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We study the propagation in three dimensions of internal waves using ray tracing meth-
ods and traditional dynamical systems theory. The wave propagation on a cone that
generalizes the Saint Andrew’s cross justifies the introduction of an angle of propagation
that allows to describe the position of the wave ray in the horizontal plane. Considering
the evolution of this reflection angle for waves that repeatedly reflect off an inclined slope,
a new trapping mechanism emerges that displays the tendency to align this angle with
the upslope gradient.

In the rather simple geometry of a translationally invariant canal, we show first that
this configuration leads to trapezium-shaped attractors, very similar to what has been
extensively studied in two-dimensions. However, we also establish a direct link between
the trapping and the existence of two-dimensional attractors.

In a second stage, considering a geometry that is not translationally invariant, closer to
realistic configurations, we prove that although there are no two-dimensional attractors,
one can find a structure in three-dimensional space with properties similar to internal
wave attractors: a one-dimensional attracting manifold. Moreover, as this structure is
unique, it should be easy to visualize in laboratory experiments since energy injected
in the domain would eventually be confined to a very thin region in three-dimensional
space, for which reason it is called a super-attractor.

Keywords: Internal waves, wave attractors, dynamical systems, wave ray.

1. Introduction

The unusual properties of internal waves propagating in stratified fluids lead to a
particularly interesting phenomenon that has been studied in several situations in two
dimensions: the existence of internal wave attractors. The latter correspond to a limit
cycle towards which internal waves will focus in most confined geometries with at least
one sloping boundary. These beautiful mathematical patterns exist thanks to the very
peculiar non-specular reflection law that linear internal gravity waves obey. Nonlinear-
ity is effectively introduced by the dynamical system that repeated application of this
reflection law entails.

The large majority of internal wave attractor studies were restricted to two-dimensional
geometries (Maas 2005). Despite their intriguing properties at the origin of many very
interesting works, if one wants to study their possible oceanographic and astrophysical
relevance, one has to consider three-dimensional situations. This is the main goal of this
paper, in which we will use ray tracing to study the most interesting situations.

In the literature, wave attractor studies set in three dimensions were mostly restricted
to spherical shells (Rabitti & Maas 2013) that are particularly relevant in astrophysics
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(Rieutord, Georgeot & Valdettaro 2001). Indeed, it is usual to consider the interior
of gaseous planets as a fluid, (at least partially) stratified radially, around a solid or
very dense liquid core (Dintrans, Rieutord & Valdettaro 1999). Internal waves prop-
agating within this spherical shell may indeed strongly influence the dynamics of the
planet (André, Barker & Mathis 2017). With a view of modelling internal tides in a
channel, their three-dimensional behaviour was also investigated numerically in a ro-
tating, uniformly-stratified parabolic channel (Drijfhout & Maas 2007). Taking into
account the strong analogy between inertial and internal waves, one can also refer to
works that considered rotating fluids in spherical (Rabitti & Maas 2014), or trapezoidal
(Manders & Maas 2004) basins.

Using three dimensional ray tracing algorithms in these geometries, these authors
were able to show that wave attractors obtained in two dimensions were not affected
by the third dimension. They just keep their two-dimensionality. Owing to a residual
symmetry, such as an invariance to translation (due to along-slope uniformity) or rotation
(cylindrical or spherical symmetry), a set of attractors may exist side-by-side. Together
they can be seen as a two-dimensional attracting manifold.

One may however ask two important questions:
i) What are the conditions for the existence of two-dimensional attracting manifolds

when considering general three-dimensional geometries?
ii) Is it possible for basin geometries in which residual symmetries are absent to exhibit

one-dimensional attracting manifolds, not contained in a plane?
These are the two objectives of this paper. In section 2, we first present the propagation

of internal wave beams before focusing on the reflection in three dimensions. We derive
the reflection law for internal waves reflecting off an inclined slope and, using dynamical
systems theory, we discuss in detail the map linking a wave beam’s incident angle relative
to the direction of the bottom gradient to its reflected angle. In section 3, we exhibit
two-dimensional attractors in three dimensions before considering, for the first time in
section 4, a fully tridimensional geometry with ’super-attractors’. Finally, in section 5,
we conclude and draw some perspectives.

2. Propagation and reflection in three dimensions

2.1. Three-dimensional propagation

In an inviscid and incompressible fluid, linearly stratified along the vertical z-axis, internal
waves correspond to perturbations of the velocity, the pressure and the density fields

−→
V =

−→
V0 +−→v , P = P0 + p, % = ρ̄(z) + ρ′(x, y, z, t) (2.1)

in which ρ̄(z) is the unperturbed linear stratification and with |v| � |V |, |p| � P0 and
|ρ′| � ρ0.

In the framework of the Boussinesq approximation with ρ0 = 〈ρ̄〉 the average density
over the stratified region, the projections of the Navier-Stokes equation on the three axes
lead in the linear regime to

∂−→v
∂t

= − 1

ρ0

−→∇p+ b−→ez (2.2)

where buoyancy b ≡ −ρ′g/ρ0, while the conservation of buoyancy reads

∂b

∂t
+ wN2 = 0. (2.3)

Here we introduced the square of the buoyancy frequency N2 = −(g/ρ0)dρ̄/dz, assumed
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Figure 1: Double cone with aperture π/2 − θ representing all possible propagating rays
with frequency ω = ±N sin θ. Either half of the double cone on one side of the apex is
called a cone. Drawn in green, a ray is characterized by its horizontal angle φ. Perspective
view (a) and top view (b).

to be constant. Combining appropriately Eqs. (2.2) and (2.3) and their time or spatial
derivatives, one finally gets using the incompressibility condition

∂2

∂t2
∇2vz +N2

(
∂2

∂x2
+

∂2

∂y2

)
vz = 0. (2.4)

Plane waves vz = vz0 exp(i(ωt−~k.~x)) with wavevector ~k = (kx, ky, kz) and frequency ω,
are solutions provided that the dispersion relation

ω = ±N
√

k2x + k2y
k2x + k2y + k2z

(2.5)

is satisfied. Plane internal waves of frequency ω propagate their energy along the direction
of the group velocity vector. Let us denote such an internal wave beam a ’ray’. Calling
θ the angle of the ray with respect to the horizontal, one thus recovers in this three-
dimensional setting ω = ±N sin θ that requires that plane waves with frequency ω are
propagating with a given and constant angle θ with the horizontal. In three dimensions,
internal wave rays of fixed frequency therefore lie on a double cone. As the current velocity
vector associated with such an internal wave is parallel to the rays, these also lie on the
same double cone

vz = ± tan θ
√
v2x + v2y (2.6)

represented in Fig. 1(a) and that reduces to the St Andrew’s cross in two dimensions. The
propagation of an internal wave ray with frequency ω is thus described by its position
(x,y,z) and two angles: the horizontal propagation angle φ with respect to the downslope-
directed y-axis and the angle θ that is linked to its vertical inclination.

