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ABSTRACT

This study reports on the conception of magneto-Capillary Electrophoresis (magneto-CE), an approach
integrating immuno-capture on circulating bio-functionalized magnetic beads into a unique capillary for
preconcentration and electrokinetic separation. This hybrid mode is an evolution of in-capillary magnetic
bead-based operation from static cluster format to dynamic configuration where beads are allowed to
controllably circulate inside a CE capillary for interaction improvement. To implement the magneto-CE
operation, a purpose-made instrument was constructed, allowing visual observation of the movement
of the magnetic beads. We applied a new methodological strategy for determination of the amyloid B
peptide (AB 1—42), which is as an established biomarker for molecular diagnosis of Alzheimer's disease
(AD). The methodology is based on magneto-immuno-capture of fluorescently labeled Ap 1—42 followed
by a chemical elution with a basic solution prior to CE separation with laser induced fluorescent (LIF)
detection. The superiority of this dynamic configuration of magneto-CE was demonstrated for this target
analyte, with sample pretreatment and separation being performed in-capillary without any delay in
between and without any waste of pretreated sample, which otherwise would not be the case with
offline/batch-wise operation.

* Corresponding author.
** Corresponding author.

1. Introduction

One major drawback of capillary electrophoresis (CE) is related
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enrichment strategies prior to CE separation. Various preconcen-
tration strategies based on either electrokinetic stacking or focal-
ization through electric field variations, analyte velocity changes, or
via solid phase extraction and liquid-liquid systems can be found in
some recent reviews [1—3]. To match well the working volumes in
the nanolitre scales of CE and to avoid sample loss between pre-
treatment and separation modules, efforts have been devoted to
automated and in-capillary preconcentration techniques [1].
Communications in this direction have been frequently made to
electrokinetic preconcentration (refer to Refs. [4—6] for recent ap-
plications) and in-line solid phase extraction on monolithic or
microparticle supports (see Refs. [7—9] for example). The in-line
electrokinetic approaches, although quite efficient, are however
generally limited by the capillary volume and by their strong de-
pendency on the sample matrix composition. On the other hand,
analyte preconcentration on solid supports is much less affected by
such factors and represents a strategy very often exploited to pre-
concentrate molecules from a biological matrix [10]. In particular,
magneto-immunocapture, in which analytes (antigens) are selec-
tively captured by antibodies grafted on magnetic particles offers
much higher throughput and ease of manipulation through
external magnetic fields [11,12]. The combination of magneto-
immunocapture and CE has attracted particular attention as it
combines the high enrichment capability of functionalized mag-
netic beads and the high separation power of CE. So far in-line
magnetic bead-based operations (magneto-immunocapture in
particular) and CE have been performed by trapping of magnetic
particles inside a capillary via permanent magnets [ 13—18]. Despite
interesting performances, two limitations remain for such config-
urations: i) the trapping of the magnetic beads in a dense cluster
hinders the efficient capture of the analytes onto the bio-
functionalized surface of the beads which is not directly exposed to
the solution, and ii) non-automatic manipulations of the magnets
by the operator affecting the reproducibility of the protocol.

In a related context, lab-on-a-chip setups that include magneto-
immunocapture/assays have well evolved from statically self-
assembled format (i.e. magnetic beads immobilized as a cluster in
a micro-channel via permanent magnets) [19,20] to bead-
circulating configurations allowing significant improvement of
analyte capture performance [21—26]. For such purpose, efforts to
replace permanent magnets with electronically controllable mag-
netic tweezers for magnetic beads manipulation have been also
reported [25,26]. None of these promising tweezer-based manip-
ulations of beads have nevertheless been implemented in combi-
nation with CE. Inspired from microfluidic handling of magnetic
beads, it is reported herein the design and development of a novel
approach as well as the associated instrumentation (hereafter
called magneto-CE) allowing both dynamic magnetic bead-based
sample treatment and resolute analytes electrokinetic separation
within the same microbore capillary. The advantageous features of
the magneto-CE over other non-magnetic in-line enrichment
techniques prior to CE separation include no limitation of sample
volume for enrichment (compared to electrokinetic preconcentra-
tion), ease of introduction and renewal of the magnetic beads into
the capillary for in-line sample preconcentration (compared to in-
line solid phase extraction on monolithic or microparticle sup-
ports). In addition, this novel approach offers high potential for
automation, miniaturization and low-cost instrumentation as all
operations can be realized within a fused silica capillary using
electronically controllable components.

