REF]. The evolving effective properties of fluid-filled porous materials are of importance to many practical applications and deserve further investigation towards a systematic understanding.

There has been a series of efforts made to understand the overall elastic responses of porous materials. As a simple case, the elastic constants and their porosity dependence in dry porous materials, i.e., pores are empty or filled with air, have attracted much attention [START_REF] Mackenzie | The elastic constants of a solid containing spherical holes[END_REF][START_REF] Walsh | Effect of porosity on compressibility of glass[END_REF][START_REF] Wang | Young's modulus of porous materials[END_REF][START_REF] Day | The elastic moduli of a sheet containing circular holes[END_REF][START_REF] Hu | Effective elastic properties of 2-D solids with circular holes: numerical simulations[END_REF][START_REF] Pabst | Elasticity of porous ceramics-A critical study of modulus -porosity relations[END_REF][START_REF] Li | Effective elastic properties of randomly distributed void models for porous materials[END_REF][START_REF] Chen | Microstructural characteristics and elastic modulus of porous solids[END_REF]Chen et al., 2017).

However, the role of the spatial distribution of pores has rarely been considered. [START_REF] Goussev | Void-containing materials with tailored Poisson's ratio[END_REF] showed that the transverse Poisson's ratio of porous materials depends strongly upon the spatial arrangement of the pores. More recently, Liu et al. (2016 (a) and (c)) also identified the effect of pore distribution on the elastic responses of ordered porous materials to inner pressure.

Naturally occurring porous materials, such as rocks and plants, generally contain fluidfilled pores, and effects of pressure on their overall elastic properties cannot be ignored [START_REF] Brown | On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[END_REF][START_REF] Christensen | The influence of pore pressure and confining pressure on dynamic elastic properties of Berea sandstone[END_REF][START_REF] Georget | Modelling of carrot tissue as a fluid-filled foam[END_REF][START_REF] Gibson | Cellular Materials in Nature and Medicine[END_REF]. More recently, synthetic porous materials have been designed by incorporating pressurized fluid in pores for use as tunable systems [START_REF] Guiducci | Pressurized honeycombs as soft-actuators: a theoretical study[END_REF][START_REF] Lv | A multiscale corotational method for geometrically nonlinear shape morphing of 2D fluid actuated cellular structures[END_REF][START_REF] Yuk | Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[END_REF]. Although intrinsically phenomenological, substantial work on the theoretical modeling of effective responses in fluid-filled porous materials can be found in the literature [START_REF] Shafiro | Materials with fluidfilled pores of various shapes: Effective elastic properties and fluid pressure polarization[END_REF][START_REF] Warner | The elasticity and failure of fluid-filled cellular solids: theory and experiment[END_REF][START_REF] Kitazono | Application of mean-field approximation to elasticplastic behavior for closed-cell metal foams[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. Instantaneous constitutive relations[END_REF][START_REF] Ma | Elastoplastic mechanics of porous materials with varied inner pressures[END_REF][START_REF] Guo | Analysis of vapor pressure and void volume fraction evolution in porous polymers: a micromechanics approach[END_REF][START_REF] Su | A pressure-dependent phenomenological constitutive model for transversely isotropic foams[END_REF]. Different methods for the prediction It must be noted that, in the various previous studies, the solid skeleton was assumed as a continuous phase with its interaction with pore fluid occurring only at the pore wall, assumed to be impermeable. However, many porous materials, such as rocks and bones, exhibit multiscale pore structures [START_REF] Cowin | Bone Mechanics Handbook[END_REF][START_REF] Tsakiroglou | A new approach for the characterization of the pore structure of dual porosity rocks[END_REF][START_REF] Borgomano | Dispersion and attenuation measurements of the elastic moduli of a dual-porosity limestone[END_REF]. In such materials, the structure can be considered as two or more interacting pore systems, which collectively have a strong influence on fluid transfer and effective elastic properties. The transport of fluid in such multiscale porous materials, especially the double-scale cases has been the subject of numerous studies [START_REF] Moutsopoulos | Hydraulic behavior and contaminant transport in multiple porosity media[END_REF][START_REF] Ba | Mesoscopic fluid flow simulation in double-porosity rocks[END_REF][START_REF] Choo | Hydromechanical modeling of unsaturated flow in double porosity media[END_REF].

