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Abstract

Traditional supervised classification algorithms fail
when unlabeled test data arise from a probability dis-
tribution that differs from that of the labeled training
data. This problem is addressed by domain adapta-
tion, an active research area in which one would like
to transfer the knowledge acquired from a first labeled
domain, the source, to a second one, the target. In this
paper, we tackle this problem from the perspective of
large margin classifiers based on (ε, γ, τ)−good similar-
ity functions. We first prove a bound on the error of
such a classifier on the target domain. Then we present
our algorithm consisting in minimizing this bound, al-
lowing to learn a good classifier directly on the tar-
get domain without an intermediate domain alignment
step. Under specific conditions, our algorithm can be
formulated as a convex optimization problem that is
solved efficiently. Its performance is assessed via ex-
periments on on a toy set and a real world problem.

Keywords: binary classification, domain adaptation,
large margin, similarity functions

1 Introduction

Classification algorithms are used in several real world
applications such as image recognition and sentiment
analysis. Some of these algorithms output decision
rules are based on a pairwise similarity between dif-
ferent data instances, with two of the most known al-
gorithms of this kind being the nearest neighbors clas-

∗https://ievred.github.io/
†https://www.creatis.insa-lyon.fr/ lartizien/

sifier [CH67] and the support vector machine [BGV92]
(SVM). In order to determine the class of a given ex-
ample, the former relies on the labels of its nearest
neighbors in the sense of a given distance via a vot-
ing rule, whereas the latter outputs a classifier that
is a linear combination of the point’s similarity to the
rest of the training data, where the used similarity is
restricted to verify Mercer’s theorem, i.e to be a ker-
nel. Despite such a restriction, SVM’s are appealing
due to their great generalization capacity that is em-
pirically observed and theoretically proven [CV95]. In
fact, their aim at separating the data with the largest
possible margin is a major cause of their success. As
a result, it seems interesting to keep this large margin
separation aspect without constraining the used simi-
larity function to be a kernel. This is the main topic
of the two seminal papers of [BBS08b, BBS08a], which
define and analyze the goodness of a similarity function
for a given binary classification problem. The defini-
tion they introduce is rather intuitive, stating that with
a high probability (1 − ε), the average similarity of a
data point to landmarks of its own label is greater than
that to the opposite label, with the difference between
the two average similarities being at least equal to a
margin γ. The landmarks are a priori fixed instances
that represent a τ fraction of the available data. Given
a similarity function verifying this intuitive condition,
the authors define a new representation space in which
an instance’s features are its similarities to the different
landmarks, and prove that with enough drawn land-
marks, the two classes are linearly separable with a
large margin in that representation. Given such en-
couraging theoretical guarantees, several works in the
literature considered the problem of learning such func-
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tions ([BHS12, GY13, NGHS15, ISH+15]).

The way they are defined, (ε, γ, τ)−good similarity
functions are convenient for a supervised learning set-
ting in which the training and testing sets arise from
the same probability distribution and belong to the
same input space. This might not always be the case
for real world applications where new partially or to-
tally unlabeled data is available for a given applica-
tion, but follows a probability distribution that differs
from the one generating the labeled training data. An
efficient approach to tackle such a problem is trans-
ferring the knowledge acquired on the training data
to the new test data, and this task is at the heart of
the domain adaptation, a currently active research area
[PY10, WKW16, Mar11], in which the labeled domain
is called the source, while the unlabeled one is called
the target. More precisely, domain adaptation offers
methodological frameworks and algorithms allowing to
leverage information available from both domains to
output decision rule that is good for the target one.

In this paper, we consider the aforementioned simi-
larity functions in the challenging setting of unsuper-
vised domain adaptation, where no labels are available
for the target domain. We start our contribution by
providing a theoretical bound on the error of a given
similarity function on the target domain by bounding
the error of the corresponding classifier. Up to some
terms that are neglected afterwards, the bound is a
trade off between a source error term and a disagree-
ment between the two domains. The latter is similar
to the H∆H divergence [BDBC+10], and its general-
ization, the discrepancy distance [MMR09]. Following
this theoretical contribution, we derive an algorithm
that minimizes this bound so that a classifier is directly
learnt for the target domain without an additional do-
main alignment step.