We report also in this study a new methodological strategy,
towards subsequent adaptation to magneto-CE, for the analysis of
the amyloid B peptide (AP 1—42), a validated cerebrospinal fluid
(CSF) biomarker for molecular diagnosis of Alzheimer's disease
(AD) [27]. AB 1—42 in cerebrospinal fluid CSF is normally measured

in routine clinical practice using immunoassays [27]; however
significant inter-laboratory discrepancies and high relative stan-
dard deviation (often over 20%) are frequently observed with the
commercial ELISA kits. Mass spectrometry (MS) is an attractive
alternative that has been explored with a high detection perfor-
mance [28—30]. Nevertheless, off-line immune-precipitation is
frequently required upstream for enrichment of target peptides and
removal of sample matrix [28]. Intense sample pre-treatment(s)
and heavy instrumentation are often needed to ensure good MS
performances. Quite recently, immuno-enrichment of Ap 1—42 on
magnetic beads followed by electrokinetic separation of the
enriched peptide has been considered an interesting and more
straightforward approach for AD diagnosis purpose [20,21,31]. The
present work is our continued effort towards this objective, using a
single capillary for both sample treatment and analyte separation
without any volume mismatch nor sample loss. In our original
approach, a magneto-immuno-capture of fluorescently labeled AP
1—42 is performed, followed by the ‘antibody free’ determination of
this analyte with CE separation coupled to laser induced fluores-
cent (LIF) detection. To improve the CE-LIF performance, as well as
to subsequently adapt to magneto-CE operation, the employment
of background electrolytes (BGEs) totally composed of organic ions
instead of conventional ones containing low UV absorbing inor-
ganic ions is herein presented. Magneto-CE was then for the first
time demonstrated, using the developed methodology, as an
alternative to immunoassays for Af1-42 measurement with no
bias-induced immuno-detection thanks to electrokinetic separa-
tion of fluorescently labeled A 1—42.

2. Experimental
2.1. Chemicals and reagents

All chemicals for preparation of buffers were of analytical or
reagent grade and purchased from VWR (Fontenay-sous Bois,
France). Amyloid beta peptide AB 1—42 was purchased from
Eurogentec (Seraing, Belgium). The Fluoprobe 488 NHS ester was
obtained from Interchim (Montlucon, France). Tris(hydroxymethyl)
aminomethane (Tris), 2-(cyclohexylamino)-ethanesulfonic acid
(CHES), N-(2-hydroxy-1,1-bis(hydroxymethyl)-ethyl)glycine (Tri-
cine), boric acid, sodium hydroxide, disodium hydrogen phosphate
and sodium dihydrogen phosphate were used for preparation of
background electrolytes (BGE) solutions.

2.2. Apparatus and material

Method development was performed with a Beckman Coulter
PA 800 system (Sciex Separation, Brea, CA) equipped with a solid-
state laser induced fluorescence detector (Aexcitation: 488 nm,
Aemission: 520 nm) from Integrated Optics (Acal BFi, Evry, France).
Data acquisition and instrument control were carried out using
Karat 8.0 software (Sciex Separation, Brea, CA). Polyimide coated
fused silica capillaries of 75 um id and 375 um od from Polymicro
(TSP075375, CM Scientific, Silsden, UK) were used for all separa-
tions on the PA 800/LIF instrument. Deionized water was purified
using a Direct-Q3 UV purification system (Millipore, Milford, MA,
USA). Conductivity and pH values of buffer solutions and samples
were acquired with a SevenCompact pH meter (Mettler Toledo,
Schwerzenbach, Switzerland). Selection of BGE and buffer ionic
strength (IS) calculations were based on simulations with the
computer program PhoeBus (Analis, Suarlée, Belgium).