Homogenization technologies have been

proposed to explore the elastic behaviors of multi-(or double) scale porous materials (Auriault andBoutin, 1992, 1993;[START_REF] Boutin | On models of double porosity poroelastic media[END_REF][START_REF] Rohan | Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem[END_REF]. However, to date, few attempts have been made to incorporate the diffusion effect into 3
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Effective elastic properties of fluidfilled porous materials

Fluid pressure acting on pore walls can have a significant effect on the homogenized mechanical behavior of porous materials. In this section, we examine the overall elastic responses of fluid-filled porous materials based on the single-scale micromechanical model as described in Section 2.

Elastic properties of dry porous materials

We first consider a dry porous material, in which the pores are empty or filled with air. 

 o  p  o  p     (a) (b) (c) o p o  i r i R
Cite as: Liu, M., Wu, J., Gan, Y., Hanaor, D. A., & Chen, C. Q. (2019). Multiscale modeling of the effective elastic properties of fluid-filled porous materials. International Journal of Solids and Structures,162,[36][37][38][39][40][41][42][43][44] 8

In order to calculate the bulk modulus of porous materials through the single-pore model, the inner and outer boundaries have By superposing the two components, the outer boundary condition of the unit cylinder in Fig. 2(a) can be obtained as

  1 o o i p   .
In the case of plane stress, the radial displacement of the thick-wall cylindrical unit cell can be calculated according to the classical theory of elasticity [START_REF] Timoshenko | Theory of Elasticity[END_REF])
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where 
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9 Substituting Eq. ( 1) into Eq. ( 2), the effective bulk modulus of dry porous materials can be obtained by the definition
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It can be found that the effective bulk modulus of dry porous materials (i.e., It is noted that the geometrical arrangement of pores can have a significant effect on the overall elastic deformation. In particular, the transverse Poisson's ratio of a system having triangularly packed pores increases with porosity while that of a square packed array decreases [START_REF] Goussev | Void-containing materials with tailored Poisson's ratio[END_REF]. This porosity dependence of Poisson's ratio cannot be captured by existing theoretical models. To fill this gap, we present a semiempirical equation by adopting the geometric factor α, introduced by Liu et al. (2016 (a) and (c)) to describe the effect of pore distribution on the pore-load modulus, to relate the effective Poisson's ratio to the porosity of the porous material as
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For an isotropic elastic material, there are only two independent elastic parameters. For a planar problem, the effective Young's modulus can be obtained through the relation 3) and ( 4) as
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By means of Eqs.

(3)-( 5), the elastic properties of a porous material can be related to the porosity and the arrangement of pores.

It should be mentioned that it should also be noted that the stiffness of a 10 porous material having a square lattice can be considered as isotropic only under hypothetical conditions in which porosity is sufficiently low and the so-called macropores are distributed quite sparsely. However, from a more accurate perspective, the stiffness of materials with a square lattice pore arrangement is orthotropic, and two stiff and two compliant directions can be found [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF]. Due to the symmetrical pore distribution, the relation of 
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Effect of fluid pressure

When pores are filled with pressurized fluid, the deformation of a solid skeleton can be significantly affected by the fluid pressure.

Accordingly, the overall elastic properties of these materials depend upon fluid pressure [START_REF] Warner | The elasticity and failure of fluid-filled cellular solids: theory and experiment[END_REF][START_REF] Gibson | Cellular Materials in Nature and Medicine[END_REF].

Here 
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Here, 
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By substituting Eqs. ( 7) and (8) into Eq. ( 6), the effective Young's modulus can be with an explicit form as
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where The effective bulk modulus can be obtained according to the similar analysis through the micromechanical model, and the corresponding expression is

1 i i f i K K P M  , ( 11 
)
where i K is the effective bulk modulus of the dry porous material given by Eq. ( 3).