As far as we know, the only works that consider
the application of (ε, γ, τ)−good similarities in domain
adaptation are [MHA12] and [DR18]. The first one
uses a heuristic to select landmarks that move closer
the two distributions in the projection space, with the
similarity function they used being a kernel that is it-
eratively reweighted. Our work differs from theirs as
in our case the similarity function is learnt in one step
and using all of the source instances as landmarks. The
second establishes theoretical bounds for the error of a
similarity function on a target domain in terms of `1
and χ2 divergences between probability distributions.
In this work, we provide a new bound that involves
a domain disagreement term taking into account the
considered hypothesis spaces.

In terms of its mechanism consisting in directly

learning a classifier on the target domain without an
alignment step, our algorithm is similar to the one pro-
posed in [GHLM17]. However, while our domain dis-
agreement term is defined by a supremum, theirs is
rather an expectation over the set of considered hy-
potheses classes, as they consider a PAC-Bayesian set-
ting.

The rest of the paper is organized as follows: the first
section introduces required preliminary knowledge and
notations. Section 2 is dedicated to our contributions,
where we first derive a bound on the error term of the
target domain. Then, this bound is used to derive an
algorithm by considering a particular case of bilinear
similarity functions and linear classifiers, resulting in
a a convex programming formulation that is solved ef-
ficiently. Finally, in the last section we evaluate our
algorithm on a toy data set and on a real world prob-
lem.

2 Preliminaries and notations

We consider a binary classification setting, in which
the feature space is X ⊂ Rd and the labels set is
Y = {−1, 1}. Since we work in a domain adaptation
context, we suppose having access to a labeled source
sample S and an unlabeled target one T , drawn re-
spectively from probability distributions S and T . Fur-
thermore, we denote by fS and fT the two functions
labeling the instances of both distributions.

We now recall the definition of a good similarity
function K : X × X → [−1, 1] introduced in [BBS08a]

Definition 1 (Balcan et. al. 2008). A similarity func-
tion K is (ε, γ, τ)-good in hinge loss for problem (dis-
tribution) P if there exists a (probabilistic) indicator
function R of a set of “reasonable points” such that:

E
(x,y)∼P

[(
1− y.k(x)

γ

)
+

]
≤ ε, (1)

P
x′∼P

[R(x′)] ≥ τ, (2)

where k(x) = E
(x′,y′)∼P

[y′K(x, x′)|R(x′)].

This definition formalizes the intuition that most
of instances drawn from a probability distribution P
should have a greater average similarity to landmarks
of their own class, than those of the opposite class by
a margin γ at least. In fact, k(x) represents the differ-
ence between the instance x’s average similarity to its
own class and to the opposite class, and Equation (1)
reflects a penalization for the case where yk(x) < γ, i.e
where the signed difference is not large enough.
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Equivalently, k can be seen as a hypothesis used to
classify instances, and Equation (1) says that this hy-
pothesis has an expected hinge loss bounded by ε at
margin γ. We will consider this classifier throughout
the next section detailing our contribution.

Given such a similarity function, the authors of
[BBS08b, BBS08a] prove that with enough landmark
instances, one can construct a new representation space
where the features of an instance is its similarities to
those landmarks, and where the two classes are linearly
separable with a large margin. This result is reminis-
cent of the kernel trick for SVM’s, but it is more gen-
eral as K does not necessarily have to be a kernel. We
note that Definition 1 was modified in [DR18] in a way
allowing landmarks to come from a probability distri-
bution that is not necessarily that of the tested data
instances.

Using that modified definition, we introduce the fol-
lowing quantity for a probability distribution P that
will be either S or T in the rest of the paper.

EP(k, h) := E
x∼P

[(1− h(x)k(x)/γp)+] (3)

where

k(x) := E
(x′,y′)∼S

[K(x, x′)f(x′)] (4)

γp is a margin associated to the probability distribu-
tion P and h is a classifier. We note that regardless of
distribution P, landmarks in EP(k, h) are drawn from
distribution S. In the case where P = S, this corre-
sponds to Definition 1 with τ = 1 and in the case of
P = T , it corresponds to its modification in [DR18].

3 Learning a good classifier for
the target domain

We hereby present our contribution, starting by estab-
lishing a theoretical bound on the average hinge loss
of a classifier k on the target domain. This bound is
further used to derive an algorithm that directly learns
a good classifier for the target.