For magneto-CE instrumentation, the sequential injection
analysis (SIA), microfluidic manifolds and magnetic tweezers were
mounted vertically onto a poly(methyl methacrylate) (PMMA)
breadboard with the dimensions of 1 cm (d) x 45 cm (1) x 25 cm (h).
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The SIA manifold is based on a syringe pump (Cavro XLP 6000)
fitted with a 1 mL syringe and a 9-port channel selection valve
(Cavro Smart Valve) purchased from Tecan (Lyon, France). The 3-
port valves were purchased from NResearch (HP225T031, Glimli-
gen, Switzerland). The micro-graduated splitting valve was ob-
tained from Upchurch Scientific (P-470, Oak Harbor, WA, USA). All
fluid connections were made with 0.02 in. inner diameter (id) and
1/16 in. outer diameter (od) Teflon PFA tubing (Upchurch). The
magnetic tweezers were produced in-house according to the
design reported elsewhere [25,26]. They are composed of a couple
of paramagnetic tips activated by magnetic coils (product No
357—788, RS Components SAS, Beauvais, France). Optocouplers
(AQZ102, 60V 4.0 A) were purchased from RS Components
(Beauvais, France). Two cameras for beads observation were pur-
chased from Dino Lite (product no. AM4113ZT, Ludres, France). The
electrophoresis module was based on a dual polarity high voltage
power supply (Spellman CZE2000, Pulborough, UK) with +30kV
maximum output. UV transparent coated fused silica capillaries of
75 um id and 375 um od from (TSH075375, CM Scientific, Silsden,
UK) were used for all operations on the magneto-CE instrument.
Detection for the magneto-CE instrument was carried out with a
LED induced fluorescence (Zetalif-LED) detector purchased from
Picometrics (Toulouse, France). The resulting signal was recorded
with a Mini-corder ER180R data acquisition system (eDAQ Europe,
Zarszawa, Poland) connected to the USB-port of a personal com-
puter. The programming package LabVIEW (version 8.0 for Win-
dows XP, from National Instruments, Austin, TX, USA) was used to
write the control code. The image-processing package Image]
(https://imagej.net/) was used to calculate the bead cluster areas in
the captured images.

2.3. Methods

2.3.1. Dissolution and storage of peptides

AB 1—42 was dissolved at 2 mgmL~! in pure DMSO in order to
prevent in vitro aggregation of the peptide [32]. Aliquot solutions of
5 uL were stored immediately after reconstitution at - 20 °C.

2.3.2. Fluorescent labelling of peptides and sample filtration

The Fluoprobe 488 NHS ester was dissolved in DMSO to obtain
aliquots of 10 mg mL~! which were then stored at —20°C in the
darkness. Each aliquot of amyloid peptide AR 1—42 was diluted in a
sodium borate buffer (pH 10.5, IS 40 mM) containing Fluoprobe 488
NHS to obtain the desired concentration with a molar ratio of 200:1
(Fluoprobe/peptide). After 5min of incubation at room tempera-
ture, successive filtrations on 10 kDa (Amicon Ultra-15 Centrifugal
Filter Unit, Millipore (UK) Limited, Hertfordshire, UK) and 3 kDa
(Amicon Ultra-15 Centrifugal Filter Unit, Millipore (UK)) mem-
branes were then carried out to remove the excess of fluorophore
(see Ref. [33] for the detailed procedure). The peptide retained on
the membrane was then recovered into PBS 1x.

2.3.3. Batchwise immunocapture of labeled A 1—42 peptide

Magnetic micro-particles (Dynabeads MyOne Tosylactivated,
100 mg in 1 mL) were coated with monoclonal anti-Af antibodies
(6E10 or 12F4) according to the manufacturer protocol. The
antibodies-bound magnetic beads were subsequently re-
suspended at a concentration of 10 mgmL~! in PBS 1x containing
BSA 0.1% for storage at 4°C. A neodymium magnet (Adem-Mag
MSV from Ademtech, Pessac, France) was employed to trap the
magnetic beads during removal or addition of a suspension
solution.

For magneto-immunocapture in batch, the suspension of
antibodies-coated magnetic beads was vortexed for 3 min for ho-
mogenization before withdrawal of 25 pL aliquots. The suspension

solution was removed from the beads that were trapped by a
magnet, and a volume of 50 pL of labeled AR 1—42 in PBS 1x was
added for incubation on a thermo-stated shaker (Thermomixer C,
Eppendorf, Montesson, France) at 37 °C for 4 h. The beads were
then washed with PBS 1x twice. Subsequently, 10 puL of an elution
solution (NH40H 0.16%—4%) was pipetted into the washed beads
and the suspension was agitated for 10 min at room temperature.
The eluent was then separated from the magnetic beads and sub-
jected to CE-LIF analysis without further dilution.