The linear dependence of the effective bulk modulus on the pore pressure is further evident. Considering the relation of

1 = 2 i i i v E K 
, by combining Eqs. ( 10) and ( 11), the effective Poisson's ratio of the fluid-filled porous material can be found independent of the pore pressure, i.e., = ii vv . and can be described by Darcy's law [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]. The fluid front r , i.e., the interface between fluid-filled micro-scale pores and empty ones, see the blue line in Fig. 6(a), moves from the inner boundary 1 r to the outer boundary 1 R of the cylinder unit cell during diffusion. The variation of the fluid front against diffusion time can be obtained as [START_REF] Conrath | Radial capillary transport from an infinite reservoir[END_REF]Liu et al., 2016 (b)) 10) and ( 11) with 0 i  . These two layers form the new skeleton of the macro-scale porous structure which can be regarded as a composite structure with two phases [START_REF] Wang | Tailoring the moduli of composites using hollow reinforcement[END_REF].
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Under the inner and outer loads, as shown in 16 [START_REF] Christensen | Mechanics of Composite Materials[END_REF]. The homogeneous Young's modulus of this composite skeleton can be obtained as
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where 0 E and 0 E are Young's moduli of the dry outer layer and fluid-filled inner layer, respectively, and  is the volume fraction of the inner fluid-filled layer with
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Here, r is the fluid front position, and 1 r  and 1  is depending on the arrangement of the macropores. Similar to Eq. ( 13), the homogeneous bulk modulus can be expressed as
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where 0 K and 0 K are bulk moduli of the dry and fluid-filled layers, respectively. As the effective Poisson's ratio of the fluid-filled layer is independent of fluid pressure, i.e., 00 = vv , the homogeneous Poisson's ratio can also be obtained as 10 = vv .

The effective elastic properties of the macroscale dry porous structure containing partial filled micro-scale pores (see Section 3.1), i.e., 1

K , 1 v , 1
E and 1 M , can be obtained from Eqs. ( 3)-( 5), (9) by setting subscript 1 i  , with elastic constants of the homogeneous solid matrix obtained from Eqs. ( 13) and ( 15). It should be mentioned that the pore-load modulus of macro-scale dry porous structure 1 M can also be calculated through the theoretical model given by Liu et al. (2016 (c)). To unify, here we use the equivalent model of Eq. ( 9) combined with the homogeneous parameters.

Similarly, as shown in Section 3.2, the effective properties of the macro-scale fluidfilled porous structure containing partially filled micro-scale pores (i.e., 1

K , 1 v , 1 E )
can be calculated through Eqs. ( 10) and (11) with a subscript 1 i  . (3), ( 5) and ( 9) with 1 i  ) are also included as solid lines for comparison. It can be found that the theoretical predictions can consist with the FEM simulations well for both cases. With increasing volume fraction of the fluid-filled layer, all moduli increase. This is because the modulus of the fluidfilled layer is larger than the dry layer, and Cite as: Liu, M., Wu, J., Gan, Y., Hanaor, D. A., & Chen, C. Q. (2019). Multiscale modeling of the effective elastic properties of fluid-filled porous materials. International Journal of Solids and Structures,162,[36][37][38][39][40][41][42][43][44] 18 stiffens the composite structure.

Evolution of the effective properties during diffusion

When fluid is injected into the doubleporosity structure, there are two typical stages. Firstly, the macro-scale pores are filled rapidly, incurring the stiffening of the structure. Secondly, pressurized fluid in the macro-scale pore diffuses into the microscale pores imbedded in the matrix, driven by the pressure gradient, resulting in complex changes of the overall elastic behavior.

Relative to the second stage, the first one is much faster. Here we focus on the evolution of the effective properties during the fluid diffusion in the second stage. Two typical injection conditions, i.e., constant pressure and constant injection rate, are considered. These conditions are common in practical engineering problems, such as CO2 storage and hydraulic fracture [START_REF] Coninck | Carbon dioxide capture and storage: issues and prospects[END_REF][START_REF] Liu | A micromechanical analysis of the fracture properties of saturated porous media[END_REF][START_REF] Detournay | Mechanics of hydraulic fractures[END_REF]. Following the filling of the macro-scale pores, the pressure can be held constant by controlling the fluid injection rate or alternatively, the injection rate can be held constant resulting in a change of pressure as fluid is redistributed during the diffusion process.