It is important to realise that these five parameters (vx, vy, vz, θ, φ) are not strictly
equivalent to the three components of the position and of the velocity given usually
for describing the motion of an object. However, as we will show below, due to focus-
ing/defocusing of the wave component propagating in bottom-normal direction this norm
is not conserved upon reflection of an internal wave off an inclined slope. During focus-
ing it amplifies which increases our interest in its location. When a ray approaches an
attractor, the ray path tells us where we should be looking because all the internal wave
energy goes to that location. Therefore, for now the main interest of this paper is in the
direction of the ray, not the wave field’s magnitude.
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For any θ-value, by stretching or compressing the z-axis with a factor tan θ, it is
possible to map the problem to the value θ = 45◦ that we will assume for the remainder
of the paper. In this case, the three components of the velocity field of an internal wave
ray characterized by the horizontal angle φ are (vx, vy, vz) = (vz sinφ, −vz cosφ, vz),
that leads precisely to the equality v2z = v2x + v2y.

2.2. Reflection off an inclined plane

The impermeability condition when internal waves reflect from a plane, z = sy inclined
with an angle α with respect to the horizontal y−direction and having slope s = tanα
implies that the normal group velocity should vanish at the boundary, while the inviscid
hypothesis and the invariance along the x-direction leads to the conservation of the along
slope group velocity. Taking into account the incident (denoted with the index i) and

reflected (denoted with the index r) particle velocity ~vi exp[i(ωit−~ki ·~r)]+~vr exp[i(ωrt−
~kr ·~r)], the above condition first implies that the frequency ω is kept constant. Introducing
the incident ~vi = (vx,i, vy,i, vz,i) and the reflected ~vr = (vx,r, vy,r, vz,r) velocity fields,
these remarks can be summarized in the following three conditions for reflection:

(a) θr = ±θi modπ: the reflected and incident waves are on the same double cone.
(b) vx,r = vx,i: the along-slope component is unchanged.
(c) The component of the velocity normal to the slope changes its sign, that leads to

vz,r cosα− vy,r sinα = −(vz,i cosα− vy,i sinα) (2.7)

that can be simplified using s = tanα as

vz,r + vz,i = s(vy,r + vy,i). (2.8)

Condition (a) taking into account Eq. (2.6) with θ = 45◦ leads directly to v2z,r = v2x,r+v
2
y,r

and v2z,i = v2x,i + v2y,i. Subtracting both equalities and using condition (b), one gets

(vz,r − vz,i)(vz,r + vz,i) = (vy,r − vy,i)(vy,r + vy,i). (2.9)

For a sloping boundary, (vy,r+vy,i) is non-zero. Hence, by combining Eqs. (2.8) and (2.9)
this term can be divided out, which leads to the following system of two equations with
two unknowns vz,r and vy,r:

vz,r + vz,i = s(vy,r + vy,i), (2.10)

vy,r − vy,i = s(vz,r − vz,i). (2.11)

Recalling condition (b) for the along-slope velocity component, the above system leads
to

vx,r = vx,i, (2.12)

vy,r =
(1 + s2)vy,i − 2svz,i

1− s2 , (2.13)

vz,r =
−(1 + s2)vz,i + 2svy,i

1− s2 , (2.14)

providing the reflected ray from the knowledge of the incident one.
It is interesting to derive the corresponding law between the incident and reflected

horizontal angles φi and φr, both angles being defined in Fig. 2. Recalling that vx =
vz sinφ and vy = −vz cosφ, the ratio of Eqs. (2.12) and (2.14)

vx,r
vz,r

= sinφr =
(s2 − 1) sinφi

1 + s2 + 2s cosφi
, (2.15)
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Figure 2: Perspective view (a) and top view (b) of the reflection of an internal wave beam
off an inclined slope. The bottom, inclined at angle α with respect to the horizontal xy-
plane, is represented by the inclined blue rectangle. The internal wave beam propagates
along a cone whose inclination, θ, is set by the ratio of wave and buoyancy frequencies.
The incident (in green) and reflected (in red) beams make angles φi > 0 and φr < 0
relative to the downslope direction, respectively. The green dashed line is discussed in
the text.

φ′i = R(φi, s), detailed in appendix A. Above formula was originally derived by Maas
(2005). Interestingly, one can easily check that this law is also valid when considering
horizontal (s = 0) or vertical (s→∞) boundaries.

Note that in the remainder of the paper, this transformation will always be associated
with an appropriate normalisation of the reflected velocity field. Indeed, as in two dimen-
sions, the norm of the velocity field is not a conserved quantity through the reflection
mechanism. Consequently, such a normalisation is natural to avoid any numerical diffi-
culties, especially as our primary interest is the direction of the velocity vector rather
than its magnitude.

2.3. Study of the reflection map R
In order to understand the variation of the angle because of the reflection, instead of
studying the reflected angle φr itself, it is more appropriate to consider φ

′
i, the following

incident angle once the ray will come back towards the slope upon an intermediate
surface reflection, analogously to a Poincaré map. Indeed, after reflection the green ray
represented in Fig. 2 is transformed into the red one that will encounter horizontal or
vertical walls, before coming back towards the slope of interest, with an angle φ

′
i = π+φr

as shown by the green dashed ray in the example of Fig. 2b. An example of such a possible
trajectory is depicted in Fig. 3(a).

This is of course not the general situation since the ray can impinge on a vertical
wall and then on an horizontal one, before coming back towards the slope with an angle
φ

′
i = −φr. However, let us discuss first a simple case that will allow us to derive global

and rather generic properties of this reflection law.
Once the angle of the slope is given, the value of s is known and then one can study

the map R providing φ
′
i as a function of φi (see Appendix A for useful detail). Note that

for s = tanα < 1, only the top cone of Fig. 1 is physically interesting since the bottom
one is fully below the slope.

Let us study separately the three different cases: s < 1, s = 1 and s > 1.

2.3.1. Subcritical reflections s < 1

Figure 4 presents the evolution of the angle φ
′
i as a function of φi, for different sub-

critical cases with s < 1. One realizes immediately that for any s-value, the function
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Figure 3: Possible reflections of an internal wave off a bottom whose slope is subcritical
(left panel) or supercritical (center and right panels). In the right panel, the trajectory
is represented with a dotted line after the second reflection. Next to each ray, the corre-
sponding horizontal angle φ is written. Note that this picture, being a side view displays
only the projection of horizontal angles φ on the yz plane.
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Figure 4: Map φ′i = R(φi, s) for φi ∈ [−π, π] for three different values of s < 1. The solid

diagonal line represents φ
′
i = φi.

intersects the diagonal line in φi = 0 and ±π. There are therefore three fixed points of
map R (actually two since ±π correspond to the same physical state). For any value
s < 1, as R′(0) < 1 while R′(±π) > 1, only φ? = 0 is a stable fixed point, corresponding
to upslope propagation. The reflection off the inclined slope of an internal wave ray has
therefore the systematic tendency to reduce its horizontal angle. This is what we will
call in the remainder of the paper, the trapping effect. Figure 4 shows that the closer the
value of s is to 1, the faster is the trapping effect.

2.3.2. Critical reflection s = 1

In the theoretical case s = 1, the angle of the slope coincides with the aperture of the
double cone. Equations (2.13) and (2.14) show that, in that case, vy,r and vz,r diverge.

Equation (2.15) is however still valid and leads to φ
′
i = 0 for any initial horizontal

angle φi. The trapping is total from the very first reflection.
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Figure 5: Cone of possibilities for a supercritically sloping bottom s > 1. The left panel
shows that the planar slope, in grey, inclined with an angle α, partially intersects the
double cone. The right panel presents the available angular sector for φi on the top (resp.
bottom) cone in blue (resp. mauve).