2.34. CE-LIF of AB 1-42

Analysis of labeled Ap 1—42 was done with a BGE composed of
Tris/CHES (ionic strength I=20mM, pH 8.3) using a fused-silica
capillary of 75 um id (the total length L; of 60 cm and the effec-
tive length Legr of 50 cm) under a separation voltage of 20 kV with
the normal polarity (i.e. positive polarity at the injection end).
Before use each day, the fused silica capillaries were preconditioned
with 1 M NaOH for 10 min and deionized water for 10 min prior to
flushing with buffer. The capillaries were then used continuously
for successive analyses within one day. Deionized water was used
for the preparation of all solutions.

3. Results and discussion
3.1. Design of magneto-CE

To overcome the actual limitations encountered with existing
immuno-enrichment modules based on functionalized magnetic
beads and coupled to CE separation (i.e. working volume mismatch
between sample treatment and separation steps and modest
immuno-capture performance with static bead clusters), a novel
approach called magneto-CE is proposed for the first time. With
magneto-CE, the capillary serves directly as a micro-reactor for
immuno-enrichment of target analytes using circulating beads, and
at the same time for in-line CE separation. The schematic outline of
the magneto-CE methodology is demonstrated in Fig. 1. Bio-
functionalized magnetic beads are first injected into the capillary
via hydrodynamic injection of the bead suspension, and then
trapped or released thanks to two pairs of magnetic tweezers
positioned close to the two ends of the capillary. By alternatively
switching on/off the two magnetic tweezers and passing back and
forth a hydrodynamic flow of a certain sample volume through the
capillary, the magnetic beads can circulate between the two pairs of
magnetic tweezers (steps 1—4) in order to allow analytes immu-
nocapture. After this dynamic immuno-capture step, the magnetic
beads retaining target analytes are washed with a BGE flow of a
certain volume, in order to remove non-specifically adsorbed
molecules on magnetic beads. For the elution step, the beads are
then trapped near the grounded end of the capillary, and a plug of
the elution solution is hydrodynamically injected into the capillary
and delivered to the bead zone for elution (step 5). Then, the
released analytes are immediately analyzed with CE in the same
capillary under a high voltage without any loss of sample (step 6).
The normal polarity (anode at the injection end) was set for the
particular case of AP 1-42 separation as this species is negatively
charged under basic conditions and is dragged by the electro-
osmotic flow (EOF) from (+) to (—) towards the detector [21].
Fig.1 serves also as a general illustration of magneto-CE that may be
applied to other species than AR 1—42. The polarity may therefore
be changed according to the analyte(s) of interest. After the CE
separation, beads are removed from the capillary by a capillary
flushing with BGE while the magnetic tweezers are deactivated
(step 7).

The in-capillary immuno-extraction in a dynamic suspension of
bio-functionalized magnetic beads so far cannot be realized on any
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Fig. 1. Concept of in-capillary immuno-enrichment on circulating bio-functionalized
magnetic beads for capillary electrophoresis.