For the case of constant injection rate, based on Boyer's Law for compressible fluids, a simple assumption can be employed to calculate the variable fluid pressure f P as  

00 ff P V P V V t      , (16) 
where, following the initial filling of macropores, 0 3)-( 5), (9) (i=0)
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  of overall mechanical properties of fluidfilled porous materials have been proposed by considering pressurized fluid as an compressible inclusion. To evaluate 5 poroelasticity, by introducing the Biot modulus as a parameter, the effect of fluid pressure on the effective response can be considered. However, as a phenomenological theory, the effect of the geometric distribution of pores is not captured by the Biot theory.

  homogenization techniques, and to further address the evolution of effective properties induced by fluid diffusion in the skeleton of porous materials. In this paper, a two-dimensional (2D) micromechanical model, which consists of pores at two scales, is employed to develop a multiscale framework to analyze the overall elastic responses of the fluid-filled porous materials. This model allows for the coupling of fluid pressure and the deformation of the solid matrix at each pore scale and for fluid diffusion from macro-scale to micro-scale pores imbedded in a non-continuum skeleton driven by a pressure gradient. Based on this micromechanical model, a theoretical model is proposed to predict the effective elastic properties of porous materials with/without pressurized pore fluid and is validated by finite element method (FEM) simulations. With this model, time-dependent elastic properties are obtained for constant and variable fluid pressure cases. elastic solid. At the macroscale, see Fig. 1(a), the cylindrical pores are arranged in a well ordered 2D triangular lattice, and all pores are filled with pressurized fluid. A unit cell comprising a thick-wall cylinder from the macro-scale porous structure is shown in Fig. 1(b), and micro-scale cylindrical pores are distributed in the cylinder wall. The micro-scale pore structure within the solid skeleton is shown in Fig. 1(c), with a similar triangular distribution. It should be noted that the considered macro-scale pores are much larger than the micro-scale pores and much smaller than the dimensions of the overall structure. Accordingly, the porous material can be treated as a continuum solid in representing its overall mechanical behavior. Moreover, we assume the presence of fine diffusion pathways within the solid matrix, facilitating the transport of fluid from macroto micro-scale pores. Additionally, fluid flow between pores at the same scale is assumed to be restricted. For simplicity, the pores within each level are assumed with the same size.

Fig. 1 .

 1 Fig. 1. Schematic representation of a porous material with double porosity: (a) Marco-scale pores filled with pressurized fluid; (b) a unit cell containing pores at two scales; (c) the solid skeleton containing micro-scale pores. Only the triangular distribution of pores is shown as an example.

  Since the ambient pressure and the compressibility of air are much smaller than the elastic stiffness of the solid matrix[H1], their effects on the deformation of the solid skeleton are negligible. The effective bulk modulus can be obtained by analyzing the deformation of porous samples under equibiaxial external load, as shown in Fig. 2(a). It is not easy to directly solve the stress and deformation fields of this structure, on account of the interaction of microstructures (i.e., the ordered pores arranged in the matrix). However, Gor et al. (2015) pointed out that the overall deformation of a plate with many pores can be approximately represented by the deformation of a unit cell comprising a homogeneous cylinder. Our previous works (i.e., Liu et al. 2016 (a) and (c)) further showed that each unit cell is affected by its neighboring cylinders, implying that the outer boundary conditions of the cylinder are related to the geometrical arrangement of the pores. This single-pore model will be extended here to calculate the bulk modulus of the dry porous material.

Fig. 2 .

 2 Fig.2. Schematics of the superposition method used to determine the bulk modulus of porous materials: (a) a porous sample subjected to external equi-biaxial tension, which can be superposed by (b) a porous sample subjected to external equi-biaxial tension and the uniform pore pressure, and (c) a porous sample subjected to uniform pore pressure. The blue dotted lines represent the outer boundaries of the cylindrical unit cell.
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  deformation as shown in Fig. 2(b), i.e., the same uniform loads are applied on the outer boundary of the sample and the pore surfaces; II. Pore-load deformation, as shown in Fig. 2(c), i.e., the internal pressure is only applied on the pore surface, and the outer boundary of the sample is free. For the uniform deformation case, the outer boundary of the unit cylinder can For the pore-load deformation case, Liu et al. (2016 (a) and (c)) gave the outer boundary condition as io p    , where  is a geometrical factor related to the interaction of neighboring pores and depending on the arrangement of pores, i.e.,  = 1/3 for porous materials with a triangular lattice. For materials with a square lattice pore arrangement, considering the symmetry of both the structure and the loading conditions, the applicability of the single-pore model is also valid, with  = 11 refer to the micro-and macro- scale pores, respectively.

  the homogenized elastic constants of the non-continuum skeleton. Furthermore,

  Fig. 3. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the effective elastic constants of porous materials with triangular (TR) and square (SQ) lattice as a function of porosity: (a) the normalized effective bulk modulus; (b) the normalized effective Young's modulus; (c) the effective Poisson's ratio.