2.3.3. Supercritical reflection s > 1

Figure 5 shows that in that case the top cone is not anymore fully attainable. Intro-
ducing the limiting angle φ` = arctan

√
s2 − 1, one realizes that φi has to be restricted to

[−π+ φ`, π− φ`] for the top cone and to [−φ`, φ`] for the bottom one. Figure 6 presents
the analysis for reflections on the top (vz,i < 0) and the bottom (vz,i > 0) cones, that
have to be studied separately.

i) For rays impinging on the top cone, φi ∈ [−π + φ`, π − φ`], one gets vz,r < 0,
implying that the reflected ray belongs (and is restricted) to the bottom cone.
Reflections on vertical or horizontal boundaries leading to φ

′
i = π+φr, like in Fig. 3(a), are

therefore not possible. On the contrary, the situation is like the one presented in Fig. 3(b),
in which the wave reflects on a vertical boundary before coming back towards the slope,
leading to φ′i = −φr shown in Fig. 6. Here again, there is one unique stable fixed point,
that is φ? = 0. One finds once more that the three-dimensional reflection law has the
tendency to straighten the horizontal angle of propagation. However, this case is of limited
consequences; indeed, in the canal geometry that we will be interested in, when s > 1,
the two-dimensional version leads to a point attractor, with all wave rays ending in the
bottom right corner as one can guess by looking at Fig. 3(c).

ii) For incident wave rays on the bottom cone, φi ∈ [−φ`, φ`] that leads to vz,r > 0:
the reflected ray is therefore on the top cone. Not unexpectedly, this case corresponds
precisely to the previous one, once the sense of propagation has been reversed. After
a series of reflections as plotted in Fig. 3(c), one finds the reflection law R detailed in
Appendix A for vz,i > 0 (see right panel of Fig. 6). This time, the reflection is defocusing

since |φ′
i| > |φi| for any value s > 1: the fixed point 0 is thus unstable. However, as

shown by the example depicted in Fig. 3(c), one will not indefinitely get reflections with
vz,i > 0 since, eventually, due to a reflection at the horizontal rigid-lid surface one will
get vz,i < 0, corresponding to the previous case.
Moreover, if the upper boundary of the domain (the surface in the present case) is high
enough, as the function is an increasing function of its argument, one eventually reaches
a value φ′i that will be greater than φ`. Above that value, one cannot have anymore
reflection with vz > 0, and one comes back to the previous case converging towards the
fixed point φ? = 0.

In summary, in the situations that we have considered, the ray is eventually trapped
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Figure 6: Map φ′i = R(φi, s) for three different values of s > 1 for an internal wave ray
impinging on the top cone (left panel with vz,i = −1) and on the bottom one (right panel

with vz,i = 1). The solid diagonal line represents φ
′
i = φi.

in the plane corresponding to a vanishing horizontal angle φ. This is the generic case,
but as we will discuss below, trapping may not occur in some peculiar cases.

2.3.4. Focusing or trapping?

We called trapping the alignment of the horizontal angle φ with respect to the downs-
lope direction of the reflecting slope. It is important to distinguish this from the focusing
that occurs in two-dimensions, when a corresponding internal wave beam reflects off a
slope. Focusing corresponds to the decrease of the width of the beam after reflection,
or alternatively, to the decrease of the distance between two rays initially parallel and
impinging on a planar slope.

In three dimensions, the analog of this focusing would correspond to a study of the
angular gap φ2−φ1 between both rays. In a situation where trapping is present as shown
in Fig. 7 for s = 0.8, one sees that the reflection off an inclined slope could be focusing or
defocusing. The gap between two initial angles increases after the first reflection, before
decreasing. The first reflection is therefore defocusing, while the second is focusing. On the
contrary, both reflections lead to smaller values of the angle, they are trapping. Trapping
and focusing are corresponding therefore to different ideas. Defocusing occurs between
two rays characterized by φ1 and φ2 if and only ifR′(φ) > 1 for φ ∈ [φ1,φ2],where a prime
indicates a derivative to its argument. Reciprocally, focusing occurs when R′(φ) < 1 in
this interval.
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Figure 7: Map φ′i = R(φi, s) for φi ∈ [0, π] for s = 0.8 represented with the yellow dotted
line. We follow two different reflections (dash-dotted and dashed lines) initiated from
two initial horizontal angles φ1 and φ2. As previously, green (resp. red) corresponds to
incident (resp. reflected) rays. The diagonal line φ

′
i = φi is represented by the solid black

line.
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Figure 8: Geometry under investigation with the definition of the height H, length L and
width W of the canal. The slope, inclined at the angle α with respect to the horizontal
xy-plane, is represented by the blue rectangle.

3. 2D attractors in a 3D geometry

3.1. Choice of the geometry

Having presented the trapping mechanism due to the reflection off a slope, let us turn
to its consequences in a canal with an inclined slope as depicted schematically in Fig. 8.
This geometry, that we used to derive the reflection law (2.13), has several advantages:

i) Corresponding to a schematic simplification of estuaries or river arms, it has a
geophysical interest. The Lower St. Lawrence Estuary (Eastern Canada) with its river
bed essentially U-shaped transversally and longitudinally invariant over 1000 km (El-
Sabh & Silverberg 1990) is a prototypic example. This site is remarkable since even
though internal tides are known to be generated at the land-locked head of the Channel
(Cyr, Bourgault & Galbraith 2015), surprisingly low intensity internal tides have been
measured near the mouth of the Laurentian Channel, eastern Canada (Wang, Ingram &
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Mysak 1991). It is therefore important to study propagation and reflection of internal
waves in such a geometry.

ii) This geometry is simple and easy to implement experimentally, before studying in
a second stage more complicated ones.

iii) A theoretical interest can also be anticipated from this geometry from the study
presented in the preceding section. Indeed, when an internal wave ray reflects off a sub-
critical slope (as sketched in Fig. 3(a)), there is one single fixed point of the iterated
map, φ? = 0, that proves that the ray will eventually converge to a yz-plane, transverse
to the canal. The internal wave will therefore be trapped.

Interestingly, the transversal cut of the canal is precisely the appropriate geometry
leading, in two dimensions, to internal wave attractors. In a given geometry, an inter-
nal wave attractor is a path towards which all internal waves of a given frequency will
converge: the existence of such a limit cycle has been tested through ray tracing and ex-
periments in various geometries (Maas & Lam 1995; Maas 2005; Brouzet et al. 2016b;
Brouzet 2016; Pillet 2018), and has been confirmed in an exceptional case analytically
(Maas 2009). Depending on a dimensionless lumped parameter containing the aspect
ratio and the ratio of wave to buoyancy frequencies, for the same geometrical domain,
different attractors exist; they are labelled using two indices (m,n), in which m and n
describe the number of reflections on a vertical wall and on the slope respectively.

3.2. Simple attractors

Let us consider first the simplest case for which the transverse geometry (i.e. in the yz-
plane) leads to (1,1) attractors. We will moreover consider the subcritical case s < 1. As
the successive reflections will occur with an incident horizontal angle φi between 0 and
π, the right panel of Fig. 4 shows that the angle will converge towards the fixed point
φ? = 0. This is indeed possible since the (1,1) attractor loop allows φ′i = π+φr, as shown
by Fig. 3(a).