3.1 Problem setup

Our goal is to learn a classifier k, or equivalently a
similarity function K that has a low error on the target
domain ET (k, fT ). We follow an approach analogous to
the ones presented in [BDBC+10] and [MMR09]. We
recall the main result stated in [MMR09, Theorem 8]:

Theorem 1 (Mansour et al., 2009). Let H be a
hypothesis space, and L : H × H → R+ a sym-
metric loss function verifying the triangle inequality.
For a probability distribution P and h, g ∈ H, let
LP(h, g) = E

x∼P
[L(g(x), h(x))]. Let h∗S and h∗T as

the best classifiers from H achieving the lowest er-
rors on S and T respectively. Finally, define the dis-
crepancy distance between S and T as discL(T ,S) =

sup
h,h′∈H

|LT (h, h′)− LS(h, h′)|. Then,

LT (h, fT ) ≤ LS(h, h∗S) + disc(T ,S)

LT (h∗T , fT ) + LT (h∗T , h
∗
S)

The authors assume that LT (h∗T , h
∗
S), the average

loss between the best in-class hypotheses for each do-
main, is small for adaptation to be possible. Further-
more, the term LT (h∗T , fT ) is assumed to be small given
that the hypothesis space has enough richness to rep-
resent fT with low error, and LS(h, h∗S) is close to the
considered classifier h’s error on the source again if fS
is well approximated by h∗S . This bound will hence be
small if h performs well on the source domain and if S
and T are close in terms of the discrepancy distance.

The above result cannot be used directly as we con-
sider the hinge loss that does not verify the triangular
inequality. In order to prove our result, we assume
that there exists a function f : X → [−1, 1] that per-
forms well on the the source and target domains. In
the case f achieves a perfect labeling of both the source
and target domains, this assumption corresponds in
the domain adaptation literature to the covariate shift
[SKM07]. Otherwise, it is similar to the ideal joint
hypothesis defined in [BDBC+10] and considered in
[GHLM17]. While such a function is unknown, we sup-
pose that it belongs to a hypothesis space H verifying
h ∈ H ⇒ −h ∈ H.

With these assumptions, we are ready to state our
bound on the expected error on the target domain
ET (k, fT ).

Proposition 1. Given a similarity function K with
a corresponding classifier k, two margins γs, γt respec-
tively associated to the source and target domains and
their ratio δ = γs

γt
, the following holds:

ET (k, fT ) ≤ ES(k, fS) +
1

γs
sup
h∈H

∆δ(k, h)

+ E
x∼S

[
|fS(x)− f(x)|

γs

]
+ E
x∼T

[
|fT (x)− f(x)|

γt

]

where ∆δ(k, h) = E
x∼T

[∣∣∣∣ E
x′∼S

[k(x′)h(x′)]− δk(x)h(x)

∣∣∣∣]
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Proof. We start by writing:

ET (k, fT ) = ET (k, fT )− ET (k, f) (5)

+ ET (k, f)− ES(k, f) (6)

+ ES(k, f)− ES(k, fS) (7)

+ ES(k, fS).

For (7), we have:

ES(k, f)− ES(k, fS)

= E
x∼S

[
(1− k(x)f(x)

γs
)

]
− E
x∼S

[
(1− k(x)fS(x)

γs
)

]
≤ 1

γs
E
x∼S

[k(x)(fS(x)− f(x))+] .

Term (5) can be bounded in the same manner. Con-
cerning term (6), we have:

ET (k, f)− ES(k, f)

= E
x∼T

[(
1− k(x)f(x)

γt

)
+

]
− E
x∼S

[(
1− k(x)f(x)

γs

)
+

]

≤ E
x∼T

[(
1− k(x)f(x)

γt

)
+

]
−
(

1− E
x∼S

[
k(x)f(x)

γs

])
+

(8)

≤ E
x∼T

 E
x′∼S

[k(x′)f(x′)]

γs
− k(x)f(x)

γt


+

 (9)

=
1

γs
E

x∼T

[(
E

x′∼S

[
k(x′)f(x′)

]
− δk(x)f(x)

)
+

]

≤ 1

γs
sup
h∈H

(
E

x∼T

[(
E

x′∼S

[
k(x′)h(x′)

]
− δk(x)h(x)

)
+

])

=
1

γs
sup
h∈H

(
E

x∼T

[∣∣∣∣ E
x′∼S

[
k(x′)h(x′)

]
− δk(x)h(x)

∣∣∣∣])
where (8) is obtained by applying Jensen’s inequality

to the convex function (1 − ·)+. Then, using the in-
equality (t)+ − (s)+ ≤ (t − s)+ (sub-additivity of the
positive part), one gets line (9). The last line is a con-
sequence of the fact that h ∈ H ⇒ −h ∈ H.