commercial CE instrument. Thus, a purpose-made system that
hyphenates microfluidic, electro-magnetic and electrophoretic
operations was constructed. With this in-lab-built instrument,
automatic control and direct observation of the movement of the
magnetic beads inside a CE capillary were made possible. A
simplified schematic drawing of the system is shown in Fig. 2A.
Extensions and modifications have been made to our previous
SIA—CE design [34,35] in order to incorporate the magneto-
immunocapture into the system. A combination of a stepper
motor-driven 2-way syringe and a multi-port selector valve was
used for delivery of solutions. Triggering of the high voltage for
electrophoresis, and manipulation of two magnetic tweezers were
realized via auxiliary Transistor-Transistor Logic (TTL) pins of such
syringe and selector valve. A fluidic interface machined in a perspex
block (see details in Ref. [34]) as well as blocking valves were
employed for magnetic bead injection, back and forth sample
manipulation, hydrodynamic injection of the eluent and flushing of
the capillary. The ground electrode was arranged along the fluidic
channel and perpendicular to the capillary end inside the fluidic
interface (see point 5 of Fig. 2A). Compared to the previous setup
[34] where the ground electrode was positioned perpendicularly to
the fluidic channel, this new arrangement allows to maximize the
contact of the electrode with the electrolyte. With the previous
interface setup, we observed current ruptures due to casual for-
mation and accumulation of bubbles inside the fluidic channel. This
bubble formation indeed can disrupt the electrical contact between
the ground electrode and the capillary during electrophoresis. In
the new setup where the ground electrode and the fluidic channel
are in a vertical position (Fig. 2A), air bubbles emerged upward and
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Fig. 2. A) Simplified schematic drawing of the magneto-CE instrument. HV: high
voltage; GND: electrical ground; Pt: platinum electrodes; W: waste; V1, V2: electrically
actuated isolation valves; BGE: background electrolyte; Pt: Platinum electrode. 1)
Stepper motor-driven syringe pump; 2) Multiple-port selection valve; 3) Magnetic
tweezers; 4) Graduated splitting valve; 5) Fluidic interface; 6) Cameras; 7) HV vial
containing either beads suspension, sample solution or BGE.

B) Photo of the magneto-CE instrument, and the schematic drawing of magnetic
tweezers with their control using an electronic optocoupler.

did not interfere the electrical contact between the ground elec-
trode and the capillary situated beneath. A graduated needle valve,
acting as a split injector, was employed to adjust the amount of the
eluent or sample to be injected into the capillary. To allow a tiny
volume of bead suspension to pass through and be trapped inside
the capillary, hydrodynamic injection of beads suspension was
carried out from the HV end of the capillary. This was done with a
backward flow created by the precise pulling action from the sy-
ringe pump on the closing of two isolation valves (V1 and V2) to
block the outlets of the fluidic interface. For delivery of the mag-
netic beads and sample solution during the immuno-capture-
elution steps, the controlled back and forth movement of the sy-
ringe piston was employed to create a backward or forward flow.
Two pairs of magnetic tweezers were positioned at two sides of the
capillary (5 cm from the ground side, and 20 cm from the HV side)
to allow magnetic beads to circulate in the capillary zone defined by
these two magnetic tweezers.

To assure a good mechanical stability of the instrument, as well
as to facilitate modification and extension during design optimi-
zation, the whole system was constructed as independent modules
and assembled into a standardized 19 in. rack (see Fig. 2B). The
power supplies including the high voltage power for electropho-
resis and electronic interfaces were arranged in two rack-mounted
withdrawable cases at the bottom. The fluidic components and
magnetic tweezers are fixed onto a perspex breadboard (25 cm (h)
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X 45cm (1) x 1cm(d)) situated above the two electronic rack in-
serts. Two pairs of magnetic tweezers made from a couple of
paramagnetic tips activated by a magnetic coil ([25,26]) were
observed with two cameras and white light-emitting-diode (LED)
back light illumination. Optocouplers with a current load of 4 A
maximum were used to isolate the low power signal (mA) circuitry
controlling the syringe pump, valves and electrophoresis parts from
the high-power section of the magnetic tweezers (up to 2.5 A)
(Fig. 2B).

3.2. Operation and performance

The details of a typical magneto-CE workflow are given in
Table 1. In this protocol, beads are aspired into the capillary from
the HV end, followed by a back and forth circulation between two
magnetic tweezers in a flow of sample. Elution is carried out from
the ground end of the capillary prior electrokinetic separation
without any delay between these two steps. The capture and
release of magnetic beads inside a capillary with magnetic twee-
zers are shown in Fig. 3A. Magnetic beads are well dispersed in the
absence of a magnetic field and circulate along the capillary instead
of staying in a packed cluster as observed when permanent mag-
nets were used. Compared to our previous microfluidic setup
where beads were allowed to circulate in much larger channels (at
least 300 um) [25,26], beads circulation is expected to be more
efficient due to the very narrow diameter (75 um) of the capillary
channel. We showed also that upon activation of magnetic twee-
zers, magnetic beads were trapped into a very compact cluster
(Fig. 3A). To verify the reproducibility of the bead trapping process,
magnetic tweezers were used to repeat 5 cycles of magnetic beads’
capture and release. Fig. 3B presents the bead recoveries which
were calculated from the areas of bead clusters captured at the
tweezers as a function of the number of capture/release cycles. A
good capture performance was ensured after 3 cycles, where the
magnetic force was always superior to the drag force induced from
the hydrodynamic flow during the capture process. After 4 or 5
cycles bead recoveries drastically decreased probably due to hy-
drodynamic drag force becoming superior to the magnetic one. This
could be explained by the fact that these magnetic tweezers were
initially designed for microfluidic operations with much shorter
activation time (<1 min). In our case, the trapping time (via acti-
vation of a high electric current) is much longer (several minutes),
leading to excessive heating of magnetic tweezers. At the same
time, the hydrodynamic flow created by the stepper syringe may
not be perfectly smooth all the time. Small hydrodynamic pulses