The important parameters for ray tracing are:

• Geometrical ones (H, W , α). Note that the dimensionless length of the canal is
L = 1000.
• The angle of propagation of internal waves θ has been chosen to lead to a (1,1)

attractor. It is not useless to recall that, in the ray tracing, θ is always equal to π/4 by
modifying the height H with the factor tan θ that stretches the vertical.
• The initial values of the ray (x0, y0, z0, φ0) and vz0 that determines the sheet of the

double cone that is initially chosen.

A typical trajectory is plotted in Fig. 9 with different views. It is clear that the ray,
initially launched in the longitudinal x-direction, after a finite number of reflections on
the sloping bottom, eventually rotates towards a transverse plane. Figure 9(c) reveals that
the transverse structure of the trajectory is an attractor, identical to those obtained in
2D (Maas & Lam 1995; Maas 2005; Brouzet et al. 2016b). Note however a fundamental
difference with respect to the 2D propagation: the rays do no longer propagate only
along one of the four different angles θ, −θ, π − θ, π + θ, but involve a horizontal angle
of propagation, φ, too. Fig. 9(c) shows only the angle projected on the transverse plane;
it coincides precisely with one of these four possibilities only if φ = 0, which indeed is
reached asymptotically.

The above discussion has emphasized how the trapping mechanism occurs in three
dimensions, and transforms an initial longitudinal propagation into an attractor in the
transverse plane. We will turn towards the trapping and the convergence times, two
important notions.



Internal Wave Attractors in 3D Geometries: a dynamical systems approach 11

0 500 1000200400

0

100

200

300

α
(a)

xy

z

0

500

1000

0200400

(b)

x

y
0200400

0

100

200

300

α(c)

y

z

Figure 9: Perspective (a), top (b) and side (c) views of the trajectory of a single internal
wave beam propagating in the canal-like geometry filled with a linearly stratified fluid
and the following geometrical parameters: H = 350, W = 400, L = 1000, α = 20◦

and θ = 35◦. The beam is sent downwards (in the negative z-direction) from the plane
x = 0 with y0 = W/2 and φ0 ' π/2 (i.e. into the positive along-tank x-direction). Panel
(b) shows the convergence of the horizontal angle φ towards φ? = 0, (rebounds on the
slope are indicated with red crosses), while panel (c) emphasizes the limit cycle of the
(1,1) attractor. The color of the ray progressively changes from blue to red with the
advancement of the ray.

3.2.1. The trapping time

The speed of convergence of the trapping is not always as progressive as the example
shown in Fig. 9 for which, in order to identify the different regimes, parameters have
been tuned to get a trapping, neither too fast, nor too slow.

Instead of considering the evolution of the angle φ as a function of the number of
reflections, one can study the longitudinal velocity component vx. As briefly discussed in
Section 2.2, because of the specifics of this reflection process, the longitudinal component
vx stays constant while both transverse ones, vy and vz, diverge towards infinity. To avoid
this divergence, the total velocity has therefore been normalized after each reflection.
During the trapping, one thus gets vz → ±1/

√
2 and vy → ∓1/

√
2 while vx → 0, the

signs between vy and vz being exchanged at each reflection.
Figure 10 presents the longitudinal component vx as a function of the number of

reflections on boundaries. The rebounds on the horizontal or vertical boundaries do not
modify vx. On the contrary, it strongly decreases when the reflection occurs on the slope.
In agreement with the geometrical structure of the (1,1) attractor with three non-focusing
vertical or horizontal sides and only one slope, this is the reason for the four identical
values before a drop corresponding to a reflection off the inclined slope.

To characterize the velocity of trapping that Fig. 10 suggests to be exponential, let us
introduce the coefficient γp defined as the ratio between the horizontal velocity compo-

nents before the reflection, vx, and after, v
′
x. Since the horizontal component is modified

only by the normalization, one gets

γp =
(
v

′2
x + v

′2
y + v

′2
z

)−1/2
(3.1)

=

(
v2x +

1

(1− s2)
2

[
(v2y + v2z)((1 + s2)2 + 4s2)− 8svyvz(1 + s2)

])−1/2
. (3.2)

In order to get rid of the dependence of this coefficient with respect to the components of
the velocity, it is necessary to consider the regime close to the convergence towards the
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Figure 10: Evolution of the longitudinal velocity component vx in linear scale as a function
of the number of reflections. The inset presents the same plot in semi-logarithmic scales.
For this plot α = 8◦ and therefore s = 0.18.

fixed point. As discussed in previous section, in this regime, the horizontal component vx
can be neglected with respect to vy and vz. Taking advantage of the normalization, one
gets v2y + v2z ≈ 1 and vyvz = −1/2, that leads to

γp '
(

0 +

[
(1 + s2)2 + 4s2 + 4s(1 + s2)

]
(1− s2)

2

)−1/2
(3.3)

=
1− s2

(1 + 4s+ 6s2 + 4s3 + s4)
1/2

(3.4)

=
1− s
1 + s

, (3.5)

the focusing power of normally-incident internal waves reflecting off an inclined wall of
slope s. In the framework of this approximation, the convergence is therefore exponential
with the number N of reflections since one can write vx(N) = vx(0) γNp = vx(0) eN ln γp .
It is straightforward to check that γp is less than 1; it is also a decreasing function with
the gradient of the slope, s, and tends towards zero as s tends toward unity (we recall
that this discussion is performed in the subcritical regime).

The example presented in Fig. 10 attests that this approximation is very quickly valid.
The inset of the exponential relaxation leads to ln γnump ' −0.091 that one can compare
to the predicted value. Once the value s = tanα/ tan θ = 0.178 is obtained from the
angle of the slope α = 8◦, one just has to realize that only the reflection on the slope
is effectively trapping, while the three successive reflections on the vertical or horizontal
boundaries are not modifying the velocity components. Once this factor four is taken
into account, one gets ln γthp ' −0.090 that does confirm the approach.
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Figure 11: Three examples for the evolution of the horizontal component vx with y0 =
0.1W (left panel) y0 = 0.5W (centre) y0 = 0.85W (right). Geometrical parameters are
H = 350, L = 1000, W = 400, α = 6◦, θ = 38.3◦, z0 = 0.2H, x0 = 0 and φ0 = 90◦.

3.2.2. The convergence time

It is important to make a distinction between the trapping time, defined as the inverse
of ln γp, and the convergence time, that could be defined as the time for the ray to be
really trapped. Indeed, successive reflections on vertical and horizontal boundaries do
not necessarily each lead to φ

′
i = π + φr < φi as in the example in Fig. 3(a). Several

untrapping reflections can follow one another, and consequently significantly delay the
trapping.

Figure 11 presents three examples, in which only the initial position y0 has been
modified, but leading to significantly different convergence times. Geometrical parameters
used in the ray tracing presented in Fig. 9 have been kept constant, but only the value
for α is now smaller to get a slower trapping, and the value θ has been modified to
correspond again to a (1,1) attractor.