The established bound has 4 terms: the first one
is the error on the source w.r.t function fS , known
through the labels y. This term is similar to LS(h, h∗S)
in theorem 1.

The second term reflects a disagreement between the
source and the target w.r.t hypothesis k. Its counter-
part in 1 is the discrepancy disc, and if K = H, both
disagreement measures bound the same quantity:

ET (k, f)− ES(k, f) ≤ sup
h,h′∈H

|ET (h, h′)− ES(h, h′)|

= disc(T ,S)

ET (k, f)− ES(k, f) ≤ 1

γs
sup
x∈

∆δ(k, h)

The last two terms are distances between f and the
best hypotheses in H that respectively label elements
drawn from S and T . We will neglect both of them
in our algorithm’s definition, as we would expect them
to be small for the adaptation to be possible, given the
existence of f . After omitting these two terms, the sum
of the two remaining terms defines our algorithm that
we detail in the next section.

3.2 Algorithm derivation

We suppose searching for the similarity function K in
hypothesis space, and we denote by K the hypothe-
sis space of classifiers it induces, i.e from which the
resulting classifier k is picked. Our algorithm is then
formulated as follows:

minimize
k∈K

ES(k, fS) +
1

γs
sup
h∈H

∆δ(k, h)

The cost function in this case contains a supremum
over the potentially infinite hypothesis set H, which
makes the optimization difficult. However, we will
show in the next section that a particular choice of H
allows to deal efficiently with this term, transforming
it into a maximum over a finite set.

Using the Lagrange multipliers, the minimization
problem is equivalent to:

minimize
k∈K

sup
h∈H

∆δ(k, h)

subject to ES(k, fS) ≤ ε

where ε is a hyperparameter. Without the constraint
on the source domain error, the trivial null similarity
function K ≡ 0 is a solution to the problem. Thus, it
plays a major role in avoiding this solution, in addition
to imposing a low error on the source domain.

We note that if the constrained version of the min-
imization algorithm manages to find a small value for
sup
h∈H

∆δ(k, h), then from the proof of Proposition 1, we

have

E
x∼T

[(
E

x′∼S
[k(x′)f(x′)]− δk(x)f(x)

)
+

]
= ∆δ(k, f)

≤ sup
h∈H

∆δ(k, h).

The left hand side of these inequalities penalizes the
case 1

δ E
x′∼S

[k(x′)f(x′)] > k(x)f(x) for every instance
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x drawn from the target distribution, resulting in
similarity K that is good on T with margin γ̄ =
γt
γs

E
x∼S

[
E

x′∼S
[K(x, x′)f(x)fS(x′)]

]
. This is the mean

margin of K on the source domain when f and fS
label respectively the data points and the landmarks,
up to a scaling factor γt

γs
. This also means that the

classifier k would have a low error on the target with a
margin γ̄

γs
γt, which is a scaled version of the originally

considered margin γt for the target domain.

3.3 Case of bilinear similarities and lin-
ear classifiers

Below, we discuss a particular choice for both hy-
potheses classes K and H in order to make the op-
timization problem tractable. To this end, we con-
sider bilinear similarity functions K(x, x′) = xTAx′

with A ∈ Rd×d, ‖A‖ ≤ 1. Such functions were studied
in the (ε, γ, τ)−good framework in [BHS12]. By scal-
ing the data instances so that their Euclidean norms
are bounded by 1, K takes values in [−1, 1]. We pro-
ceed to determine the implied K space in this case. Let
x ∈ Rd:

k(x) = E
x′∼S

[K(x, x′)fS(x′)]

= E
x′∼S

[
xTAx′fS(x′)

]
= xTAµ

with µ = E
x∼S

[x.fS(x)] and

K ={k : x 7→ xTAµ;A ∈ Rd×d‖A‖ ≤ 1}
'{Aµ;A ∈ Rd×d; ‖A‖ ≤ 1}
⊂{a ∈ Rd; ‖a‖ ≤ 1},

where the ' symbol denotes equality up to an isomor-
phism of vector spaces.