Table 1
Typical operation protocol of the magneto-CE system.

may lead to some partial loss of magnetic beads after each cycle
especially when magnetic tweezers are overheated. To solve the
overheating problem, miniaturization of the tweezers allowing less
power consumption and heat generation could be an option. To
avoid the hydrodynamic pulses, combination of the stepper-motor
driven syringe pump and a flowrate sensor with a flowrate regu-
lation system could be an interesting alternative (through more
sophisticated systems) to maintain a more stable flowrate during
in-capillary bead circulation.

3.3. Methodological development for determination of fluorescently
labeled AG 1—42 peptide

AB 1—42 peptide is an established biomarker for molecular
diagnosis of Alzheimer's disease, whose concentrations in cere-
brospinal fluids (CSF) are at the sub nM ranges. To improve the
detection sensitivity (with LIF rather than UV detection), fluo-
rescently labeled AR 1—42 is preferably analyzed [21,33,36]. In our
previous works on CE/MCE-LIF coupled with magneto-
immunocapture, in which at least one step was performed offline,
two strategies were already investigated for AR 1—42 tracing,
featured by (i) capture - labeling - elution by heating at 95 °C [21]
and (i) capture - chemical elution under acidic conditions - labeling
[20]. As direct magneto-immuno-capture of fluorescently labeled
AP 1-42 followed by chemical elution has not previously been
implemented, this novel approach was explored in this study. We
optimized CE-LIF conditions to achieve at the same time efficient
stacking and good separation of AR 1—42 from the residual fluo-
rescent dye in the eluent. We also investigated the conditions
allowing good immuno-recognition of the modified Af 1—42 and
its efficient elution without degrading the fluorescent signal due to
quenching or hydrolysis of the labeled peptide.

3.3.1. BGE optimization for CE-LIF of labeled Ab 1-42

For CE-LIF analyses, normally BGEs composed of inorganic
species (typically phosphate and borate/NaOH buffers), which
possess no UV absorbing features, are employed. Due to the quite
high conductivities of such BGEs, high concentrations are not rec-
ommended to minimize the Joule heating effect. This on the other
hand may result in less efficient stacking of analytes from sample
matrices having high conductivity/high ionic concentrations, which
in turns adversely influence the separation resolution and detec-
tion sensitivity. In another context, BGEs composed of very high
concentrations of large and weakly charged organic species and in
the absence of inorganic counter ions are often used for CE with

Step  Operation Syringe movement direction V1 V2 MT1 MT2 HV Injection position
1 Flushing the capillary with BGE forward closed closed Off Off Off  GND side
2 Injection of magnetic beads backward closed closed On Off Off HV side
3 Rinsing the interface with sample forward open open On Off Off  GND side
Sample injection and immuno-capture forward closed closed Off On Off  GND side
Sample injection and immuno-capture (back circulation) backward closed closed On off Off  HV side
4 Rinsing the interface with BGE forward open open On Off Off  GND side
Rinsing of trapped magnetic beads and capillary with BGE forward closed closed On Off Off  GND side
5 Rinsing the interface with eluent forward open open On off Off  GND side
Injection of an eluent plug forward closed open On Off Off  GND side
6 Rinsing the interface with BGE forward open open On Off Off  GND side
Delivery of the eluent plug to magnetic beads (for elution) forward closed closed On Off Off  GND side
7 Electrophoretic separation Off closed closed On Off On -
8 Rinsing the interface with BGE forward open open On Off Off  GND side
Removal of magnetic beads and flushing of capillary with BGE ~ forward closed closed Off Off Off  GND side