These examples show that, due to reflections on the boundaries, the velocity component
changes its sign several times, before the exponential trapping towards zero occurs, as
discussed in subsection 3.2.1 It is clearly apparent in these examples that the exponential
decay lasts much less than the first phase of the evolution. The trapping time discussed
earlier is therefore not always the appropriate quantity to characterize the convergence.
The first regime can last a transitory but long time, before the ray falls into a funnel and
becomes fully trapped.

In summary, despite a value of s being close to 1 that suggests a fast decay of the
velocity component vx, the trapping time may be very long, depending on the geometrical
parameters and initial conditions. Such an effect will be central when dissipation will
come into play. Indeed, a large number of reflections usually means a long distance of
propagation and therefore a strong decay in amplitude when viscous effects can not be
neglected before any trapping can take place. In such cases, predictive aspects of ray
dynamics become less meaningful.

3.2.3. Trapping plane

The longitudinal coordinate of the trapping yz-plane is clearly also an important quan-
tity, especially for what concerns any tentative experimental application. To determine
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Figure 12: The left panel shows final steady paths for different launching positions in the
x = 0 plane. The initial launching point and the corresponding attractor are represented
with the same colour. φ0 is always taken equal to π/2, The right panel presents results
for the same initial launching point (black star) when spanning values of φ0 between 20◦

(grey) and 90◦ (red).

its coordinate that we will call x∞, one has to study its dependence with the two launch-
ing coordinates y0 and z0. Taking advantage of the exponential relaxation, the criterion
chosen is that the x-component of the velocity field is four orders of magnitude smaller
than the two other components.

Figures 12(a) and 12(b) show for different initial conditions, varying the coordina-
tes (y0, z0) of the initial launching point (left panel) or of the initial horizontal angle φ0
(right panel), the corresponding final paths. All rays converge towards the same structure,
an attractor, but whose x-coordinate depends moderately on y0 and z0, but strongly on
φ0. By considering the limiting case, φ0 = 0, one indeed realizes that rays are restricted
to the transverse plane and therefore in that case the trapping plane is x∞ = x0. The
collection of attractors in these two panels illustrate the notion of an attracting two-
dimensional manifold, existing due to along-slope translational symmetry.

Figure 13 presents the position of the trapping plane x∞ as a function of y0 and z0
in two cases: a beam propagating initially upward, vz = 1 (left panel), or downward,
vz = −1 (right panel). The convergence of the first case vz = 1 is in general slower since
the first reflection on the sloping bottom is delayed with respect to the case vz = −1.
Other effects may come into play and modify the map. Indeed, discontinuities are due to
reflection off the end wall of the canal-like geometry at x = L, that delays the trapping.
These examples show the richness of this dynamical system and emphasize that, even in
a case leading to a simple (1,1) attractor, the convergence towards the trapping plane
can be more complicated and with surprises.

3.3. More complicated attractors

3.3.1. Phase diagram

Considering cases not leading to the simple (1,1) attractors, let us plot for the same
geometry the diagram as a function of θ and α. The dimensions H = 360, L = 1000 and
W = 410 are constant once the canal is given. While this diagram is not universal as the
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Figure 13: Position x∞ of the trapping plane for different initial conditions y0 and z0,
while other parameters are kept constant, particularly x0 = 0 and φ0 = 47◦. The left
(resp. right) panel corresponds to vz = 1 (resp. vz = −1). The blue triangle corresponds
to the region below the slope.

so-called (d,τ)-diagram reported for two-dimensional attractors in a trapezoidal domain
by Maas (2005) and discussed more recently in Brouzet et al. (2017), we will show that
it allows to vizualize the main regions with simple attractors.

Moreover, as discussed above, initial values for the launching point or the horizontal
angle are generically not important since one gets eventually always the same attractor,
only its position x∞ changes. The phase diagram plotted in Fig. 14 shows on the left (resp.
right) the number of reflections m (resp. n) of the final steady paths on the vertical wall
y = 0 (resp. on the slope). They are plotted only for α < arctan (H/W ) ' 41◦, since for
larger values the trapezoidal geometry is modified into a triangular domain in which all
attractors boil down to a point attractor. Both pictures show to what kind of attractors
the final steady paths belong to.

Let us describe the main areas in the diagram:

i) The top right dark blue triangle corresponds to the convergence towards a domain
without reflection, on the surface. It corresponds to the point attractors, that one pre-
cisely encounters in the supercritical regime α > θ (see the central and right panel
of Fig. 3 in which the ray eventually reaches the bottom right corner of the domain).

ii) The blue tongues, present in both the right and left panels correspond to one reflec-
tion on the slope and one reflection on the vertical wall. These two pieces of information
allows us to conclude the path is the one of a (1,1) attractor. Panel (a) of Fig. 14 shows
an example of such cases that we discussed in detail in previous sections.

iii) Tongues that are only blue on the left panel (i.e. with one reflection on the vertical
wall, m = 1) but differently coloured (multiple reflections on the slope) on the right
panel, correspond to (1, n) attractors, with n given by the associated color of the tongue
in panel (f). Panel (c) of Fig. 14 shows such an example corresponding to a (1,3) attractor.

iv) One can identify other structures in the phase diagrams in Figs. 14(b) and (d),
and especially, colored tongues in both panels attesting more complex (m,n) attractors.
One (3,1) attractor (panel (b)) and one (1,2) global resonance case (panel d), with 2
reflections from the slope, one focusing and one compensating defocusing reflection, which
occupy a line in panels (e) and (f). Global resonances have n focusing reflections exactly
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Figure 14: Panel (e) and (f): phase diagrams of the steady paths as a function of the
angles α and θ, for the typical case H = 360 and W = 410, and L = 1000. Panel (e) and
(f) give respectively the number of reflections off a vertical wall, m, and off the slope, n,
using the central colour table. The top-right triangles correspond to the point attractor
zone, that exists in the subcritical case. Three different attractors are shown in panel
(a), (b) (c) and a global resonance in panel (d), with a link to their region of existence
indicated by the white segments.

compensated by n defocusing reflections. These are characterized by each ray being
periodic, instead of, as for attracting cases, approaching a limit cycle.

v) The remaining large domain in red, and therefore with (m,n) > 10, corresponds to
even more complicated attractors. As for the (d, τ) diagram for two dimensional attractors
in a trapezoidal domain, except for singular values (lines), one gets attractors for all (α,
θ) values.

It is important to emphasize that there are no attractor regions with an even number
of reflections Ns off the slope. This is a property already known for 2D attractors (Maas
2005; Pillet 2018). However, as briefly discussed, there exist lines at which (m, 2n) global
resonances can be found.

3.3.2. (1,3) attractor

Studying a (1,3) attractor allows to better understand how trapping happens and when
it cannot occurs. It is indeed known (Maas 2005; Pillet 2018) that (1, 2n+1) attractors
have n defocusing reflections and n+1 focusing ones. Indeed, in 2D, more defocusing than
focusing reflections would mean that rays will on average move away from one another,
which would lead to the absence of attractors.

A typical trajectory converging towards a (1,3) attractor is plotted in Fig. 15. Re-
flections indexed by 1 and 3 are occurring along the gradient of the slope that leads to
focusing. On the contrary, reflection 2, being in the opposite direction of the gradient, is
defocusing.