  Cite as:Liu, M., Wu, J., Gan, Y., Hanaor, D. A., & Chen, C. Q. (2019). Multiscale modeling of the effective elastic properties of fluid-filled porous materials. International Journal ofSolids and Structures, 162,[36][37][38][39][40][41][42][43][44] The FEM simulated porosity dependent effective elastic constants of the porous material are shown in Figs. 3(a)-(c) for the bulk modulus, Young's modulus and Poisson's ratio, respectively. For each case, pore distributions of triangular and square lattices are considered. The corresponding theoretical predictions given by Eqs. (3)-(5) with different geometrical arrangement factors are included as solid lines for the purpose of comparison. For all three cases, one can find that the proposed theoretical model agrees well with the FEM results with different pore distributions. In particular, the opposing relationships between the effective Poisson's ratio and porosity can be qualitatively predicted by employing the geometric factor. The theoretical model of Eqs. (3)-(5) will be used to the further analysis of the effects of fluid pressure and diffusion on the overall elastic properties of fluid-filled porous materials.

Fig. 4 .L

 4 Fig. 4. Schematic representation of the deformation of a fluid-filled porous material subjected to inner fluid pressure and external load: (a) Porous structure with empty pores (pressure free); (b) The reference configuration of porous materials including pore pressure; (c) The deformed configuration of pressurized porous materials subjecting external load.   j x L and   j yL ( j = 0, 1 and 2) refer to the dimensions of the porous material under different states at x-and ydirections, respectively.

  dimension of the porous materials without fluid, f P is the fluid pressure in the porous materials, and the pore-load modulus, i M , is given by Liu et al. (2016 (a) and (c)) as

  is seen that the effective Young's modulus of the fluid-filled porous material is linearly dependent on the pore 13 pressure.

Fig. 5 .

 5 Fig. 5. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the effective elastic moduli of fluid-filled porous materials as a function of pore pressure: (a) the normalized effective Young's modulus; (b) the normalized effective bulk modulus.

  scale, in which  is the viscosity of the fluid, 0  the porosity of the solid skeleton with microscale pores, k the permeability of the porous skeleton, and f P the pressure of the macro-scale pores. The fluid front position can be predicted quantitatively by Eq. (12). It should be noted that here we consider the diffusion of fluid in the skeleton within micro-scale pores. The effect of the microstructure (e.g., the size and spatial distribution of the micro-pores) on the diffusion process can be reflected by homogenized macroscopic parameters, i.e., porosity and permeability. For example, a quantitative relation can be established to correlate the permeability and the distribution and size of micro-pores (Sobera[START_REF] Sobera | Multiscale modeling of the effective elastic properties of fluid-filled porous materials[END_REF].

Fig. 6 .

 6 Fig. 6. Schematics of the pressure-driven fluid diffusion from macro-scale pores to micro-scale pores and its induced heterogeneity: (a) A cylindrical unit cell with pressurized fluid filled macro-scale pore; (b) The interface between fluid-filled micro-scale pores and empty ones; (c) The illustration of parallel model used to homogenize the porous material with partially pressurized micro-scale pores.

Fig. 6

 6 Fig. 6(c), the parallel model can be employed to homogenize this two-phase composite



  , and cannot be completely arbitrary. In addition, the relation between 1

Fig. 7 .E

 7 Fig. 7. Comparison of FEM simulations (symbols) and theoretical predictions (lines) of the effective elastic moduli of heterogeneous porous materials as a function of volume fraction of the fluid-filled porous layer: (a) φ1 = 0.40; (b) φ1 = 0.10.

  Fig. 8. Flow chart of the iterative algorithm used for determining the variation of effective properties of fluid-filled porous materials.

Fig. 9 .t

 9 Fig. 9. Variation of normalized effective elastic moduli as functions of the normalized diffusion time under injection conditions of: (a) constant pressure; (b) constant injection rate and (c) constant volume.
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