V: valve.
MT: magnetic tweezers.
HV: high voltage.
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Fig. 3. A) Photos of bead capture and release inside a transparent capillary (75 um ID and 375 pm OD) with the activation/deactivation of magnetic tweezers; B) Bead capture
performance, calculated from the areas of bead clusters captured at the tweezers over 5 consecutive activation/deactivation cycles.

conductivity detection [37,38]. Such BGEs provoke a maximum
mismatch of the conductivity and ionic density between the BGE
and sample matrix zones for efficient stacking as well as minimize
unwanted Joule heating effect thanks to their very low current
generation in the capillary. While these BGEs are not favorable for
CE with UV detection due to the high background signals induced
from their UV absorption, they would offer much improved per-
formance for CE-LIF separation as they do not produce residual
detection signals at the working excitation wavelength (normally in
the visible range). Fig. 4 shows the separation of mono-tagged and
di-tagged AP 1—42 forms from the residual fluorescent dye in the
eluent using both CE-LIF conventional inorganic BGEs and Tris/
CHES based buffer. This test was carried out with a sample matrix
containing 1% ammonium hydroxide, which is the eluent used to
release labeled AR 1—42 from the functionalized magnetic beads. As
can be seen, much sharper and higher peaks of labeled Af 1—42
were achieved with the BGE composed of 66 mM Tris and 195 mM
CHES (pH 8.3) compared to the conventional borate (20 mM NaOH/
113 mM boric acid) and phosphate (1.96 mM NaH,P04/6 mM
NayHPO,4) electrolytes. At the same ionic strength of 20 mM, such
organic BGE produced an at least twice lower current (10 pA) than
the other inorganic ones. This organic ion - based BGE with the
excellent stacking efficiency and minimal current generation was
therefore employed for further CE-LIF analyses of A 1—42 after the
immuno-capture step.

3.3.2. Batch-wise magneto-immunocapture and chemical elution of
labeled AB 1-42

For immunoassays of AP peptides, the anti-f-amyloid antibody
6E10 that is specific to amino acid residue 1—16 of beta amyloid (N-
term) was used. The immunocapture of labeled AR 1—42 was

nevertheless found not possible with this antibody (data not
shown), probably due to an epitope masking by the fluorophore
bound to Ap 1—42 via a chemical reaction at its N-terminus. The
immunocapture of this modified AR 1—42 was then carried out
with the antibody 12F4 that recognizes specifically Ap 1—42 at C-
term (2nd amino acid). Successful capture of this peptide on
magnetic beads grafted with 12F4 antibody was achieved in bulk,
as shown in Fig. 5. As the elution was not possible under acidic
conditions due to the loss of the fluorescent signal, basic solutions
were selected as eluents. Different concentrations of ammonium
hydroxide (0.16%—4%) were tested as eluents, and the elution
fractions were analyzed by CE-LIF using the developed method. It
was found that the eluent composed of 1% ammonium hydroxide at
pH 11.3 offered the best elution performance in terms of peak
height and sharpness (Fig. 5). Thanks to the high concentrations of
organic species in the BGE, excellent stacking of AR 1—-42 was
maintained even with quite a high ammonium hydroxide concen-
tration in the eluent. With such conditions, a calibration curve was
acquired with satisfactory correlation coefficient (r? > 0.98) for the
AP 1—42 concentration range of 2—40 nM. The reproducibility of
the inter-batch measurements of peak areas and migration times
was found to be about 8% and 0.5%, respectively. They deemed
satisfactory considering that these RSD values are due to the
accumulation of errors of all operations, i.e. sample preconcentra-
tion, elution, injection and separation.