In the following, we will consider that the ray still not trapped has a path quasi
identical to the one of a two-dimensional (1,3) attractor. Such an approximation is fully
justified by the top view shown in the right panel of Fig. 15. After just a few rebounds,
one can identify three reflections (identified by the red crosses) on the sloping bottom.
Their positions slightly change, but not their focusing or defocusing nature.
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Figure 15: Side (a) and top (b) views of a three-dimensional ray tracing in a geometry
leading to (1,3) attractor. The corresponding transverse geometry leads to the same (1,3)
attractor. Red crosses locate the reflections on the slope. Note that for the sake of clarity,
the beginning of the ray tracing, initiated from x = 0 and bouncing back from x = L,
has not been plotted. Numbers written just below the slope in (a) indexed the different
reflections along the attractor.
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Figure 16: Successive reflections on the slope for the trajectory of the (1,3) attractor
presented in Fig. 15. Incident (resp. reflected) rays are plotted in green (resp. red).

What can we say for the trapping in such a case? One cannot refer to the discussion
of Fig. 4, in which all reflections led to trapping since, here, reflections on vertical and
horizontal walls do not always give φ

′
i = φr.

Figure 16 presents the projection of the ray in the xy-plane in the case with three
reflections of the (1,3) attractor shown in Fig. 15. Panels (a), (b) and (c) present respec-
tively the reflection numbered 1, 2 and 3. Because of the path of the (1,3) attractor, the
reflected ray after reflection 1 on the slope will impinge onto the slope with an incident
horizontal angle φi 2 = −φr 1. The following bottom reflection gives also φi 3 = −φr 2. One
thus realizes that, with respect to reflection 3, reflection 2 leads to an increase of the an-
gle φ, contributing to untrapping. Consequently, the normalized velocity component vx
does not converge anymore monotonically towards 0, as shown in Fig. 17. As Fig. 16
shows, φi,4 = φ′i,3 = π + φr,3 < φi,1 testifying the net focusing after three reflections.
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Figure 17: Normalized velocity component vx as a function of N the number of reflections
for the trajectory depicted in Fig. 15. Two successive rebounds, 1 and 3, lead to a decrease
of vx in absolute value while, on the contrary, rebound 2 leads to an increase of vx in
absolute value.

Apart from reflections on vertical or horizontal boundaries, that do not affect vx, one
detects two kinds of reflections. Reflections 1 and 3, that lead to a decrease of vx in
absolute value and reflection 2 that, on the contrary, leads to an increase. Having twice
more focusing than defocusing reflections, the angle converges nevertheless towards the
fixed point φ? = 0.

The combination of reflections 1 and 2 compensate exactly and leave the velocity
component vx unchanged, contrary to reflection 3, the inverse of the convergence time
γp is given by Eq. (3.5) multiplied by a factor 1/3; only one third of the reflections lead
to a decrease of the velocity.

As in the two-dimensional case, attractors exist generically for any parameter values.
Although some singular values do not lead to attractors, one cannot get them experimen-
tally or numerically anyway. As we shall see, one can however not claim that trapping
will always occur in 3D since, as already discovered for the (1,3) attractor, trapping and
ensuing focusing can be significantly slowed down and even sometimes not occur at all.
The example of (2,1) global resonance discussed above is an example of such a case.

3.4. Non trapping cases

3.4.1. (m, 2) attractors

As shown by Fig. 15, a series of reflections 1-2-...-1-2 would give rise to a (m, 2) attractor
... that does not exist. Indeed, in two dimensions, two reflections on the sloping bottom,
one focusing while the other one is symmetrically defocusing, cannot lead towards a limit
cycle. On average, rays do not move away from each other: the Lyapunov exponent is
zero. It is known (Maas 2005; Pillet 2018) that such a case appears only for singular
parameter values. One can however choose to be as close as possible to such a singular
point.

Figure 18 shows that one gets a (1,2) attractor-like structure. This is actually not a real
attractor: First, trapping does not occur, which means that there is no limit cycle, and
therefore no possible convergence towards it. Second, this structure is not a steady state.
Indeed, after a sufficiently large number of reflections, the ray converges towards a more
complicated true attractor (with more focusing than defocusing reflections). However,
for these values, the trapping is very slow since the numbers of focusing and defocusing
reflections are approximately identical. The limit cycle corresponds indeed to n focusing
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Figure 18: Side (left panel) and top (right panel) views of a trajectory for a geometry
close to a (1,2) attractor that would lead to a vanishing Lyapunov. Reflections on the
slope are identified by red crosses.

reflections and n− 1 defocusing ones, with n large. This is therefore a situation close to
the (1,3) attractor, with a much weaker convergence.

3.4.2. Whispering-gallery modes

Another structure of interest corresponds to geometries for which, for some well chosen
initial conditions rays may escape. Similar structures have been identified in a trapezoid,
paraboloid, parabolic channel and spherical geometry for internal gravity or inertial wave
rays (Manders & Maas 2004; Maas 2005; Drijfhout & Maas 2007; Rabitti & Maas 2014)
and are called whispering gallery modes in analogy with sound waves. In the system
that we study here, such modes exist for very specific parameters and initial conditions:
trapping reflections have to be compensated exactly by untrapping ones

Figure 19 shows the trajectory of one ray in a case that (under normal incidence,
φ0 = 0) should lead to a (1,1) attractor. One can identify a trajectory that is not
trapped. It does not visit the full width of the tank, but stays concentrated on one side
of the canal. A careful look at the values of φ shows that it stays constant, φ = φw say,
if one forgets symmetries with respect to x and y. The value of φw corresponds to the
case for which φr = −φi that leads, as shown in Fig. 19, to φ

′
i = π+φr = π − φi, that

explains the stationary state. Using Eq. (2.15), the equality φr = −φi corresponds to

s2 − 1

1 + s2 + 2s cosφw
= −1, (3.6)

that one can simplify in φw = π − arccos s that precisely correspond to the ray tracing
value shown in Fig. 19.

Studying the position x∞ of the trapping plane allows us to identify the existence
of whispering-gallery modes that correspond to initial conditions that do not converge.
Using the property, shown in Fig. 19, for which the trajectory does not hit the y = 0
vertical wall, we are able to make the difference with trajectories that have not converged
yet. Figure 20 presents the result for different initial conditions spanning values of y0
and φ0 (values of x0 and z0 appear to be much less important). The two different panels
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Figure 19: Left panel: trajectory of a whispering-gallery mode with the initial conditions
φ0 = 122.476◦, x0 = 0, y0 = 320, z0 = 324 and the geometrical parameters H = 360,
L = 500, W = 410, θ = 39◦, α = 23.52◦. In two-dimensions, this geometry corresponds
to the values, (d = 0.1, τ = 1.84) that leads to a (1,1) attractor. The reflection on the
sloping bottom changes φ into −φ. After the reflection on the surface and side wall,
y = W , the successive rays will again impinge onto the slope with φ′i = φi.
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Figure 20: Position x∞ of the trapping plane for different initial conditions y0 and φ0. Left
(resp. right) panel presents the value after N = 104 (resp. N = 106) reflections. White
regions that correspond to domains in which the iteration has not converged correspond
to the whispering-gallery modes.

correspond to x∞ after two different numbers of reflections. Trajectories that have not
converged are identified by the white domains, while coloured domains correspond to
different positions of the trapping plane.