As for H, we choose the space of linear classifiers
with bounded `1 norm:

H ' {w ∈ Rd; ‖w‖1 ≤ 1}.

Hence, for k(x) = aTx and h(x) = wTx, one has

∆δ(a,w) = E
x∼T

[(
E

x′∼S

[
aTx′x′Tw

]
− δaTxxTw

)
+

]
= E
x∼T

[∣∣∣aT ( E
x′∼S

[
x′x′T

]
− δxxT )w

∣∣∣] .
For a fixed a ∈ Rd, the function w 7→ ∆δ(a,w) is con-
vex, hence its supremum over H, an `1 unit ball, is
reached on one of its vertices

sup
‖w‖1≤1

∆δ(a,w) = max
1≤i≤d

(
E
x∼T

[∣∣aT (ΣS − δxxT )ei
∣∣]) ,

where ΣS = E
x∼S

[
xxT

]
and {e1, ..., ed} is the canonical

basis of Rd. Multiplying the cost function by γs, the
problem is written:

minimize
‖a‖≤1

E
x∼S

[(γs − fS(x)k(x))+] +M

s.t. M ≥ E
x∼T

[∣∣aT (ΣS − δxxT )ei
∣∣]∀1 ≤ i ≤ d.

In the empirical case, i.e when the expectation terms
are replaced by corresponding empirical means over the
source and target samples of respective sizes m and n,
this is a quadratic optimization problem having d+m
variables (d for the size of vector a, m for the positive
variables representing the positive parts) and 1+2m+
2nd constraints (one for ‖a‖, 2 for each source instance
and 2d for each target one). It can be solved efficiently
using standard convex optimization solvers.

4 Experiments

In this section, we evaluate our method on two domain
adaptation problems. The first is defined by a toy set
with a controllable difficulty, while the second is a real
world problem.

4.1 Cross-validation

We choose the best values of hyperparameters γs and δ
by a reverse validation procedure ([ZFY+10], [BM10])
following the protocol of [GHLM17] with a 5 folds val-
idation. Given a fold i ∈ 1, ..., 5 defining a training
set S \ Si and a validation set and Si for the source,
and similarly T \ Ti and Ti for the target, a classifier
h is learnt from labeled S \ Si and unlabeled T \ Ti.
Then, keeping the same hyperparameters used to learn
h, a reverse classifier hr is learnt from T \ Ti labeled
by h and unlabeled S \ Si, and finally evaluated on
Si. The chosen hyperparameters are those minimizing
the average error of hr over the folds. This way we do
not make use of the target labels, which fits with the
unsupervised domain adaptation setting. We slightly
modify this procedure to suit our method: γs and δ, or
equivalently γs and γt are respectively associated with
S and T , hence when computing the reverse classifier
hr, we replace γ and δ respectively by γs

δ = γt and
1
δ = γt

γs
. Moreover, the best hyperparameters are those

minimizing the average margin violation loss of hr on
the source validation sets Si, i.e

1

5

5∑
i=1

(
1

|Si|
∑
x∈Si

[y(x)hr(x) < γs]

)
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Angle (◦) 20 30 40 50 70 90
SVM (no adaptation) [CFTR15] 10.4 24 31.2 40 76.4 82.8

DASVM [BM10] 0 25.9 28.4 33.4 74.7 82
PBDA [GHLM17] 9.4 10.3 22.5 41.2 62.6 68.7
OT-GL [CFTR15] 0 0 1.3 19.6 37.8 50.8
DASF [MHA12] 0.20 0.45 8.97 18.73 38.05 40.25

Our algorithm (8 KPCA features) 1.31 2.37 3.56 12.9 54.45 72.41
Our algorithm (20 KPCA features) 0.84 4.11 8.76 13.93 36.19 56.32

Table 1: Average 0-1 loss (percentage) over 10 realizations for the moons toy set.

where [. . .] denotes the Iverson bracket. After choosing
the hyperparameters by this procedure, the resulting
classifier’s performance is evaluated on two indepen-
dent source and target sets. This whole procedure (re-
verse validation then testing) is repeated 10 times, and
the average performances over those repetitions are re-
ported. For all of the experiments, we use the CVXPY

modeling language ([DB16], [AVDB18]) with the solver
MOSEK ([ApS17]).