3.4. In-line immunocapture of labeled A3 1-42
In-line immunocapture of labeled A 1—42 (10 nM) on magnetic

beads grafted with 12F4 antibody and elution of the captured
peptide with 1% ammonium hydroxide in a fused silica capillary,
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Fig. 4. CE-LIF analysis of labeled Af 1—42 (80nM prepared in 1% ammonium hy-
droxide) with different BGE compositions. A) Phosphate buffer (I=20 mM, pH 7.4); B)
Borate buffer (I=20 mM, pH 8.4); C) Tricine/NaOH buffer (I=20 mM, pH 8.4); D) Tris/
CHES buffer (I =20 mM, pH 8.3). CE conditions: fused silica capillary with leg= 50 cm,
ltotal = 60 cm, internal diameter of 75 pm; high voltage of 20 kV with normal polarity;
LIF excitation at 488 nm and emission at 520 nm. M: mono-tagged Ap 1-42; D: di-
tagged AP 1—42; RFU: relative fluorescence unit.

followed by CE-LIF analysis of the released AR 1—42 was carried out
with the developed magneto-CE instrument. The fluorescently
labeled AR 1—42 used was labeled off-line using a protocol already
described which produces mainly the di-tagged form [33,39]. CE-
LIF analysis of the eluent was implemented immediately after the
elution step in order to limit the fluorescent tag cleavage that may
occur under alkaline conditions. Conveniently, the BGE composed
of Tris/CHES performed well with the magneto-CE system, thanks
to its very low current generation preventing bubble formation due
to overheating inside the enclosed fluidic interface. No current
rupture was observed with the Tris/CHES buffer when running with
the magneto-CE instrument, which was not the case when inor-
ganic BGEs were tested. The CE-LIF profile after in-line magneto-
immuno-capture with circulating beads and elution of labeled A
1—42 is shown in Fig. 6. In this case the totality of the eluent is
transferred to the CE separation, which is not the case with off-line
CE operation where most of the eluent after the immuno-capture
step is wasted. On the contrary, no signal was observed when
immuno-capture of labeled Ap 1—42 was carried out with the beads
immobilized as a cluster at the tweezers 1 rather than being
recirculated in the capillary, demonstrating the added value of
using the recirculating beads to increase capture efficiency. Having
the beads in a circulating suspension instead of a conventional
packed bed is indeed to favor their contact with the analytes (i.e.
labeled AP 1—42) in the solution, thus significantly improving

TmRFU
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Fig. 5. CE-LIF analysis of labeled AB 1—42 that was batch-wise immuno-captured on
magnetic beads grafted with 12F4 antibody and eluted with ammonium hydroxide
solutions of different concentrations. Elution with A) 0.16% ammonium hydroxide; B)
0.5% ammonium hydroxide; C) 1% ammonium hydroxide; D) 2% ammonium hydroxide
or E) 4% ammonium hydroxide. Other CE-LIF conditions as in Fig. 4.
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Fig. 6. Determination of labeled Ap 1—42 (10 nM) with in-line immuno-capture on
circulating beads followed by CE-LIF using the magneto-CE instrument. The output
signal was automatically converted to electronic unit (mV) when using the Mini-
Corder data acquisition system.

interaction efficiency [22,25,26], while limiting the back pressure
generated by the bed of beads. Note that the profiles in Figs. 4 and 5
were obtained with a commercial instrument with an effective
separation length of 50 cm whereas those for Fig. 6 were achieved
with the purpose-made magneto-CE system having an effective
separation length of 35cm (i.e. the distance between the first
magnetic tweezers and the detector). Also, we observed that when
working with Ap 1—42 samples that had passed through magneto-
immunocapture and elution prior to CE separation, the peaks were
broader compared to those of Ap 1-42 standards directly injected
into a CE system without the sample treatment step. To improve the
peak resolution of peptide with the magneto-CE instrument, the
separation distance should be increased. Miniaturization of the
tweezers thus is envisaged so that a pair of miniaturized tweezers
could be positioned closer to the injection end. For the same pur-
pose, the safety cage for high voltage isolation could also be made
smaller so that the detector can be positioned closer to the high-
voltage end in the next prototype version.
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4. Conclusions

The magneto-CE concept and the associated instrument was for
the first time developed and successfully demonstrated for in-line
magneto-immuno-preconcentration and CE-LIF separation of flu-
orescently labeled AR 1—42 peptide. This approach could render
CE-LIF as a performing alternative to conventional immunoassays
for detection of protein- and peptide-based biomarkers in biolog-
ical matrices. At the actual stage of in-house assembled system, the
present work represents a first proof-of-concept of the applicability
of such a new approach for immunocapture and also its superiority
toward immobilized cluster of beads. Miniaturization of magnetic
tweezers and adaptation of this miniaturized version to a com-
mercial CE system is under progress to render magneto-CE more
robust and widespread.
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