On the left panel of Fig. 20, one sees that the domain with whispering-gallery modes
(white) is very thin: φ0 ∈ [122.4◦, 122.5◦]. The right panel shows that this zone has dras-
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tically shrunk even more if one allows 100 times more reflections: most of this domain is
therefore not associated with whispering-gallery modes but leads to convergence towards
an attractor. It appears finally, that true whispering-gallery modes exist only for singular
initial conditions. This is after all, consistent with the theoretical prediction that only
one singular value φw has been found.

The different results presented in this section have emphasized the links between the
trapping and the existence of attractors in the two-dimensional transverse geometry.
Indeed, as soon as focusing reflections win over defocusing ones in the transverse two-
dimensional plane, three-dimensional reflections lead eventually to trapping. As in the
geometry under scrutiny, if we omit singular values, attractors exist for any angles (α,
θ) and any values H and W : trapping will occur generically. Those singular values are
however important. Indeed, as attractors are leading to the focusing of energy, dissipation
will significantly reduce their energy. In a given geometrical domain, if the energy is
injected in a continuous band of frequencies (i.e. different angles of propagation), the
energy will eventually remain in those that are least dissipated, and therefore in those
for which focusing does not occur.

Similarly, although whispering-gallery modes are also the exception rather than the
rule, they may be visible in a long enough canal in which the energy in the other frequen-
cies (i.e. for different angles) will be trapped and dissipated in attractors, again because
of the focusing mechanism. A far enough measurement in the canal would finally exhibit
energy only for frequencies that were not trapped, and therefore not dissipated before. For
this reason they have also been termed ’leaky edge waves’ (Drijfhout & Maas 2007): de-
spite their low probability, if they have been excited upstream, whispering-gallery modes
will finally show up.

Moreover, experimental measurements will hardly make a difference between a not-
yet-converged structure or a whispering-gallery mode: in this sense, Fig. 20(a) is more
appropriate than Fig. 20(b). Finally, viscous dissipation was not taken into account
in the ray tracing. Although being weak for internal waves that can travel thousands
of kilometers (Ray & Mitchum 1997), the distance that would actually represent the
convergence towards the limit cyle of the case discussed in Fig. 18 is far too long to be
observed. On the contrary, the transitory quasi-attractor is therefore more likely to be
observed (see Pillet et al. (2018)). In conclusion, from the experimental point of view,
only fast trapping cases can be detected.

The key point shown in this section, is that once one knows that there exists an
attractor in a two-dimensional geometry, its three-dimensional generalization, obtained
by translation of the 2D geometry along an axis orthogonal to z, will inevitably trap rays
during their propagation.

In order to consider more realistic bathymetry, we will now study a tridimensional
geometry that cannot be obtained by the translation of a 2D geometry.

4. A fully tridimensional geometry with super-attractors

4.1. Choice of the geometry

While all geometries that we studied sofar were translationally invariant along the length
of the canal (or in other studies rotationally invariant), let us now study a really tridi-
mensional geometry, in which the transverse geometry will vary along the canal. Figure
21 shows the slope, represented by the blue rectangle, that has been obtained from the
one shown in Fig. 8 after an additional rotation with an angle β with respect to the
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Figure 21: Geometry under investigation with the definition of the height H, length L
and width W of the canal. The slope, represented by the blue rectangle, is now inclined
with an angle α with respect to the y-axis and with an angle β with respect to the y-axis.

y-axis. In addition to its theoretical interest that we will discuss below, such a study is
of course closer to a realistic configuration than previous ones.

Even if one still uses the angle φ of a ray with respect to the y-axis, one has to modify
the expression of the map linking the reflected angle φr as a function of the incident
one φi. Indeed, if the trapping effect has the tendency to align the angle of propagation φ
along the slope of the gradient, the latter is not along the y-direction, but along a direction
rotated by an angle ψ with respect to the y-axis, defined as tanψ = − tanβ/ tanα (see
Fig. 21).

With this modification taken into account, formula (2.15) has to be rewritten as

sin(φr − ψ) =
(s2 − 1) sin(φi − ψ)

(1 + s2) + 2s cos(φi − ψ)
. (4.1)

The associated map, that we will call Rψ, always has a fixed point corresponding to
φ∗ = ψ.

4.2. Trapping conditions

Despite the new reflection law (4.1), trapping will still occur. A wave in the transverse yz-
plane will have the tendency to align with the upslope-directed gradient. If, in previous
geometries, vertical walls y = 0 and y = L were oriented perpendicularly to the trapping
direction, this is not the case any more with this geometry. On the contrary, a wave
corresponding to φi = ψ, will lead (after three succesive reflections on a vertical wall, the
free surface and a vertical wall like in figure 3a) to a bounce on the slope with φ′i = −ψ,
that will untrap the wave.

From this simple remark, one can immediately deduce that two-dimensional attractors
are therefore not possible in this geometry. More generally, it is also straightforward to re-
alize that, in three dimensions, an internal wave can converge towards a two-dimensional
plane only if the upslope-directed gradient belongs to this plane, while the vertical walls
are perpendicular to it. In the geometry under scrutiny, if the walls are perpendicular to
the upslope-directed gradient, one recovers the canal geometry studied in the previous
section. One thus gets that two-dimensional attractors can be found only when ψ = 0,
i.e. for β = 0 as studied in Sec. 3.

However, the above remark does not prohibit the existence of attractors in domains
having tri-dimensional geometries. Such issue is far more complicated and we will now
give some new insight along this line.
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Figure 22: Stationary structure in the tri-dimensional case with H = 650, L = 1000,
W = 400, θ = 43.2◦, α = 20◦ and β = 12.5◦. The left (resp. centered, right) panel
presents a perspective (resp. side, top) view. In the right panel, reflections on the slope
are identified by red crosses.

4.3. Tri-dimensional super-attractors

Despite the impossibility to get two-dimensional attractors, one can consider cases for
which the transverse geometry is close to the one with a (1,1) attractor in 2D. Intuitively,
if three dimensional structures do exist, they should have a few rebounds and be there-
fore easier to handle. Let us exhibit such a tridimensional structure for a given set of
parameters.

Figure 22 presents the stationary structure that one gets with different views. As shown
by the left panel, the structure is confined close to the end of the canal x = L, while
the side view is strongly reminiscent of a (1,1) attractor. On the contrary, the top view
emphasizes its three-dimensional nature, with two different reflections on the inclined
slope.

The successive reflections and the different angles of propagation have been plotted
on the right panel of Fig. 22. Calling φ1 the initial angle, the incident beam hits the
walls x = L and y = W , before impinging onto the inclined slope. The reflected angle
is therefore φ2 = Rψ(π + φ1). After three reflections on the vertical walls the second
reflection on the slope occurs, leading to an angle of propagation φ3 = Rψ(−φ2) that has
to be equal to −π−φ1 so that the cycle will start again. One thus ends with an angle φ1
that fulfills the following equation

φ1 = −π −Rψ(−φ2) (4.2)

= −π −Rψ(−Rψ(π + φ1)). (4.3)

Finding a fixed point of this equation is not easy to exhibit analytically since Rψ(−φ)
can not be simplified since ψ breaks the symmetry with respect to the y-axis. Using the
ray tracing approach, one can find the fixed point φ∗ ' −14◦. The next reflection on
the vertical wall leads to an untrapping that is exactly compensated by the following
reflection on the slope. These steps are detailed in Fig. 22c.