4.2 Moons data set

We carry on our experiments on the moons data set
used in [GHLM13] and [CFTR15]. The source data
set is centered at the origin (0, 0), and has 300 in-
stances, which are rotated around that point by a cer-
tain angle to get the target distribution. Obviously
the greater is the angle, the further from each other
are the two domains and the harder is the adapta-
tion. To ensure the data is linearly separable, we ap-
ply a Kernel PCA [SSM97] with a Gaussian kernel
having a parameter σ equal to the mean Euclidean
distance between instances (as done in [KJ11]), keep-
ing respectively 8 and 20 components. The mean
over 10 tests on independent data sets of 1000 in-
stances are reported in Table 1, where our algorithm
is compared to an SVM trained on the source do-
main (without adaptation) and domain adaptation al-
gorithms DASVM [BM10], PBDA [GHLM17], OT-GL
[CFTR15] and DASF[MHA12]. We observe that our
method outperforms both DASVM and PBDA for an-
gles up to 70◦. However, its performance remains lower
than DASF and OT-GL except for angles 50◦and 70◦.
We think that this difference is due to the fact that our
bound overestimates the divergence between the two
domains for small angles due to the supremum term in
Proposition 1.

4.3 Prostate cancer data set

We test our algorithm on a real world problem: a
clinical data set of multi-parametric magnetic reso-
nance images (mp-MRI) collected to train a computer-
aided diagnosis system for prostate cancer mapping
[NRML+12, ALP+15]. This system learns a binary de-
cision model in a multidimensional feature space based
on training samples (voxels) from different classes of
interest. This model is then used to generate cancer
probability maps.

Data description The considered source and target
data are mp-MRI exams of 90 patients acquired on
two different MRI scanners (1.5 T and 3T) and thus
leading to images with different resolution and texture
patterns. Details are given in Table 2.

Scanner (domain) 1.5T 3T
Number of patients 49 41
Number of voxels 419348 987396
% of positive class 13.38 14.26

Table 2: mp-MRI data description.

Each individual voxel is described by a binary la-
bel (Cancer, Non Cancer) and a set of 95 handcrafted
features consisting of image descriptors, texture coeffi-
cients, gradients and other visual characteristics (more
details in [NRML+12]).

To tackle the class imbalance illustrated in Table 2,
we randomly select a balanced 2000 voxels data set for
each of the 10 repeated reverse validation procedures.
Moreover, we run a principal component analysis keep-
ing 95% of the total variance, and reducing the num-
ber of features to 28. With the best found hyperpa-
rameters, our algorithm is evaluated 10 times on inde-
pendent data sets of 10000 instances for each domain.
Results are reported in Table 3, where we compare
our algorithm with a linear SVM without adaptation
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(Scikit-Learn [PVG+11]’s implementation). We no-
tice that for both domain adaptation where we consider
the 3T and 1.5T domains as source and target inter-
changeably, the scores on the target domain are close,
reflecting a symmetry of the problem. Our method ex-
hibits an improvement of 11% over the case without
adaptation.

Problem 3T→1.5T 1.5T→3T
Linear SVM (no adaptation) 49.99 49.56

Our algorithm 38.99 38.39

Table 3: Average 0-1 loss (percentage) over 10 realiza-
tions for the mp-MRI data set.

5 Conclusion and future per-
spectives

In this paper, we presented a new algorithm for domain
adaptation that is suitable for large margin classifiers.
Our algorithm is derived from a theoretical bound and
allows to learn a classifier on the target domain directly
without an additional alignment step. In the case of
bilinear similarity functions and linear classifiers, it is
formulated as a quadratic optimization problem that is
solved efficiently. The results we obtain are encourag-
ing, although not surpassing state of the art methods
([CFTR15], [MHA12]), and suggest trying to obtain a
tighter bound from which the algorithm is derived or
using a domain disagreement term that is less strict
than a supremum. For example, considering an expec-
tation over the considered set of classifiers [GHLM17]
is worth a try. Moreover, in the context of large margin
classifiers, questions about our method’s generalization
guarantees are naturally raised. Finally, the multi-class
case and the semi-supervised domain adaptation (i.e
when some labels are available on the target) are cru-
cial extensions to add as they would allow us to test
on more real world data sets.
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