Figure 23 presents the different stationary structures that one obtains by varying
either φ0 (left panel) or y0 and z0 (right panel). Although leading to different stationary
structures, one always gets a limit cycle with two reflections off the wall at x = L,
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Figure 23: Three-dimensional attractors obtained for different initial conditions, varying
φ0 ∈ [−80◦, 80◦] (left panel) or varying y0 ∈ [0,W ] and z0 ∈ [0, H] (right panel). All
other parameters are those given in the caption of Fig. 22.

similar to the structure shown in Fig. 22. Such a behavior is different from the attractors
obtained in the simpler canal geometry discussed in previous section.

Despite the small variations in the bouncing coordinates, the limit cycle is almost
unchanged for all initial conditions. One thus gets a situation close to the two-dimensional
one, with the difference that they occur only close to the end wall x = L. The change
of the geometry in the longitudinal direction of the canal has important consequences:
trapping regions that were possible all along the translationally invariant canal, are now
confined to the region close to the end of a canal that is not translationally invariant.
This is therefore a ”super-attractor” since the energy is trapped in a significantly more
restricted region.

In the example discussed above, only one reflection is sufficient to make a significant
change in the angle of propagation. However, for lower values of s and larger values
of ψ, the wave can be trapped after several reflections. Using similar ideas, it is therefore
possible to exhibit even more complicated structures, with progressive trapping with
reflections on the slope and untrapping on the wall x = L (Pillet 2018) .

5. Conclusion

In this paper, we have shown that although the dispersion relation is unchanged,
the propagation in three dimensions is significantly more complicated than its two-
dimensional version. The wave propagation on a cone that generalizes the Saint An-
drew’s cross justifies the introduction of an additional angle of propagation φ that allows
to describe the position of a wave ray in the horizontal plane.

We have studied the evolution of this reflection angle over inclined slopes and shown
the emergence of a new mechanism that has the tendency to align this angle φ with
the upslope gradient. We have also carefully studied this trapping in the rather simple
geometry of a translationally invariant canal. This configuration leads to a trapezium very
similar to what has been extensively studied in two-dimensions. It is however important to
emphasize that we also established a direct link between the trapping and the existence
of two-dimensional attractors. The important feature is that, in such a case, there is
not only one attractor that would attract all rays, but an infinity of two-dimensional
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attractors distributed along the canal, that we refer to as a two-dimensional attracting
manifold.

We have also considered a geometry that is not translationally invariant which is closer
to realistic configurations. In this new geometry, we were able to prove that there are no
two-dimensional attractors. However, we have exhibited a three-dimensional structure
with properties similar to internal wave attractors. Moreover, as it is unique, it is likely
that it should be easy to visualize it in laboratory experiments since the energy injected
in the domain would be eventually confined to a very thin region in three-dimensional
space: a one-dimensional manifold, which is the reason for calling it a super-attractor.
The experimental verification of this prediction is one of our priorities.

As a side remark, we note that translational invariance is of course broken at the
front and end walls of the canal where frictional effects might modify the attracting
structures (Beckebanze et al. 2018). For internal gravity waves, having rectilinear particle
motions, this is not seen as leading to major changes. But for the analogous case of inertial
waves, that possess (inclined) circular particle motions this is an issue, and adjustment
at an inviscid level is to be expected. A preliminary experimental study of the attracting
two-dimensional manifold of inertial waves does indeed show adjustment of the cross-
sectional attractor shape on approach of the side walls (Manders & Maas 2004).

The study of attractors in three dimensions is however still in its infancy and we expect
other very interesting features to discover. Considering more complicated attractors in
even more realistic configurations is important. Moreover, the existence and the likelihood
of super-attractors in generic three dimensional geometry is fully open and could lead to
interesting predictions when considering the real bathymetry of oceans: that should lead
the way for observations in the oceans.
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Appendix A

The incident and reflected velocity fields share a reciprocal relationship as they should
switch role upon time-reversal. This is borne out when rewriting Eqs. (2.10) and (2.11)
as (

−s 1
1 −s

)(
vy
vz

)
r

=

(
s −1
1 −s

)(
vy
vz

)
i

(A 1)

or, employing the projection of the velocity vector onto the plane perpendicular to the
sloping topography, ~v⊥ = (vy, vz),

P~v⊥,r = Q~v⊥,i,

where we use unimodular matrices that have determinant ±1:

P ≡ 1√
1− s2

(
−s 1
1 −s

)
, Q ≡ 1√

1− s2
(
s −1
1 −s

)
.

Interestingly, these hyperbolic matrices reflect their reciprocal nature by obeying the
identity

P−1Q = Q−1P ≡ R,
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which implies

~v⊥,r = R~v⊥,i, and ~v⊥,i = R~v⊥,r.

The matrices acquire standard form when, for subcritical slope, s < 1, we write s =
tanh ν, so that

P ≡
(
− sinh ν cosh ν
cosh ν − sinh ν

)
and Q ≡

(
sinh ν − cosh ν
cosh ν − sinh ν

)
. (A 2)

Notice that det(P ) = −1 and det(Q) = 1.
For supercritical topography, s > 1, we premultiply left and right hand sides of (A 1)

by −1/
√
s2 − 1, and, writing s = cothµ, we find

P ≡
(

coshµ − sinhµ
− sinhµ coshµ

)
and Q ≡

(
− coshµ sinhµ
− sinhµ coshµ

)
.

Defining Qn = Q(nµ), such that the previously defined Q ≡ Q1, it appears that

P−1Q = Q−1P = Q2.

These reciprocal relations are useful when computing the velocity vector upon a ray’s
reflection from a boundary, given the incident velocity vector. It also helps determining
the proper root when solving the multivalued (2.15) for horizontal direction φr, and
subsequent angle of incidence φ′i = π + φr, given the incident angle of incidence φi and
slope s.

For subcritically sloping topography, s < 1, with

Φ(φ, s) ≡ sin−1
(

(1− s2) sinφ

1 + s2 + 2s cosφ

)
,

and

ϕ(s) ≡ π − sin−1
(

1− s2
1 + s2

)
= π − Φ

(π
2
, s
)
,

we obtain as subsequent angle of incidence

φ′ = R(φ, s) ≡


π − Φ(φ, s), if φ < −ϕ(s)

Φ(φ, s), if |φ| < ϕ(s)

π + Φ(φ, s), if φ > ϕ(s)

,

displayed in Fig. 4. The conditions apply to secure continuity when φ′ passes ±π/2.
For supercritical topography, s > 1, we need to distinguish between rays incident from

above and below. Recalling that φ`(s) = tan−1
√
s2 − 1, for rays incident from above

(vz,i < 0), we find

φ′ = R(φ, s) ≡ −Φ(φ, s) if − π + φ`(s) ≤ φ ≤ π − φ`(s),

displayed in Fig. 6a, while for rays incident from below (vz,i > 0), i.e. for −φ`(s) ≤ φ ≤
φ`(s), we have the reciprocal relation

φ′ = R(φ, s) ≡


−π + Φ(φ,−s), if φ < π − ϕ(s)

−Φ(φ,−s), if |φ| < ϕ(s)− π
π + Φ(φ,−s), if φ > ϕ(s)− π

,

displayed in Fig. 6b.
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